{ "cells": [ { "cell_type": "markdown", "source": [ "# Quantum Dots" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "One of the main benefits of performing simulations from the perspective of the source rather than from the perspective of the light is that we have full control over modelling the physics of a realistic device. Most importantly, this allows for simulating many realistic imperfections, estimating device limitations, and optimising experimental parameters. It also provides an excellent tool for learning about how the device operates and for performing virtual experiments to compare with real data or design new protocols. In this example, we will explore three different source types based quantum dots: the exciton, the biexciton, and the trion." ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "## Exciton" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "When a neutral (empty) quantum dot in its ground state $|g\\rangle$ is excited by a quick laser pulse, an electron-hole pair is formed. This bound pair effectively behaves as a single particle, called an exciton (denoted by X), and it becomes trapped in a three-dimensional potential well until it recombines to emit a single photon. For a perfectly symmetric quantum dot, the orbitals available to the exciton are degenerate in energy. Thus, for many experiments, it is sufficient to model the quantum dot as a two-level emitter. However, if there is a slight distortion of the potential well, due to a physical distortion of the quantum dot or simply an asymmetric strain in the lattice, the degeneracy is lifted and the exciton will occupy one of two quantum dot states split by a small fine structure splitting $\\Delta_\\text{fss}$. This fine structure splitting can play a crucial role in the properties of the emitted photons, especially when the emission is subsequently filtered in polarisation." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 15, "outputs": [], "source": [ "from zpgenerator import *\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:17:49.706270Z", "start_time": "2024-02-09T09:17:48.688457Z" } } }, { "cell_type": "markdown", "source": [ "ZPGenerator provides a catalogue exciton source with all the necessary physics already defined, accessible via the exciton() class method the Source factory class.\n", "For more details on the model underlying the exciton() source type, please see [Sources](sources_catalogue.ipynb). For now, let's take a look at some interesting features that distinguish this source model from a basic two-level emitter." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 16, "outputs": [], "source": [ "source = Source.exciton(pulse=Pulse.dirac())" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:17:49.965914Z", "start_time": "2024-02-09T09:17:48.712604Z" } } }, { "cell_type": "markdown", "source": [ "We can first inspect the states available for us to manipulate, and check that the default initial state is the ground state. As discussed above, we have three different levels, one ground state and two orthogonal excited states.\n" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 17, "outputs": [ { "data": { "text/plain": "True" }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "source.initial_state == source.states['|g>']" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:17:49.967644Z", "start_time": "2024-02-09T09:17:48.731194Z" } } }, { "cell_type": "markdown", "source": [ "Similar to the two-level emitter, we are able to control things like the excitation pulse area, pulse delay, and pulse width in addition to the decay rate and the dephasing rate of our emitter. However, we now have additional options to modify" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 18, "outputs": [ { "data": { "text/plain": "{'resonance': 0,\n 'fss': 0,\n 'decay': 1.0,\n 'theta_c': 0,\n 'phi_c': 0,\n 'dephasing': 0,\n 'dephasing_fss': 0,\n 'area': 3.141592653589793,\n 'phase': 0,\n 'delay': 0,\n 'theta': 0,\n 'phi': 0,\n 'efficiency': 1}" }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "source.default_parameters" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:17:49.968953Z", "start_time": "2024-02-09T09:17:48.752338Z" } } }, { "cell_type": "markdown", "source": [ "We can change the excitation pulse linear polarisation angle 'theta' and phase 'phi'. We can also control the fine structure splitting 'fss' or add a specific dephasing 'dephasing_fss' of superposition states of the two excited states. Finally, we can modify the linear polarisation collection angle 'theta_c' and polarisation phase 'phi_c'. This is equivalent to putting a waveplate in the collection path.\n", "\n", "Unlike the two-level source model, the exciton has two orthogonal emission modes, one arising from the recombination of the $|x\\rangle$ exciton state and another from the $|y\\rangle$ state. So, when we want standard figures of merit describing our source, we must choose to analyse one output mode or the other using the 'port' keyword." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 19, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number | Probability\n", "0 | 0.00000\n", "1 | 1.00000\n", "2 | 0.00000\n", "3 | 0.00000\n", "4 | 0.00000\n", "\n", "Warning: no light detected in mode 1, g2 1 cannot be defined.\n", "Number | Probability\n", "0 | 1.00000\n", "1 | 0.00000\n", "2 | 0.00000\n", "3 | 0.00000\n", "4 | 0.00000\n", "\n" ] } ], "source": [ "source.photon_statistics(port=0).display()\n", "source.photon_statistics(port=1).display()" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:17:49.985510Z", "start_time": "2024-02-09T09:17:48.776612Z" } } }, { "cell_type": "markdown", "source": [ "When using a dirac pulse, one mode of the exciton source behaves like a perfect two-level source while the other mode produces no light at all. The initial state is the ground state, and the excitation pulse polarization defaults to H to target only the $|x\\rangle$ excited state. As a result, we see that mode 0 (H) is in a perfect single photon state. On the other hand, we can see that there is a warning when computing $g^{(2)}$ for mode 1 (V) because it cannot normalise by the average photon number $\\mu = 0$ for that mode. We can modify the excitation polarization using the 'theta' parameter to excite the $|y\\rangle$ state." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 20, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Warning: no light detected in mode 0, g2 0 cannot be defined.\n", "Number | Probability\n", "0 | 1.00000\n", "1 | 0.00000\n", "2 | 0.00000\n", "3 | 0.00000\n", "4 | 0.00000\n", "\n", "Number | Probability\n", "0 | 0.00000\n", "1 | 1.00000\n", "2 | 0.00000\n", "3 | 0.00000\n", "4 | 0.00000\n", "\n" ] } ], "source": [ "source.update_default_parameters(parameters={'theta': np.pi/2})\n", "source.photon_statistics(port=0).display()\n", "source.photon_statistics(port=1).display()" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:17:49.998641Z", "start_time": "2024-02-09T09:17:48.959035Z" } } }, { "cell_type": "markdown", "source": [ "If we rotate our excitation polarisation by $\\pi/2$, we now target just the $|y\\rangle$ excited state, which switches the statistics from mode 0 to mode 1. Applying a diagonal D = H + V excitation polarization of $\\theta = \\pi/4$ gives a 50:50 split of emission into modes 0 and modes 1." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 21, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Number | Probability\n", "0 | 0.50000\n", "1 | 0.50000\n", "2 | 0.00000\n", "3 | 0.00000\n", "4 | 0.00000\n", "\n", "Number | Probability\n", "0 | 0.50000\n", "1 | 0.50000\n", "2 | 0.00000\n", "3 | 0.00000\n", "4 | 0.00000\n", "\n" ] } ], "source": [ "source.update_default_parameters(parameters={'theta': np.pi/4})\n", "source.photon_statistics(port=0).display()\n", "source.photon_statistics(port=1).display()" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:17:50.013982Z", "start_time": "2024-02-09T09:17:49.126490Z" } } }, { "cell_type": "markdown", "source": [ "In this case, we are exciting a superposition of $|x\\rangle$ and $|y\\rangle$, which is then collapsed by the polarization measurement. Of course, we cannot actually prove the coherence between $|x\\rangle$ and $|y\\rangle$ from these measurements alone: we could have just as well had a classical mixture of $|x\\rangle$ and $|y\\rangle$. To see a manifestation of this coherence, we can perform a little experiment. Let's add a fine-structure splitting so that, if the exciton states are in a superposition, there will be a natural phase evolution. This means that states like $|+\\rangle = (|x\\rangle + |y\\rangle)/\\sqrt{2}$ to $|-\\rangle = (|x\\rangle - |y\\rangle)/\\sqrt{2}$ over time. Then, if we collect polarised light via mode 1 that is orthogonal to the excitation pulse polarisation, we should see a coherent beating in the lifetime." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 22, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG0CAYAAADO5AZFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB76klEQVR4nO3dd3xT5f7A8U+SNt170lJaoGXJpoCggANFwL3QK4Io+HMPnFyvIHqluNELylAE19UriooDFQQEZEPZG8rspHTv5Pz+OE1opdCkTXLS8n2/Xnmd05OTc74J1Xz7PN/neXSKoigIIYQQQjQTeq0DEEIIIYRwJEluhBBCCNGsSHIjhBBCiGZFkhshhBBCNCuS3AghhBCiWZHkRgghhBDNiiQ3QgghhGhWJLkRQgghRLPioXUArmY2mzl58iQBAQHodDqtwxFCCCGEDRRFobCwkJiYGPT687fNXHDJzcmTJ4mLi9M6DCGEEEI0wLFjx2jZsuV5z7ngkpuAgABA/XACAwM1jkYIIYQQtigoKCAuLs76PX4+F1xyY+mKCgwMlORGCCGEaGJsKSmRgmIhhBBCNCuS3AghhBCiWZHkRgghhBDNygVXcyOEEBcKRVGoqqrCZDJpHYoQNvH09MRgMDT6OpLcCCFEM1RRUUF6ejolJSVahyKEzXQ6HS1btsTf379R15HkRgghmhmz2czhw4cxGAzExMRgNBpl0lLh9hRFITs7m+PHj5OUlNSoFhxJboQQopmpqKjAbDYTFxeHr6+v1uEIYbOIiAjS0tKorKxsVHIjBcVCCNFM1TdFvRDuxlEtjPKbL4QQQohmxS2SmxkzZpCQkIC3tzd9+/Zl/fr15zx33rx56HS6Wg9vb28XRiuEEEIId6Z5cvPVV18xfvx4Jk2axObNm+nWrRtDhgwhKyvrnK8JDAwkPT3d+jhy5IgLIxZCCNFUJSQkMG3aNK3DcKp58+YRHBxs/fmll16ie/fumsWjBc2Tm7fffptx48YxZswYOnXqxMyZM/H19WXu3LnnfI1OpyM6Otr6iIqKcmHEQgghmqoNGzZw//33W3/W6XR89913jb7uuRKItLQ0dDodqampjb6Hu7A3WTp+/DhGo5HOnTs7L6i/0TS5qaioYNOmTQwePNh6TK/XM3jwYNasWXPO1xUVFREfH09cXBw33HADO3fudEW453Ust4QZyw4wc8VBrUMRQghxDhERETKCzMXmzZvH7bffTkFBAevWrXPJPTVNbnJycjCZTGe1vERFRZGRkVHna9q3b8/cuXP5/vvv+eyzzzCbzfTv35/jx4/XeX55eTkFBQW1Hs5w7HQJb/y6l/l/pTnl+kII0RiKolBSUaXJQ1EUm+M0m82kpKTQunVrfHx86NatGwsWLLC+h8GDBzNkyBDrNXNzc2nZsiUTJ060XmPRokX07t0bb29vwsPDuemmm6zP1eyWSkhIAOCmm25Cp9NZfwb4/vvv6dmzJ97e3rRp04bJkydTVVXVwE/ffud7D6dPn2bUqFGEhITg6+vL0KFD2b9/v13X//DDD+nYsSPe3t506NCB999/v9bzx48f58477yQ0NBQ/Pz+Sk5NZt24d8+bNY/LkyWzdutVa9zpv3rxz3kdRFD7++GPuvvtu/vGPf/DRRx/ZFWdDNbl5bvr160e/fv2sP/fv35+OHTsya9YsXnnllbPOT0lJYfLkyU6Pq3tcMAa9jvT8Mk7klRIb7OP0ewohhK1KK010mvirJvfe9fIQfI22fd2kpKTw2WefMXPmTJKSkvjzzz8ZOXIkERERDBo0iPnz59OlSxfee+89Hn/8cR544AFiY2Otyc1PP/3ETTfdxAsvvMAnn3xCRUUFP//8c5332rBhA5GRkXz88cdcc8011nlVVq5cyahRo3jvvfcYMGAABw8etHZlTZo0yQGfyPnV9x7uuece9u/fzw8//EBgYCDPPfccw4YNY9euXXh6etZ7/c8//5yJEycyffp0evTowZYtWxg3bhx+fn6MHj2aoqIiBg0aRGxsLD/88APR0dFs3rwZs9nMiBEj2LFjB4sXL2bJkiUABAUFnfNey5Yto6SkhMGDBxMbG0v//v1555138PPza/wHdR6aJjfh4eEYDAYyMzNrHc/MzCQ6Otqma3h6etKjRw8OHDhQ5/MTJkxg/Pjx1p8LCgqIi4treNDn4Gv04KKYQLYdz2djWi6x3WMdfg8hhGjOysvLmTJlCkuWLLH+EdumTRtWrVrFrFmzrF+4s2bNYtSoUWRkZPDzzz+zZcsWPDzUr7NXX32VO+64o9Yftd26davzfhEREQAEBwfX+s6ZPHkyzz//PKNHj7bG8Morr/Dss8+eN7nZvn37WcsG2NNqZXG+92BJalavXk3//v0BNVmJi4vju+++47bbbqv3+pMmTeKtt97i5ptvBqB169bs2rWLWbNmMXr0aL744guys7PZsGEDoaGhACQmJlpf7+/vj4eHh03f0x999BF33HEHBoOBzp0706ZNG77++mvuuecemz+PhtA0uTEajfTq1YulS5dy4403AmqT5NKlS3nkkUdsuobJZGL79u0MGzaszue9vLzw8vJyVMjn1Ss+hG3H89l05DQ3SHIjhHAjPp4Gdr08RLN72+LAgQOUlJRw1VVX1TpeUVFBjx49rD/fdtttLFy4kKlTp/LBBx+QlJRkfS41NZVx48Y1Kt6tW7eyevVqXn31Vesxk8lEWVkZJSUl56zZad++PT/88EOtYydOnOCyyy6z6/7new+7d+/Gw8ODvn37Wo+FhYXRvn17du/eXe+1i4uLOXjwIPfdd1+te1RVVVlbYFJTU+nRo4c1sWmovLw8vv32W1atWmU9NnLkSD766KPmndwAjB8/ntGjR5OcnEyfPn2YNm0axcXFjBkzBoBRo0YRGxtLSkoKAC+//DIXX3wxiYmJ5OXl8cYbb3DkyBHGjh2r5dsAIDk+lI9Xp7Ex7bTWoQghRC06nc7mriGtFBUVAWq3TGxs7T8Qa/6RWlJSwqZNmzAYDGfVmvj4NL4koKioiMmTJ1tbNmo637xqRqOxVgsHYG1Rsocj3sO5WD7jOXPm1EqQAGu3nKPu/8UXX1BWVlbrPoqiYDab2bdvH+3atXPIfeqi+W/6iBEjyM7OZuLEiWRkZNC9e3cWL15sLTI+evRorSnET58+zbhx48jIyCAkJIRevXrx119/0alTJ63eglVyQggAezIKKCqvwt9L849XCCGajE6dOuHl5cXRo0cZNGjQOc976qmn0Ov1/PLLLwwbNozhw4dzxRVXANC1a1eWLl1q/QO5Pp6enphMplrHevbsyd69e89KVFzlfO+hY8eOVFVVsW7dOmu31KlTp9i7d69N34NRUVHExMRw6NAh7rrrrnPe/8MPPyQ3N7fO1huj0XjWZ1aXjz76iKeeeuqsVpqHHnqIuXPnMnXq1Hqv0WDKBSY/P18BlPz8fKdc/5KpS5X4535U/tyX5ZTrCyFEfUpLS5Vdu3YppaWlWoditxdeeEEJCwtT5s2bpxw4cEDZtGmT8t577ynz5s1TFEVRfvzxR8VoNCqbNm1SFEVRJkyYoLRs2VLJzc1VFEVRli1bpuj1emXixInKrl27lG3btilTp061Xj8+Pl555513rD8nJSUpDz74oJKenm69xuLFixUPDw/lpZdeUnbs2KHs2rVL+e9//6u88MIL54x70qRJSrdu3c46fvjwYQVQtmzZYvNnUN97uOGGG5ROnTopK1euVFJTU5VrrrlGSUxMVCoqKhRFUZSPP/5YCQoKOmdsc+bMUXx8fJR3331X2bt3r7Jt2zZl7ty5yltvvaUoiqKUl5cr7dq1UwYMGKCsWrVKOXjwoLJgwQLlr7/+UhRFUT7//HPFz89P2bJli5Kdna2UlZWd9R62bNmiAMru3bvPeu79999XoqOjlcrKyrOeO9/vrj3f35LcONjj/92sxD/3o/L2b3udcn0hhKhPU05uzGazMm3aNKV9+/aKp6enEhERoQwZMkRZsWKFkpWVpURFRSlTpkyxnl9RUaH06tVLuf32263HvvnmG6V79+6K0WhUwsPDlZtvvtn63N+Tmx9++EFJTExUPDw8lPj4eOvxxYsXK/3791d8fHyUwMBApU+fPsrs2bPPGbc9yU18fLwyadKk834O53sPubm5yt13360EBQUpPj4+ypAhQ5R9+/ZZn68vuVEUNUGxXD8kJEQZOHCg8u2331qfT0tLU2655RYlMDBQ8fX1VZKTk5V169YpiqIoZWVlyi233KIEBwcrgPLxxx+fFf8jjzyidOrUqc73lp6eruj1euX7778/6zlHJTc6RWlAKXcTVlBQQFBQEPn5+QQGBjr8+p+uPcKL3+3g0sRwPhvbt/4XCCGEg5WVlXH48GFat24ta++5mZKSEsLCwvjll1/sLjS+EJzvd9ee728pCnGw5Hi17mbL0dNUmcx4GDRf4cJ2igInNsOJjRDUEhKvAg+j1lEJIUSzsWzZMq644gpJbJxMkhsHaxcVQICXB4XlVezJKKRz7LknN3IrlWXw/UOw45szxyI6wIjPIVybojohhGhuhg8fzvDhw7UOo9lrQs0KTYNBr6NHdevNpiNNZEi4osDC+9XERmdQW2x8wyF7D3xyAxTWvRSGEEII4Y4kuXECS9fUxqaS3Gz5DHZ9DwYjjPwGRi6Ah9ZAWBIUHIcfHlUTICGEEKIJkOTGCSzJzaa0XI0jsUFZASx5Sd2//AVoe7m67x8JIz4Dgxfs/w321r02ixBCCOFuJLlxgu6t1EU0T+aXcTKvVOtwzm/9LCjJgbBE6Pdw7eciO0D/6mUwlkwGs9n18QkhhBB2kuTGCXyNHnRqoQ5Tc+uuqcoyWDdb3R/0HBjqWE32kifAGAA5e+HQMpeGJ4QQQjSEJDdO0qspdE3t/RmKsyAwFi66qe5zvAOhx0h1f90s18UmhBBCNJAkN05iWWfKrVtutn+tbrvdUXerjUWfcYAO9v8Kpw66JDQhhHCGhIQEpk2bpnUYTqfT6fjuu+8ASEtLQ6fTkZqaqmlMriTJjZMkx6uLje1OVxfRdDvFp9RCYYAut5//3LC2kHSVur/1v86NSwghnGjDhg3cf//91p9rJgGN8dJLL6HT6dDpdHh4eBAeHs7AgQOZNm0a5eXljb6+O2lIsjRkyBAMBgMbNmxwXmA1SHLjJNFB3sQG+2BW1NmK3c6uhWCuguiuauFwfSwJ0M6FMixcCNFkRURE4Ovr65RrX3TRRaSnp3P06FGWLVvGbbfdRkpKCv3796ewsNAp92wKjh49yl9//cUjjzzC3LlzXXJPSW6cqHd119SGw25Yd7PzO3XbtZ5WG4v214CHN5w6AJk7nBaWEOLCZjabSUlJoXXr1vj4+NCtWzcWLFgAgKIoDB48mCFDhmBZFjE3N5eWLVsyceJE6zUWLVpE79698fb2Jjw8nJtuOlNTWLNbKiEhAYCbbroJnU5n/Rng+++/p2fPnnh7e9OmTRsmT55MVdX5W+E9PDyIjo4mJiaGLl268Oijj7JixQp27NjBa6+9ZtfncPz4ce68805CQ0Px8/MjOTmZdevWWZ//4IMPaNu2LUajkfbt2/Ppp5/adf0dO3YwdOhQ/P39iYqK4u677yYnJ8f6vNls5vXXXycxMREvLy9atWrFq6++CkDr1q0B6NGjBzqdrt6lJD7++GOuvfZaHnzwQf773/9SWur8UcSS3DhR3zZhAKxzt+SmvBCOrlH3O9g4DbhXwJmuqZ0LnROXEMJ5FAUqirV52NHam5KSwieffMLMmTPZuXMnTz75JCNHjmTFihXodDrmz5/Phg0beO+99wB44IEHiI2NtSY3P/30EzfddBPDhg1jy5YtLF26lD59+tR5L0sXyccff0x6err155UrVzJq1Cgef/xxdu3axaxZs5g3b571y90eHTp0YOjQoXz77bc2v6aoqIhBgwZx4sQJfvjhB7Zu3cqzzz6LuXo6joULF/L444/z1FNPsWPHDv7v//6PMWPGsGyZbSNa8/LyuOKKK+jRowcbN25k8eLFZGZmcvvtZ/7YnTBhAlOnTuXFF19k165dfPHFF0RFRQGwfv16AJYsWUJ6evp535uiKHz88ceMHDmSDh06kJiYaE1WnUnWlnKiPq3Vupstx/IoqzTh7WnQOKJqh1aoXVKhbdSHrS66CXYvUlt9rpxY7+lCCDdSWQJTYrS59z9PgtGv3tPKy8uZMmUKS5YsoV+/fgC0adOGVatWMWvWLAYNGkRsbCyzZs1i1KhRZGRk8PPPP7NlyxY8PNSvs1dffZU77riDyZMnW6/brVu3Ou8XEREBQHBwMNHR0dbjkydP5vnnn2f06NHWGF555RWeffZZJk2aZPfb79ChA7/99pvN53/xxRdkZ2ezYcMGQkPV75HExDNr/L355pvcc889PPTQQwCMHz+etWvX8uabb3L55ZfXe/3p06fTo0cPpkyZYj02d+5c4uLi2LdvHy1atODdd99l+vTp1s+gbdu2XHrppcCZzy0sLKzW51aXJUuWUFJSwpAhQwAYOXIkH330EXfffbetH0eDSMuNE7UJ9yPc34uKKjPbjudrHc4ZB35Xt4mD7Xtd0tWg94Dcg5B7yPFxCSEuaAcOHKCkpISrrroKf39/6+OTTz7h4MEzIzVvu+02brrpJqZOncqbb75JUlKS9bnU1FSuvPLKRsWxdetWXn755VoxjBs3jvT0dEpKSuy+nqIo6HQ6m89PTU2lR48e1sTm73bv3s0ll1xS69gll1zC7t27bbr+1q1bWbZsWa3316GDWnt58OBBdu/eTXl5eaM/R1CTphEjRliTzzvvvJPVq1fX+vd0Bmm5cSKdTkff1qH8tD2ddYdOWVtyNKUocGCpup94lX2v9QqAuL5wZLV6jT52tPoIIbTl6au2oGh1bxsUFRUBatdSbGxsree8vLys+yUlJWzatAmDwcD+/ftrnefj49PIYNU4Jk+ezM0333zWc97e3nZfb/fu3dY6FVs44j2cT1FREdddd12ddUAtWrTg0CHH/PGam5vLwoULqays5IMPPrAeN5lMzJ07t0HdfLaSlhsn69tGTWjcpu4mZz/kH1PXjEq41P7XJ1Zn8gf/cGxcQgjn0unUriEtHja2WnTq1AkvLy+OHj1KYmJirUdcXJz1vKeeegq9Xs8vv/zCe++9xx9/nPn/UdeuXVm6dKnNH4unpycmk6nWsZ49e7J3796zYkhMTESvt+9rc8+ePSxevJhbbrnF5td07dqV1NRUcnPr/t7o2LEjq1evrnVs9erVdOrUyabr9+zZk507d5KQkHDW+/Pz8yMpKQkfH59zfo5GoxHgrM/t7z7//HNatmzJ1q1bSU1NtT7eeust5s2bV+/rG0Nabpysb2u1qHjTkdNUmsx4GjTOJ49U/wcR1weMDRgO2fZKWPoyHP4TqirAw+jY+IQQF6yAgACefvppnnzyScxmM5deein5+fmsXr2awMBARo8ezU8//cTcuXNZs2YNPXv25JlnnmH06NFs27aNkJAQJk2axJVXXknbtm254447qKqq4ueff+a5556r854JCQksXbqUSy65BC8vL0JCQpg4cSLXXnstrVq14tZbb0Wv17N161Z27NjBv//973PGX1VVRUZGBmazmVOnTrF8+XL+/e9/0717d5555hmbP4c777yTKVOmcOONN5KSkkKLFi3YsmULMTEx9OvXj2eeeYbbb7+dHj16MHjwYBYtWsS3337LkiVLbLr+ww8/zJw5c7jzzjt59tlnCQ0N5cCBA3z55Zd8+OGHeHt789xzz/Hss89iNBq55JJLyM7OZufOndx3331ERkbi4+PD4sWLadmyJd7e3gQFBZ11n48++ohbb72Vzp071zoeFxfHhAkTWLx4McOH2zioxV7KBSY/P18BlPz8fJfcz2QyK90m/6rEP/ejsulIrkvueV7f3K8okwIVZekrDXu9yaQor7dVr3HoT8fGJoRwiNLSUmXXrl1KaWmp1qHYzWw2K9OmTVPat2+veHp6KhEREcqQIUOUFStWKFlZWUpUVJQyZcoU6/kVFRVKr169lNtvv9167JtvvlG6d++uGI1GJTw8XLn55putz8XHxyvvvPOO9ecffvhBSUxMVDw8PJT4+Hjr8cWLFyv9+/dXfHx8lMDAQKVPnz7K7Nmzzxn3pEmTFEABFIPBoISGhiqXXnqp8s477yhlZWVnnVvzXnVJS0tTbrnlFiUwMFDx9fVVkpOTlXXr1lmff//995U2bdoonp6eSrt27ZRPPvmk1usBZeHChYqiKMrhw4cVQNmyZYv1+X379ik33XSTEhwcrPj4+CgdOnRQnnjiCcVsNiuKoigmk0n597//rcTHxyuenp5Kq1atan3uc+bMUeLi4hS9Xq8MGjTorPg3btyoAMr69evrfH9Dhw5VbrrpprOOn+93157vb131h3DBKCgoICgoiPz8fAIDA11yz/s/2chvuzJ5fmgHHhjU1iX3PKd3u8HpNBj5jf0FxRbfjFWXbhj0HFz+T4eGJ4RovLKyMg4fPkzr1q0bVCMinGv06NHodDrmzZundShu53y/u/Z8f0vNjQtYConXHTqlbSAF6Wpio9NDy7rnfbBJfH91e+Qvh4QlhBAXCkVRWL58Oa+88orWoTRrUnPjAhdXT+a3Me00JrOCQW/7kECHOrZW3UZdpK723VDx1UMQj2+UuhshhLCDTqfjyJEjWofR7EnLjQt0bBFIgJcHheVV7E4v0C6Qo9XJTat+jbtOeDvwDYOqUkhPbXRYQgghhCNJcuMCBr2O5Op1ptZq2TV1fKO6jevbuOvodGcSJOmaEkII4WYkuXERyzpT67Wa78ZUCRnb1f2YHo2/ntTdCCGEcFOS3LhI3+qi4vVpuZjNGgxQy94DpnLwCoQQ22fKPCdLy82xdXYtiieEcJ0LbDCsaAYc9TsryY2LdI4NwtdoIK+kkn1Zha4P4GSqum3RDeycYbNO0V3UWY7L8mSdKSHcjKenJ0CD1kESQksVFRUAGAyNW2haRku5iKdBT6/4EFbuz2H94Vw6RLtmjh0rS+FvTHfHXM/gqSZKx9fDiU0QpvH8PUIIK4PBQHBwMFlZWQD4+vratXCjEFowm81kZ2fj6+trXWizoSS5caE+CaGs3J/DukO5jOqX4NqbW1tuujvumrG91OTm+EboervjriuEaLTo6GgAa4IjRFOg1+tp1apVo5NxSW5cyFJUvO7wKRRFcd1fUo4uJrZomQzrUFtuhBBuRafT0aJFCyIjI6msrNQ6HCFsYjQa7V6ctC6S3LhQ97hgvD315BRVsC+ziPbRAa65cfZexxYTW8T2VLcZ22QyPyHclMFgaHT9ghBNjRQUu5DRQ0/vBHXU1OoDOa67ceZOdRvV2THFxBYhrcEnFEwVkLndcdcVQgghGkGSGxe7JDEcgL8OunAyvyxLctPJsdfV6c603pzY7NhrCyGEEA0kyY2L9W9bXXdz6BRVJrNrbpq5S91GdnT8tVt0q77HDsdfWwghhGgASW5c7KKYIAK91XWmdpx00TpTWZbk5iLHXzu6i7rNkG4pIYQQ7kGSGxcz6HXWVcJdUndTmgcFJ9R9Z7TcRHdVt5k7wVTl+OsLIYQQdpLkRgOWrqk1rqi7ydqtbgNbgk+w468f0ho8/aCqDHIPOv76QgghhJ0kudGApah4Q1ouZZUm597MWcXEFno9RHdW96VrSgghhBuQ5EYDiZH+RAR4UV5lZsvRPOfezFpM7KTkBmrU3Wxz3j2EEEIIG0lyowGdTmftmvrroJPrbrL3qFtn1NtYSFGxEEIINyLJjUbOJDdOrrvJ2aduI9o77x6W5CZ9GzhouXohhBCioSS50Uj/tmrdzdZjeRSVO2mUUUkuFGer+2FJzrkHqF1eOj2U5EBRpvPuI4QQQthAkhuNxIX6EhfqQ5VZYcPhXOfc5NQBdRsYC17+zrkHgKcPhLdT96VrSgghhMYkudHQJdWtN06b78bSJRXuxFYbCykqFkII4SYkudFQP2fX3ViTm3bOuX5NUZbh4LIMgxBCCG1JcqMhS93NrvQCcosrHH+DnP3q1hXJjWWouWV0lhBCCKERSW40FBHgRbsotRbGKbMVu7JbyjIaK2c/mCqdfz8hhBDiHCS50ZhltuKV+7Mde+GqCsg9rO67ouUmKE5dhsFceea+QgghhAYkudHYwHYRAPy5LxvFkXPE5B4CxQRGfwho4bjrnotef6b1Jnu38+8nhBBCnIMkNxq7uHUYRoOek/llHMwudtyFcw+p27C2oNM57rrnE9FB3WZJ3Y0QQgjtSHKjMR+jgd6tQwC19cZhLMlNaBvHXbM+kdXJjRQVCyGE0JAkN25gYJLaNeXQuhstkpuI6vWrJLkRQgihIUlu3ICl7mbtoVzKq0yOuejp6qLekNaOuZ4tZMSUEEIINyDJjRvoEB1ARIAXpZUmNqaddsxFtWi5qTVi6pDr7iuEEELUIMmNG9DpdAxIUoeE/+mIrilTJeQdU/ddmdzUGjElXVNCCCG04RbJzYwZM0hISMDb25u+ffuyfv16m1735ZdfotPpuPHGG50boAtY6m7+3OeAdabyjqrDwD18ICC68dezh4yYEkIIoTHNk5uvvvqK8ePHM2nSJDZv3ky3bt0YMmQIWVlZ531dWloaTz/9NAMGDHBRpM51aXXLze70ArIKyxp3McskeqGtXTcM3MI6YkrmuhFCCKENzZObt99+m3HjxjFmzBg6derEzJkz8fX1Ze7cued8jclk4q677mLy5Mm0aePCbhcnCvf3onNsIACr9jey9UaLehsLy4gpabkRQgihEU2Tm4qKCjZt2sTgwYOtx/R6PYMHD2bNmjXnfN3LL79MZGQk9913X733KC8vp6CgoNbDXQ1IOjNbcaNYkpuQhMZdpyEiqpd6yD0IZgeN/BJCCCHsoGlyk5OTg8lkIioqqtbxqKgoMjIy6nzNqlWr+Oijj5gzZ45N90hJSSEoKMj6iIuLa3TczmKpu1l1IAezuRFLMViGgWvRchMUBwYvMFVA3hHX318IIcQFT/NuKXsUFhZy9913M2fOHMLDw216zYQJE8jPz7c+jh075uQoG65XfAi+RgM5RRXsSm9EC5OW3VJ6g7rkA0DOAdffXwghxAXPQ8ubh4eHYzAYyMzMrHU8MzOT6OizR/kcPHiQtLQ0rrvuOusxs9kMgIeHB3v37qVt27a1XuPl5YWXl5cTonc8o4eefm3CWLoni5X7c+gcG2T/RcwmOJ2m7oe6cAK/msISIWsXnNoPXK1NDEIIIS5YmrbcGI1GevXqxdKlS63HzGYzS5cupV+/fmed36FDB7Zv305qaqr1cf3113P55ZeTmprq1l1Otqq5SniDFJxUu4T0nhDY0oGR2SE8Sd3m7Nfm/kIIIS5omrbcAIwfP57Ro0eTnJxMnz59mDZtGsXFxYwZMwaAUaNGERsbS0pKCt7e3nTu3LnW64ODgwHOOt5UDapObjak5VJYVkmAt6d9F7AWE8eDQaN/3rDq5OaUdEsJIYRwPc2TmxEjRpCdnc3EiRPJyMige/fuLF682FpkfPToUfT6JlUa1CgJ4X60DvfjcE4xq/bnMLRLC/suoGW9jYW03AghhNCQ5skNwCOPPMIjjzxS53PLly8/72vnzZvn+IA0dnn7SA7nHGbZ3iz7kxvLCKXgeMcHZquwRHVblAFlBeAdqF0sQgghLjgXTpNIE3JFh0gAlu3Ntn9IeN5RdRuiYXLjEwx+6nuQrikhhBCuJsmNG+rTOhQ/o4HswnJ2nrRzSLhlwczgVo4PzB7hUncjhBBCG5LcuCGjh9661tQfe86/xtZZLC03Wic3lq6pnH3axiGEEOKCI8mNm7q8vdqt88deO5KbyjK1zgUgyE1abqSoWAghhItJcuOmLq+uu9l2PI+conLbXpR/XN16+oFvqJMis5EMBxdCCKERSW7cVFSgNxfFBKIosHyvjRP6WUdKtQKdznnB2cJac3MQqmeRFkIIIVxBkhs3Zh01ZWvdTb6bFBODOhRd7wlVpVBwXOtohBBCXEAkuXFjlq6pP/dlU2myofXDXYqJQZ0dOSRB3bdMLCiEEEK4gCQ3bqxby2BC/YwUllexMe10/S9wp+QGzsySLMmNEEIIF5Lkxo0Z9Douq15rapkto6asyY2bLCAqyY0QQggNSHLj5ixdUzbNd+O2LTeHtY1DCCHEBUWSGzc3sF0EBr2OA1lFHMstOfeJVeVQWD3HjZbrStUUJi03QgghXE+SGzcX5ONJr/gQAJbuzjz3ifnHAQU8fcE3zDXB1admt5QMBxdCCOEiktw0AVd1jALg9/MlNzW7pLSe48YiqBXoPaCqDArTtY5GCCHEBUKSmybgqk5qcrP2UC75JZV1n+Ru9TagDge3xCNdU0IIIVxEkpsmICHcj3ZR/pjMCn/sPUfrjWUCvyA3GSllISOmhBBCuJgkN03E1Z2iAfh91zmSG3dsuQEIbatuJbkRQgjhIpLcNBFXX6R2TS3fm01ZpensE/IsSy+4a8vNQW3jEEIIccGQ5KaJ6BIbRHSgNyUVJtYcPHX2CZb1mwJbujaw+shcN0IIIVxMkpsmQqfTWQuLf9uVUftJsxkKqkcjBcW6OLJ61Ky5URRtYxFCCHFBkOSmCbEkN7/vysJsrpEoFGeDuRJ0evCP1ii6cwhupcZVWQJF5xnKLoQQQjiIJDdNyMVtwgjw8iCnqJwtx/LOPGHpkvKPVodfuxMPowwHF0II4VKS3DQhRg+9da2pWl1T+SfUrbt1SVnIcHAhhBAuJMlNE3Oma6pGF0/BSXUbGKNBRDawJDenZMSUEEII55Pkpom5rH0EngYdh7KLOZBVpB5015FSFtJyI4QQwoUkuWliArw96d82HKjRNSXdUkIIIYSVJDdNkHVI+M7qrqmC6uQm0F2TG8ssxYdlOLgQQgink+SmCbq6UxQ6HaQey+NkXumZlht3TW5C4gEdVBSqw9aFEEIIJ5LkpgmKDPQmOT4EgMXbT0Chm07gZ+HhBUHV9UCn0zQNRQghRPMnyU0TNaxLCwDWbt0Figl0BvCP0jiq8whJULeS3AghhHAySW6aqGs6qzMRZ5+oLtINaAF6g4YR1SMkXt1KciOEEMLJJLlpoloE+dArPoQWuupFNN21S8pCWm6EEEK4iCQ3TdjQztG00OWqP7hrMbFFSGt1K8mNEEIIJ5Pkpgkb2qWFteWm2NvNFsz8O2m5EUII4SKS3DRhscE+dPQtBGBnsb/G0dTDktwUnITKMk1DEUII0bxJctPEJXrnA7Ay06hxJPXwDQOjP6BA/jGtoxFCCNGMSXLTxIWZ1EnxVmZ6kV1YrnE056HTSdeUEEIIl5DkpikzVeJRrC7BcMIcyq87MzQOqB6S3AghhHABSW6assIMQMGk8yCHIH7enq51ROcnyY0QQggXkOSmKateMFMJaIGCnrWHTnGqyI27piS5EUII4QKS3DRl+ccB8AiOo3NsIGYFFrtz15QkN0IIIVxAkpumrOCkug2M4bquMQD8kHpSw4DqUTO5URQtIxFCCNGMSXLTlFV3SxEUy3Xd1ORmfVouJ/NKNQzqPILiAB1UFEHJKa2jEUII0UxJctOUVXdLERhLTLAPfRJCURT4cZubtt54ekOgmoRJ15QQQghnkeSmKSusrq+pThiu765uv28qXVNCCCGEE0hy05RZkht/dV2pYV1a4KHXsfNkAQeyijQM7Dysyc1hTcMQQgjRfHnY+4LDhw+zcuVKjhw5QklJCREREfTo0YN+/frh7e3tjBhFXcxmKFIn8CNATW5C/YwMSApn2d5sfth6kvFXtdMwwHOQlhshhBBOZnNy8/nnn/Puu++yceNGoqKiiImJwcfHh9zcXA4ePIi3tzd33XUXzz33HPHx8c6MWQCU5oK5Ut33j7IevqF7rJrcpJ7gycFJ6HQ6jQI8B2tyc0TTMIQQQjRfNiU3PXr0wGg0cs899/DNN98QFxdX6/ny8nLWrFnDl19+SXJyMu+//z633XabUwIW1SxdUr5h4HFm0cyrOkXh7akn7VQJ247n0y0uWJv4zkVaboQQQjiZTTU3U6dOZd26dTz00ENnJTYAXl5eXHbZZcycOZM9e/bQpk0bhwcq/saS3AS0qHXYz8uDqzqp3VQ/bHXDwmJLcpN/HKrceDZlIYQQTZZNyc2QIUNsvmBYWBi9evVqcEDCRkWWYuKos566vnrOm0VbT2Iyu9lkeX4R4OkLKJB3TOtohBBCNEN2FxQDmEwmFi5cyO7duwHo2LEjN954Ix4eDbqcaIjC6kUy/9ZyAzCoXQRBPp5kFZaz7tAp+ieGuzi489Dp1NabrF1q11R4otYRCSGEaGbsHgq+c+dO2rVrx+jRo1m4cCELFy7knnvuISkpiR07djgjRlGXQstIqbNbboweeoZ1Ubum3HLOGxkOLoQQwonsTm7Gjh3LRRddxPHjx9m8eTObN2/m2LFjdO3alfvvv98ZMYq6nKflBrAux/DzjnTKKk2uiso2Ia3VrRQVCyGEcAK7+5FSU1PZuHEjISEh1mMhISG8+uqr9O7d26HBifMoPHfNDcDFrcOICfLmZH4Zv+/KtCY7bkFGTAkhhHAiu1tu2rVrR2Zm5lnHs7KySEyU+gmXsU7gV3fLjV6v4+aeLQH4ZvNxV0VlG5nrRgghhBPZlNwUFBRYHykpKTz22GMsWLCA48ePc/z4cRYsWMATTzzBa6+91qAgZsyYQUJCAt7e3vTt25f169ef89xvv/2W5ORkgoOD8fPzo3v37nz66acNum+TpSg1hoJHn/O0m3vGAvDnvmwyC8pcEZltQqoneTydpr4XIYQQwoFs6pYKDg6uNdOtoijcfvvt1mNK9RfUddddh8lkX33HV199xfjx45k5cyZ9+/Zl2rRpDBkyhL179xIZGXnW+aGhobzwwgt06NABo9HIjz/+yJgxY4iMjLRryHqTVlL37MR/1ybCn17xIWw6cprvtpzg/wa1dVGA9QhupW4rCqH0NPiGahuPEEKIZsWm5GbZsmVOC+Dtt99m3LhxjBkzBoCZM2fy008/MXfuXJ5//vmzzr/ssstq/fz4448zf/58Vq1adeEkN5Zi4r/NTlyXW3q2ZNOR03yz+Tj3D2zjHssxePqoi30WZagjpiS5EUII4UA2JTeDBg0CoKqqiilTpnDvvffSsmXLRt+8oqKCTZs2MWHCBOsxvV7P4MGDWbNmTb2vVxSFP/74g717956zS6y8vJzy8jMz4RYUFDQ6bs0V1V4N/HyGd23BS4t2si+ziB0nCujSMsjJwdkoJKE6uTkCsTLpoxBCCMexq6DYw8ODN954g6qqKofcPCcnB5PJRFRU7a6VqKgoMjIyzvm6/Px8/P39MRqNDB8+nP/85z9cddVVdZ6bkpJCUFCQ9VHX8hFNjg31NhZBPp5c3Un9fN2qsLhm3Y0QQgjhQHaPlrriiitYsWKFM2KxWUBAAKmpqWzYsIFXX32V8ePHs3z58jrPnTBhAvn5+dbHsWPNYMp/O5IbgFt7qa1s36eeoKLK7Kyo7GMZMZUnI6aEEEI4lt3z3AwdOpTnn3+e7du306tXL/z8/Go9f/3119t8rfDwcAwGw1lDyzMzM4mOPvcXt16vtw477969O7t37yYlJeWsehxQF/X08vKyOaYmwc7kZkBSBJEBXmQVlvPHniyu6Wzb65wqWFpuhBBCOIfdyc1DDz0EqIXAf6fT6ewaLWU0GunVqxdLly7lxhtvBMBsNrN06VIeeeQRm69jNptr1dU0e3bU3AAY9Dpu6hHLrD8P8c3m4+6R3MhcN0IIIZzE7uTGbHZst8b48eMZPXo0ycnJ9OnTh2nTplFcXGwdPTVq1ChiY2NJSUkB1Bqa5ORk2rZtS3l5OT///DOffvopH3zwgUPjcmt2ttwA3NKrJbP+PMSyPVmcKionzF/j1ixLzU3+MTCbQG/QNh4hhBDNhubLeI8YMYLs7GwmTpxIRkYG3bt3Z/HixdYi46NHj6LXnykNKi4u5qGHHuL48eP4+PjQoUMHPvvsM0aMGKHVW3A9a3JT9+zEdWkXFUDXlkFsO57Pwi0nGDugjZOCs1FACzAYwVQBBSfOzH0jhBBCNJJOUeyfIra4uJgVK1Zw9OhRKioqaj332GOPOSw4ZygoKCAoKIj8/HwCAwO1Dsd+igKvRKiT+D2x3a6k4NO1R3jxux0kRvrz+5MDtZ/z5r2ekHsQRi+C1gO1jUUIIYRbs+f72+6Wmy1btjBs2DBKSkooLi4mNDSUnJwcfH19iYyMdPvkpsmzcXbiutzQPYYpP+3mQFYRm46cJjlB48nzQhLU5Ob0EWitbShCCCGaD7uHgj/55JNcd911nD59Gh8fH9auXcuRI0fo1asXb775pjNiFDVZiol9QsHDvrqZQG9Pru2qdmX9d70bDImXuW6EEEI4gd3JTWpqKk899RR6vR6DwUB5eTlxcXG8/vrr/POf/3RGjKImy9ILdtTb1HRHH7Ub66ftJ8kvrXRUVA0jc90IIYRwAruTG09PT2uBb2RkJEePHgUgKCioeUyQ5+4Kq+cECrCvS8qiZ6tg2kX5U1Zp5ofUEw4MrAFkrhshhBBOYHdy06NHDzZs2ACoa05NnDiRzz//nCeeeILOnTs7PEDxN41sudHpdNzRW229+WL9MRpQT+44MteNEEIIJ7A7uZkyZQotWqhfrK+++iohISE8+OCDZGdnM3v2bIcHKP6mqLrlxs5i4ppu7hmL0UPP7vQCth3Pd1BgDWCpuSnOgopi7eIQQgjRrNg9Wio5Odm6HxkZyeLFix0akKhHI1tuAIJ9jQztHM33qSf5csNRusUFOyY2e/mEgHcQlOVD3lGI7KhNHEIIIZoVu1tuhMasE/g1vOUG4M7qwuIfUk9SXO6YVd4bROpuhBBCOJhNyc0111zD2rVr6z2vsLCQ1157jRkzZjQ6MHEO1oLihrfcAPRtHUqbcD+KK0ws2nrSAYE1kNTdCCGEcDCbuqVuu+02brnlFoKCgrjuuutITk4mJiYGb29vTp8+za5du1i1ahU///wzw4cP54033nB23BcmRTkzz40d60rVRafTMaJ3HCm/7OGL9UetQ8RdTua6EUII4WA2JTf33XcfI0eO5Ouvv+arr75i9uzZ5Oerhag6nY5OnToxZMgQNmzYQMeOUjfhNKWn1bWYoFEFxRa39GrJW7/tY9vxfLYey9Om9kbmuhFCCOFgNhcUe3l5MXLkSEaOHAlAfn4+paWlhIWF4enp6bQARQ2WYuIGzE5cl3B/L4Z3bcHCLSf4ZM0R3tIiuQlOULfSciOEEMJBGlxQHBQURHR0tCQ2rlTomC6pmu7up3YLLdp2ktziinrOdoKaNTdazrkjhBCi2ZDRUk2JE5KbHnHBdI4NpKLKzFcbNJhhOjgO0EFlMRTnuP7+Qgghmh1JbpoSSzGxv+OSG51Ox6h+CQB8tvYIJrOLW088vCAwRt2XuhshhBAOIMlNU+KElhuA67vFEOzryYm8UpbtyXLotW0ic90IIYRwIElumhInJTfengZuT44DYP6aNIde2ybWuhsN7i2EEKLZsTu5GT16NH/++aczYhH1cVJyAzCybzw6Hazcn8Oh7CKHX/+8ZK4bIYQQDmR3cpOfn8/gwYNJSkpiypQpnDhxwhlxibpYk5vGzU5cl1ZhvlzePhKAz9Yedfj1z0vmuhFCCOFAdic33333HSdOnODBBx/kq6++IiEhgaFDh7JgwQIqKyudEaOA2rMTO2ACv7pYhoV/vekYJRUuXG9Kam6EEEI4UINqbiIiIhg/fjxbt25l3bp1JCYmcvfddxMTE8OTTz7J/v37HR2nqDk7sRO6pQAGJUUQH+ZLYVkV3252YYucpeUm/wSYJEEWQgjROI0qKE5PT+f333/n999/x2AwMGzYMLZv306nTp145513HBWjgDNdUj4hDpmduC56vY7R1cPC564+jNlVw8L9o8DgBYoJ8o+75p5CCCGaLbuTm8rKSr755huuvfZa4uPj+frrr3niiSc4efIk8+fPZ8mSJfzvf//j5Zdfdka8Fy7L0gtOqLep6fbecQR4eXAou5jl+1w0LFyvP1NULHU3QgghGsnmtaUsWrRogdls5s4772T9+vV07979rHMuv/xygoODHRCesCrKVLdOqrex8Pfy4M6+rZj95yE+XHmYKzo4935WwfGQs0/qboQQQjSa3S0377zzDidPnmTGjBl1JjYAwcHBHD58uLGxiZpc1HIDMLp/Aga9jr8OnmLnyXyn3w+ovcaUEEII0Qh2JzfLli2rc1RUcXEx9957r0OCEnUorG65CXB+S0pssA/DuqhJ1EerXJSkylw3QgghHMTu5Gb+/PmUlpaedby0tJRPPvnEIUGJOriw5QbgvktbA7Bo60kyC8qcf0OZ60YIIYSD2JzcFBQUkJ+fj6IoFBYWUlBQYH2cPn2an3/+mcjISGfGemFzUc2NRfe4YHonhFBpUvjEFUsyyFw3QgghHMTmguLg4GB0Oh06nY527dqd9bxOp2Py5MkODU7U4OKWG4D7Lm3DhrRNfL7uKA9fnoiv0e76c9tZuqVKTkF5IXgFOO9eQgghmjWbv62WLVuGoihcccUVfPPNN4SGhlqfMxqNxMfHExMT45QgL3iK4tR1pc7lqk5RtAr15WhuCd9sPsHdF8c772beQeocPqWn1aLi6M7Ou5cQQohmzebkZtCgQQAcPnyYVq1aodPpnBaU+JuasxO7qFsKwKDXce8lCby0aBcfrTzEP/q0wqB34r97cLz6XvMkuRFCCNFwNiU327Zto3Pnzuj1evLz89m+ffs5z+3atavDghPVas5O7Ont0lvflhzHtKX7STtVwi870rm2qxNb50ISID1V6m6EEEI0ik3JTffu3cnIyCAyMpLu3buj0+lQlLOn5tfpdJhMJocHecGzLpjpui4pCz8vD0b3S+Ddpft5f9lBhndp4bxWO+twcBkxJYQQouFsSm4OHz5MRESEdV+4mAb1NjXd0z+BOSsPsSu9gBX7srmsvZNGxVkn8ktzzvWFEEJcEGxKbuLj4+vcFy6icXIT4mfkzj6t+GjVYd5fftB5yU2wrC8lhBCi8Ro0id9PP/1k/fnZZ58lODiY/v37c+SIfCk5hcbJDcDYAa3xNOhYfziXTUdynXOTmksw1NHtKYQQQtjC7uRmypQp+Pj4ALBmzRqmT5/O66+/Tnh4OE8++aTDAxRoWnNj0SLIh5t7tATg/WUHnXOToDhAB1WlUOSiFcmFEEI0O3YnN8eOHSMxMRGA7777jltvvZX777+flJQUVq5c6fAABW7RcgPwf4PaoNPB0j1Z7E4vcPwNPIwQpCZQUncjhBCioexObvz9/Tl16hQAv/32G1dddRUA3t7eda45JRzAmty4bnbiurSJ8GdYZzWGD5Y7qfVG6m6EEEI0kt3JzVVXXcXYsWMZO3Ys+/btY9iwYQDs3LmThIQER8cnas1O7LoJ/M7lwcvaAvDjtpMcOVXs+BvIiCkhhBCNZHdyM2PGDPr160d2djbffPMNYWFhAGzatIk777zT4QFe8EpPg6lc3dew5saic2wQg9pFYFZgxrIDjr+BzHUjhBCikexeCTE4OJjp06efdVwWzXQSy2rg3sEun534XB67MokV+7L5ZvMJHrk8iVZhvo67uLTcCCGEaKQGLfOcl5fH+vXrycrKwmw2W4/rdDruvvtuhwUn0GQ18Pr0ig9hYLsI/tyXzfRl+3n91m6Ou7jU3AghhGgku5ObRYsWcdddd1FUVERgYGCtqfgluXGCwuqWGzeot6npicFJ/FndevPw5YnEh/k55sKWlpv841BVoY6gEkIIIexgd83NU089xb333ktRURF5eXmcPn3a+sjNddLkbhcyN2y5AejZKoRB7SIwmRWm/+HA2hv/SPDwARTIP+a46wohhLhg2J3cnDhxgsceewxfXwfWWYhzs9Tc+LtXyw2orTcA3245QVqOg0ZO6XQ1iorTHHNNIYQQFxS7k5shQ4awceNGZ8Qi6uKmLTcAPVqFcFn76tYbR46ckrobIYQQjWB3zc3w4cN55pln2LVrF126dMHT07PW89dff73DghO4bc2NxROD27F8bzYLt5zgkcsTSQh3QO2NjJgSQgjRCHYnN+PGjQPg5ZdfPus5nU6HyWRqfFTiDDduuQHoHhfM5e0jWLY3m/f+2M/bt3dv/EVlrhshhBCNYHe3lNlsPudDEhsHqzU7sfYT+J3Lk1e1A+C7LSfYn1nY+AtKy40QQohGsDu5qamsrMxRcYi6lOW51ezE59K1ZTDXXBSNWYE3ft3b+AtKzY0QQohGsDu5MZlMvPLKK8TGxuLv78+hQ4cAePHFF/noo48cHuAFzdJq40azE5/L00PaodfBb7sy2Xz0dOMuZumWKj0NZfmND04IIcQFxe7k5tVXX2XevHm8/vrrGI1nJljr3LkzH374oUODu+A1gS4pi8TIAG7t1RKA137Zg6IoDb+YVwD4qmuWSd2NEEIIe9md3HzyySfMnj2bu+66C4PBYD3erVs39uzZ49DgLnhNKLkBdeSU0UPPusO5LN+X3biLSd2NEEKIBmrQJH6JiYlnHTebzVRWVjokKFGtqDq5ceN6m5pign0Y3U/tUnp98V7M5ka03kjdjRBCiAayO7np1KkTK1euPOv4ggUL6NGjh0OCEtWaWMsNwEOXJRLg5cHu9AIWbTvZ8AtJy40QQogGsju5mThxIo888givvfYaZrOZb7/9lnHjxvHqq68yceLEBgUxY8YMEhIS8Pb2pm/fvqxfv/6c586ZM4cBAwYQEhJCSEgIgwcPPu/5TVoTTG5C/Iz836A2ALz12z4qqsz1vOJcF5K5boQQQjSM3cnNDTfcwKJFi1iyZAl+fn5MnDiR3bt3s2jRIq666iq7A/jqq68YP348kyZNYvPmzXTr1o0hQ4aQlZVV5/nLly/nzjvvZNmyZaxZs4a4uDiuvvpqTpw4Yfe93V4TTG4A7r20NeH+XhzNLeHzdQ1MTqTlRgghRAPplEYNa2m8vn370rt3b6ZPnw6otTtxcXE8+uijPP/88/W+3mQyERISwvTp0xk1alS95xcUFBAUFER+fj6BgYGNjt+p3u2mfrnf+yu0uljraOzy2doj/Ou7HQT7erLi6csJ8vWs/0U15R6G97qDwQteyAB9o6ZkEkII0cTZ8/1t9zdGmzZtOHXq1FnH8/LyaNOmjV3XqqioYNOmTQwePPhMQHo9gwcPZs2aNTZdo6SkhMrKSkJDQ+t8vry8nIKCglqPJqHm7MRuuCJ4fe7oHUe7KH/ySip5d+l++y8Q1BJ0BnUSQ0thtRBCCGEDu5ObtLS0OpdZKC8vt7trKCcnB5PJRFRU7S/vqKgoMjJs+0J77rnniImJqZUg1ZSSkkJQUJD1ERcXZ1eMminLg6rqGaCbWLcUgIdBz7+GdwLgkzVpHMousu8CBk8IilX3pe5GCCGEHWxeOPOHH36w7v/6668EBQVZfzaZTCxdupSEhASHBlefqVOn8uWXX7J8+XK8veuewXfChAmMHz/e+nNBQUHTSHAsq4F7B4Gnj7axNNDAdhHWRTWn/LyHD0cn23eBkATIO6p2zcX3c0aIQgghmiGbk5sbb7wRUFf+Hj16dK3nPD09SUhI4K233rLr5uHh4RgMBjIzM2sdz8zMJDr6/K0Vb775JlOnTmXJkiV07dr1nOd5eXnh5eVlV1xuwc1XA7fVC8M78uf+HJbszuSvAzn0Twy3/cUy140QQogGsLlbyrLyd6tWrcjKyqq1Gnh5eTl79+7l2muvtevmRqORXr16sXTp0lr3Wbp0Kf36nfsv9ddff51XXnmFxYsXk5xsZ2tAU1FUnfA1wXqbmhIjAxjZtxUAr/y0G5M9E/vJiCkhhBANYHfNzeHDhwkPt+Ov73qMHz+eOXPmMH/+fHbv3s2DDz5IcXExY8aMAWDUqFFMmDDBev5rr73Giy++yNy5c0lISCAjI4OMjAyKiuys6XB3zaTlBuDxwe0I8FYn9luw6ZjtL7QmN9JyI4QQwnY2d0vVtHTpUpYuXWptwalp7ty5dl1rxIgRZGdnM3HiRDIyMujevTuLFy+2FhkfPXoUfY1hwB988AEVFRXceuutta4zadIkXnrppYa8HfdkqbkJaNotNwChfkYevzKJf/+0mzd+3cs1nVsQ5GPD0HBpuRFCCNEAdic3kydP5uWXXyY5OZkWLVqg0+kaHcQjjzzCI488Uudzy5cvr/VzWlpao+/XJDSjlhuAUf0S+GL9UQ5lF/PO7/t46fqL6n+RpeamMB0qy8Cz7qJxIYQQoia7k5uZM2cyb9487r77bmfEIywsNTdNcBh4XYweeiZffxF3f7SeT9akcXtyHJ1i6plE0S8cPP2gshjyj0F4kmuCFUII0aTZXXNTUVFB//79nRGLqMnSctNEVgS3xYCkCIZ3aYFZgYnf76DeybF1OlljSgghhN3sTm7Gjh3LF1984YxYhIWi1Ki5aT7JDcC/ru2Ir9HAxiOn+XazDZM+WutuDjs1LiGEEM2H3d1SZWVlzJ492zq/jKdn7cLQt99+22HBXbDK8qGqVN1vZslNiyAfHrsyiam/7CHll90M7hR1/uJimetGCCGEnexObrZt20b37t0B2LFjR63nHFFcLDizplQTnp34fO69pDVfbzzGQVuKi2XElBBCCDvZndwsW7bMGXGImiwLRTajepuajB56Xr6hM3d9uI5P1qRxW3JLLooJqvtkqbkRQghhJ7trboQLWFpumlmXVE2XJIYzvKtaXDzh2+3nnrlYJvITQghhJ5tbbm6++Wabzvv2228bHIyodgEkNwCTru3En/uy2XY8n49XH2bsgDZnnxSsLt1AeT6UngafENcGKYQQosmxueUmKCjIpodwgAskuYkM9OafwzoC8NZv+ziWW3L2SUa/M+tr5R5yYXRCCCGaKptbbj7++GNnxiFqauY1NzWNSI7juy0nWHc4lxe+28H8Mb3PLkwPbaNOaph7GGJ7aROoEEKIJkNqbtzRBdJyA6DX60i5uQtGDz1/7svm+9STZ58U2lbdSsuNEEIIG0hy446syU3zWFeqPm0i/HnsikQAXv5xF7nFFbVPCG2tbk8ddHFkQgghmiJJbtyNotRIbpr+iuC2un9gW9pHBZBbXMErP+6q/WSYpeVGkhshhBD1k+TG3dScnfgCqLmxMHromXpLF/Q6WLjlBL/vyjzzZGj1KCrplhJCCGEDSW7cjWU1cK8gMPpqG4uL9WgVwrjq4eATvt1+pnvKktyUnILSPG2CE0II0WRIcuNuLKuBX0BdUjU9eVU7kiL9ySkq58Xvq5f38AoAv0h1X1pvhBBC1EOSG3dzgRUT/523p4G3b++OQa/jp23p/LitevRUmIyYEkIIYRtJbtyNpeUmMEbbODTUpWUQD1+ujp568bsdZBWWnRkOLiOmhBBC1EOSG3dTYOmWunCKievyyOWJdGoRyOmSSv757Q4Uy3BwabkRQghRD0lu3I215ubC7JayMHroeXtENzwNOpbszmRNXrD6hAwHF0IIUQ9JbtzNBV5zU1OH6EDGX9UegLc2VqoHpeVGCCFEPSS5cTfSclPL/QPb0K9NGHsqItQDMhxcCCFEPSS5cSdm8wW1rpQtDHqd2j3lG0iWEqwelK4pIYQQ5yHJjTspzQVzdfeLJDdWLYJ8mHpzV9IUde6fvbu2ahyREEIIdybJjTuxdEn5RYDBU9tY3Mw1naPRV891s2Lt2rMX1xRCCCGqSXLjTmQY+Hl169oTgLCKEzy7YCuKomgckRBCCHckyY07kWLi8/KMVCf2a6PPZMnuLOaslJFTQgghzibJjTuRYeDnVz1LcUdjDgCvLd7L+sO5WkYkhBDCDUly404Kq9dRkuSmbtWzFHtXnubOLgGYzAqPfLGZ7MJyjQMTQgjhTiS5cScyDPz8vALAXx0xNbGfkaRIf7IKy3n8yy2YzFJ/I4QQQiXJjTuRRTPrF94OAJ+Cw3wwsie+RgN/HTzFu0v2aRyYEEIIdyHJjTuRlpv6halFxZzaT2JkACk3dwHgvT8O8MeeTA0DE0II4S4kuXEXpkooylL3pebm3KpbbsjZD8AN3WO5++J4AB7/byoHs4u0ikwIIYSbkOTGXRRlAQroPcA3XOto3Fd4krqtTm4AXry2E70TQigsr2LcJxspKKvUKDghhBDuQJIbd2HpkvKPBr38s5yTJbnJPQhmEwBGDz3v39WLFkHeHMou5okvU6XAWAghLmDyLeourMPApd7mvILiwMMbTBWQd8R6OCLAi9l3J+PloeePPVm89dteDYMUQgihJUlu3IWl5SZQ6m3OS2+wTuZHzoFaT3VpGcTrt3YF4P3lB1m09aSroxNCCOEGJLlxF7L0gu2sdTdnD/++oXss/zewDQBPf72VLUdPuzIyIYQQbkCSG3chi2bazpLcnNpf59PPXtOBKzpEUl5lZtwnGzmWW+LC4IQQQmhNkht3YW25kQn86vW34eB/Z9Dr+M+dPejUIpCcogrGzNtAfqmMoBJCiAuFJDfuQibws51lIr9zJDcAfl4ezL2nN9GB3hzIKuLBzzZRUWV2UYBCCCG0JMmNu5CaG9tZuqWKs6A075ynRQd5M/ee3vhVL9HwwsLtKIoMERdCiOZOkht3UFkKZXnqvrTc1M8r4EwSeOrAeU/tFBPI9H/0RK+Drzcd550l527tEUII0TxIcuMOLK02nr7gHaRtLE3FeUZM/d3lHSJ5+YbOALy3dD+frElzYmBCCCG0JsmNO6g5Ukqn0zaWpiLs7GUYzmfkxfE8MVh9zaQfdsocOEII0YxJcuMOCqq/aANjtY2jKbGOmKq/5cbi8SuTuPvieBQFxv8vlZX7s50UnBBCCC1JcuMOCo6rW0lubBdePWKqnpqbmnQ6HS9dfxHDu7Sg0qTwf59uYuuxPOfEJ4QQQjOS3LgDa8uNzHFjM0vLzamDYKqy+WUGvY63R3TjksQwSipMjP54PXsyCpwUpBBCCC1IcuMOJLmxX2BL8PABc2WtBTRt4eVhYNbdyXSLCyavpJK75qzjQFahkwIVQgjhapLcuIP86m6poJbaxtGU6PVnRkxl7bb75f5eHnwypg8XxQRyqriCf8xZR1pOsYODFEIIoQVJbtyBtNw0TGRHdZttf3IDEOTryaf39aV9VABZheX8Y85aWYdKCCGaAUlutFZVoc60C1JQbK+IDuo2a0+DLxHqZ+SzsX1pG+HHyfwy/vHhWk7klTooQCGEEFqQ5EZrhdWtNgYv8A3TNpamJrKTus1ueHIDEBHgxRfjLiY+zJdjuaXcPnMNR09JC44QQjRVktxorWaXlEzgZ5/I6pabnH12jZiqS1SgN/8ddzGtw/04kVfK7bPWcDC7yAFBCiGEcDVJbrQmE/g1XFArdckKUwWcPtzoy8UE+/DV/ReTFOlPRkEZI2atZW+GjKISQoimRpIbrVlHSklyYze9HiLaq/sNGDFVl8hAb768/2I6tggkp6icO2avYceJfIdcWwghhGtontzMmDGDhIQEvL296du3L+vXrz/nuTt37uSWW24hISEBnU7HtGnTXBeos8hIqcaJsIyYalzdTU1h/l78d1xfurUM4nRJJf+Ys5YtR0877PpCCCGcS9Pk5quvvmL8+PFMmjSJzZs3061bN4YMGUJWVlad55eUlNCmTRumTp1KdHS0i6N1koIT6la6pRrGUnfjoJYbi2BfI5+O7Uuv+BAKyqr4x5x1LNtb9++lEEII96JpcvP2228zbtw4xowZQ6dOnZg5cya+vr7MnTu3zvN79+7NG2+8wR133IGXl5eLo3USSW4axwktNxaB3p58cm8fBraLoLTSxNj5G1mw6bjD7+N0FcVwMhUO/wnH1kP+CVAUraMSQgin8dDqxhUVFWzatIkJEyZYj+n1egYPHsyaNWscdp/y8nLKy8utPxcUuNk6QtIt1TjWEVP7wVQJBk+HXt7Py4MPRyXz3DfbWLjlBE9/vZWswjIeHNQWnTuPbivNg61fwvb/wcktoJhrPx8QA0lXQc/R0LKXJiEKIYSzaNZyk5OTg8lkIioqqtbxqKgoMjIyHHaflJQUgoKCrI+4uDiHXbvRqiqgSCbwa5SgODD6q2tMnTrolFsYPfS8dVs3/m9gGwBeX7yXyYt2YTa7YeuHqQpWvwfvdoPFz8GJTWpi4xcB4e0huBXoPdT5lTbPhw+vgPnXqy07QgjRTGjWcuMqEyZMYPz48dafCwoK3CfBKUwHFDAYwS9c62iaJp1OHTF1YpO6DIOlJcfB9HodE4Z1JCLAi3//tJt5f6WRVVjGW7d1x8docMo97XbqIHwzFk5uVn8Obw+9x0KH4bVH41WUwLG1asvOjm/h8AqYczn0fwwu/yd4NJMuXyHEBUuzlpvw8HAMBgOZmZm1jmdmZjq0WNjLy4vAwMBaD7chE/g5hmWm4sydTr/V2AFtePeO7ngadPy8PYM7Zq8hq6DM6fet18FlaoJycjN4B8H10+GhNdD3/rOnGTD6Qtsr4ObZ8OhGuOhmtXVn9TSYf92Z1kQhhGiiNEtujEYjvXr1YunSpdZjZrOZpUuX0q9fP63Cci0pJnaM6C7qNmOHS253Q/dYPr2vL8G+nmw9ns8NM1ZrOxfOru/h81uhLB9a9oGH1kLPu0FvQ4tSSALc9jGM+Ay8guDYOph9GaRvdXbUQgjhNJqOlho/fjxz5sxh/vz57N69mwcffJDi4mLGjBkDwKhRo2oVHFdUVJCamkpqaioVFRWcOHGC1NRUDhw4oNVbaBxrciPFxI0S1VndZromuQG4uE0Y3z98CW0j/EjPL+O2mWv4dafjasVstnsRfD0GzFVqC8zoRQ37fep4HYz7A8KS1N/L+depXX1CCNEEaZrcjBgxgjfffJOJEyfSvXt3UlNTWbx4sbXI+OjRo6Snp1vPP3nyJD169KBHjx6kp6fz5ptv0qNHD8aOHavVW2icvGPqNshNaoCaqqiL1G3+MSh13WR78WF+fPvQJQxICqe00sQDn23ig+UHUVw1zPr4JrXGRjFB1zvglg/B07vh1wtPhHFLIe5itRXok5vg+EbHxSuEEC6iU1z2f2L3UFBQQFBQEPn5+drX33wxAvYthmvfgeR7tY2lqXunC+QfhXt+goRLXXrrKpOZyYt28enaIwAM79qC12/pip+XE+v1847CnCuhOAuShsCd/7WtG8oW5YXw+e1w9C+1fue+388scyGEEBqx5/tb8+UXLmh5R9VtcCtt42gOoqu7plxUd1OTh0HPKzd25pUbLsJDr+OnbencMGO181YVryyD//5DTWyiOsOtHzkusQHwCoCRCyCur9qC89mtUKhBl5sQQjSQJDdaUZQa3VKS3DSate5mu2Yh3N0vga/+72KiAr04kFXEDdNXs3hHev0vtNfvE9X36RsO//hKTUYczegHd/wXQtuqLWJf3K4OIRdCiCZAkhutlOVBRaG6H9RS01CaBQ1bbmrqFR/KokcvpU/rUIrKq3jgs81M/WUPVSZz/S+2xd7FsH6Wun/TTOf+7viFqS04vuHq6KlFj8uyDUKIJkGSG61YuqT8ItR5R0TjWFpusnars/RqKDLAm8/H9mXspa0BmLniIHfOWcuJvNLGXbgoG75/SN2/+GF1+QRnC20Dt88HnUFdymH9bOffUwghGkmSG63ISCnHCmmtLsNgKodT2k8N4GnQ869rOzH9Hz3w9/JgQ9pphr27ksU7GlG7svh5KDkFUV1g8CTHBVufhEvh6lfU/V//CUfXue7eQgjRAJLcaMVaTCzJjUPo9TVmKta2a6qma7vG8NNjl9KtZRD5pZU88Nkm/vXddsoqTfZdaP/vsGMB6PRww39cv0TCxQ+p8+iYq+DbsWqhsRBCuClJbrSSX91yIyOlHMdad6NdUXFd4sP8+PqB/taFNz9be5QbZ6xmX2ahbRcoL4Ifq9dHu/ghiOnhpEjPQ6eD696F4Hg1Mf/padfHIIQQNpLkRiuWlhsZKeU4lmUY3HDpAKOHngnDOvLJvX0I9zeyJ6OQa/+zitl/HsRU3+riq95WRywFtYLLJpz/XGfyDlQnCrTU32z7n3axCCHEeUhyoxWZ48bxLC0a6aluO6pnYLsIfnl8IFd0iKSiysyUn/cwYtYa0nKK635B3lH4a7q6f00KePm7Lti6xPWBQc+p+z+Oh9NpmoYjhBB1keRGK9ZuKam5cZjIi8BgVJdgcOMv3YgALz4ancxrt3TBz2hg45HTDH13JZ+uPXL20g1LXlKLpBMGQIfhmsR7lgFPqUs0VBTCD4+6bSIphLhwSXKjhfLCM2sgyWgpx/EwnhkSfnKLtrHUQ6fTMaJ3KxY/MZCL24RSWmnixe92MPKjdRw5Vd2Kc2w97PgG0MGQKWrdizsweMCN74OHDxz+EzbN0zoiIYSoRZIbLViGgXsHq3UMwnEsXVNuntxYxIX68sXYi5l0XSe8PPSsPnCKIdP+ZObyA5gX/1M9qcdd0KKrtoH+XVhbuPJFdf+3FyH/uLbxCCFEDZLcaEG6pJyniSU3AHq9jjGXtObXJwbSv20YZZVmtv82H/2JDZg8fOGKF7UOsW59H4CWfdTuKZm9WAjhRiS50YKMlHIea1HxVjA7aMkDF0kI9+PzsX1565aLeNq4AID/lA1l8vJTFJZVahxdHfQGuGEGGLzgwBLY+l+tIxJCCECSG23ISCnnieig1oKUF0DuQa2jsZtOp+MWzzW05iTF+kA+rBrKx6vTuPzNFSzYdBxzfcPGXS2iHVz2vLq/+HkozNQ2HiGEQJIbbUi3lPMYPM7UpzShrikrUyWsmAqA3xXjmXHvZbQJ9yOnqJynv97KLTP/YtvxPG1j/Lv+j0GLbuqsxb9qOA+PEEJUk+RGC5ZhytJy4xxNsO7GKvVz9ffDLwL63M+gdhEsfmIgzw/tgJ/RwJajedwwYzXPf7ONU0XlWkerMniosxfr9OrorgNLtY5ICHGBk+RGC7mH1W1oG23jaK6aanJTVQ4r3lD3Lx0PRj9And34gUFt+ePpy7ipRyyKAl9uOMZlby7ng+UH7V+nyhliekCf/1P3fxoPlY1cAV0IIRpBkhtXKz0NZXnqfkiClpE0XzE91e3JVLWbp6nY8ikUHIeAFpB871lPRwV6886I7ix4oB8XxQRSWFbFa4v3cPmby/l647H6l3FwtitegIAYteXpzze1jUUIcUGT5MbVLK02/lHWv8yFg4Ulgk8IVJVC+jato7GNqQpWv6vuX/okeHqf89TkhFAWPXIpb9/ejZggb9Lzy3hmwTaGv7eSZXuyzp7l2FW8AmDoa+r+6ncha482cQghLniS3LjaaemScjq9HuL6qvvH1mobi612fKOOovOLgJ6j6j1dr9dxc8+W/PH0ZfxzWAcCvT3Yk1HImHkbuHPOWtYfznVB0HXoeB20GwrmSvjxySY3HF8I0TxIcuNquYfUbUhrbeNo7izJzdEmkNyYzerK3wAXPwSePja/1NvTwP0D2/Lns5dz/8A2GD30rD2Uy+2z1nDXh2vZmObiJEeng2Gvg6cvHP1LLZAWQggXk+TG1XLT1G2oJDdO1epidXt0rfvPnLv3Z8jeA16B0Pu+Bl0i2NfIP4d1ZNnTl/GPvq3wNOhYfeAUt85cw8gP17HpiAuTnOBWcHn10hG/vwjFOa67txBCIMmN61m6paTlxrlieoDeE4qzznzm7khRYOVb6n6fceAd1KjLxQb7MOWmLix7+jLu7NMKD72OVQdyuOWDNdz90Tr+OpDjmpqcvg9CVBe1gP43N10+QgjRbEly42rWYeCS3DiVpw/EdFf3j67TNJTzOrwCTm5WZ1Xu+6DDLtsyxJeUmy1JThweeh0r9+fwjw/XccOM1fy0Ld25o6sMHnDdNEAHW79QVw8XQggXkeTGlSpLofCkui8Fxc7XFIqKLa02vUaDf4TDLx8X6kvKzV1Z9vRljO4Xj7ennm3H83n4i81c+dZyPl93xHnz5LRMPtPN9uOTUFnmnPsIIcTfSHLjSqePqFuvIHWosnAua92Nm7bcHNugtmjoPaDfI069VVyoL5Nv6Mzq567gsSuTCPb1JO1UCS8s3MElU//grd/2kpHvhOTjyongHw2nDpwpmhZCCCeT5MaVTu1Xt2Ft1FElwrksLTfZu9XaD3dj+bLveofL1hkL8/di/FXt+Ov5K5h0XSdig304VVzBf/44wKWv/cHDX2xmQ1qu4+pyvIPU0VMAK9+GrN2Oua4QQpyHJDeulFOd3IS30zaOC4V/JIQlqftpq7WN5e8yd6mjpNDBpU+4/Pa+Rg/GXNKaFc9cxvt39aRP61CqzAo/bUvntplrGP7eKv634Zhjuqw6Xg/th6lz3yx6XOa+EUI4nSQ3rmRNbpK0jeNC0uYydXtouZZRnG3VO+q20w2a/j54GPQM69KC//1fP35+bAAjkuPw8tCzK72AZ7/ZRt8pS5n0/Q52nSxo+E10Ohj2Bhj94dg62PSx496AEELUQZIbV8rZp26l5cZ1rMnNMk3DqCX3MOxYoO4PGK9tLDV0ignktVu7snbClTw/tAOxwT7kl1Yyf80Rhr23kuunr+LzdUcoLGvAel1BLdX6G4AlL0FBukNjF0KImiS5cRVFkW4pLSRcCjq9WtCad0zraFSr3wXFDImDoUU3raM5S4ifkQcGqbMef3JvH4Z3aYGnQce24/m8sHAHfV5dylP/28pfB3Mw2zOcvPdYiO0F5QXwyzPOewNCiAueJDeuUpQF5fnqF60MA3cdn+Azq4QfXqFpKIDaYmFZkmDAU9rGUg+DXsfAdhHMuKsnaydcyb+GdyQp0p/SShPfbD7OP+aso//UP5jy8252nsyvvwhZb4Dr3lNHh+1eBLt/dM0bEUJccCS5cRVLl1RwPHh4aRvLhabt5erWHepu1kwHUwXEXQzx/bWOxmZh/l6MHdCG354cyDcP9ueO3nEEenuQUVDG7D8PMfy9VVz9zp/MWHaAY7kl575QdGfo/5i6//MzUJbvmjcghLigSHLjKlJvo52aRcVarjNVfAo2zlX3Bz6tXRyNoNPp6BUfwtRburLhX4OZObIXQztHY/TQsz+riDd+3cuA15dxw/RVfLD8IGk5xWdfZNCzautl4UlY/E/XvwkhRLPnoXUAFwwZKaWdlr3VVaqLsyFrF0RdpE0c6z6AyhK1ziZxsDYxOJCXh4FrOkdzTedo8ksr+XVHBgu3nGDt4VNsPZ7P1uP5vLZ4Dx2iAxjauQVDu0STFOmPztMHbngfPh4KqZ9Bx+ug/TVavx0hRDMiyY2r5OxVt5LcuJ6Hl9oFdGCJ+tAiuSnLh3Wz1f0BTzW7SRyDfDy5vXcct/eOI6uwjN92ZrJ4RwZrDp1iT0YhezIKeWfJPtpE+DHkomiu6NCeXhc/jH7tdFj0GMStBd9Qrd+GEKKZkG4pV8ncqW4jNWo1uNC1q24Z2PuLNvff8KFaUB7eHjpcp00MLhIZ4M3Ii+P5bGxfNr4wmNdv7coVHSIxGvQcyi7mg+UHuW3mGvqu7UeGMR6KMqn4wX2GxAshmj5JblyhKBuKMgEdRHbUOpoLkyW5ObYOinNce++KEljzvro/YDzoL5z/7EL8jNyeHMfce3qz8cXBvHtHd67vFkOQjyfZZTruLxxLlaLHuGchb77zGjOWHWDrsTznrlguhGj2pFvKFTJ3qNvQ1uDlr20sF6rgOIjuAhnbYf9v0P0frrv35vlQkqOOlOt8q+vu62YCvT25oXssN3SPpcpkZsuxPP7Y05avtuzgrvKvuC/vPYb+2oI3fg0j0NuDfm3DuCQxnEsSw2kT7oeumXXlCSGcR5IbV7AkN1GdtY3jQtd+mJrc7P3ZdclNZZk6aR+oa0gZ5D85UJd96J0QSu+EUBg8nYrZuwnJ2sYnwbO5veyf5JVV8evOTH7dmQlAdKB3daITRt82YcQG+2j8DoQQ7kz+T+sKlnqb6C7axnGhaz8MVrwG+5dAeZFrWtE2fgSF6RDYErrf5fz7NUUeRowj5sGsQbQr287mAZvZmvQwfx08xar9OWw6cpqMgjK+2XycbzYfByA22IfeCSEkJ4TSp3UoiRH+6PXSsiOEUEly4woZlpYbKSbWVItuENIaTh+GfYuhi5O7iMqLYOXb6v6gZ2XyxvMJawvXTYNv7kO/8k16tBlIj8sH8vDliZRWmNh4JJfVB07x18Ecdp4s4EReKSdSS/ku9SQAwb6eJMeryU6v+BA6xwThYzRo+56EEJqR5MbZqioge4+6L91S2tLpoPMtsPJN2L7A+cnNuplqrU1Ia9fW+DRVXW5VJ1rc8iksuA/uXw5BsfgYDQxIimBAUgQAxeVVbDmax/q0XDam5bLlaB55JZUs2Z3Fkt1ZgLp0RPuoALrFBdM9LohuccEkRQZgkNYdIS4IOqXeBWGal4KCAoKCgsjPzycwMND5N8zYATMvAa9AeP5os5vfpMnJ2g3vXwx6T3hmP/iEOOc+pXnwbld1fpub50DX251zn+amohg+vAqydkJMDxjzC3iev76m0mRm58kCNhzOZUNaLluO5ZFdWH7Web5GA51jg+geF0zn2CA6tQikdbifJDxCNBH2fH9Ly42zHd+gblt0k8TGHUR2VOcaytoJO7+D5DHOuc+a6WpiE9FBbS0StjH6wR2fw5zL4eQWWPQ43DTrvP/teBr0dI8LpntcMOMGtkFRFDIKyth6LI/UY/lsPZbHtuN5FFeYWH84l/WHc62v9fbU0z46kE4tAunUIoBOMYF0iA7Ez8vN/tdYUaKubF9wUq3hKsqCymK1YN1Uri5G6uGtdn36hoF/FAREQ0ALdZSeFLKLC4z8xjubJbmJ66ttHOKMbnfA7y/CpnnOSW4K0s/Ma3P5C+pq2MJ2oa3htnnw6c2w7Su1EL//oza/XKfT0SLIhxZBPlzTuQUAJrPCoewiUo/lsfV4HjtPFrAnvZDSShNbj+Wx9VhejddDfKgvnWICaRcVQFJkAElR/iSE+WH0cMEcRZVlcHIzHF0DxzaoS4bkHQUa2MhuMEJYIkS0VxP7lskQ2wu8XdByLYRGpFvK2f7TS/2L6x9fQ7urnX8/Ub/iU/B2B3V17vuXq90fjrTwAdj6X3VNq/t+lxa7hlo7ExY/B+jglg8dXiNlMiscOVXMrvQCdqcXsOtkAbvSC8gsOLtLC9Q6nvgwX5Ii/a0JT2KkP20j/PH2bGQCm3MA9v4EexerfxCZK88+xzcMguLUFhn/SLWr28MLDF6gmKCqHCpL1TqvwkwoyoD8E1BVWscNdRDZSV2WpO0V0HoAeAU07j0I4WT2fH9LcuNMxafgjTbq/rOHZe0cd7LgPtixAHrdA9e967jrHt8EH16h7o/9A1r2cty1LzSKAj8/AxvmqN0u//jKJQuOnioqZ3d6IbvTC9ifVcj+rCIOZBZRWF5V5/k6HbQI9CYh3I/4MD9ah/tWb/1oFep77sQn54CaBO/6Hk7tr/2cfxS0uhjiLla7tCPag1+4/W/GbIb8Y5C9F7J3Q/pWtTUo/2jt8/Qe0LIPJF6hTpkQ2UmScuF2JLk5D5cmN3t/gf/eAeHt4JENzr2XsM/hlTD/WnW18Cd2gF9Y46+pKPDR1XB8PXS9A26e1fhrXujMZvh2LOz4Rv23GvUDxPV2eRiKopBZUK4mO5lFHMhWE559WYXkldTRylLNkvjEh/mREO5HYoCJ3sXLaHPyB/yzNp85Ue+ptp60H6a2pIS2cW5yUZihLkVy+E84sFSdHqGmkNbQ8VrocK2a9FxAS4YI9yXJzXm4NLlZ8hKsegd6jIQbZjj3XsI+igKzBkLGNhj0HFz+z8Zfc9M8tQDW0xce3QSBMY2/plCnU/jvHXBwKXgFwcgFENdH66gANenJLa4g7VQJaTnFpJ0qPrOfU2xt7emoO8I9hl+5wbAab52aDJkUHSuV7qzyvYJj4QMIDQ2nZYiP9REb7Eu4vxEPgwsSi9xDcHCZujTJwWVqkbKFXyR0GAYdr4fWA8Hg6fx4hKiDJDfn4dLk5qOr1b+OrnsPeo127r2E/XYuhK/vAe9geHJH42oO8o/DjIuhohCufhX6P+KoKAWoQ8Q/u0UtsvX0U7uoWg/QOqrzUkyVFG39AdbPIiBjnfX4UY8EvlMG8WlJX7KV4PNeQ6+DiAAvogO9iQr0JjqoeltzP8gbf0eO7iovggNLYM+PsO9XKC8485x3MHQYriY6bS+XiSmFS0lycx4uS25K8+D1Nmqh3+PbICTeefcSDWM2wYw+asH35S+oswg3hKLAF7erf/W27A33/iojpJyhohi+/Ic60Z/BC2583/kTMTZESa46EeH6D8/UtugM0OkG6PuA2uqk01FRZSYjv4zjp0s4frqU43ml1v0Tp0vJKCizeXV0fy8PogK9iAzwJjzAizA/IxHV23B/r1rH7Cp+rqqAtJWw+wfY8xMUZ595zisQ2g1R31fbK8Hoa8eHJIT9JLk5D5clN7u+h/+NgrAkeHSj8+4jGmf7AvjmvsZ1JW2aD4seU4fcPrBKLf4UzlFZpv577flR/Xngs3DZBPeoCcnaDetmwdYvz4xQ8glVpxtIvg+CYu26nMmscKqonIyCMjLyy8gsKKveL7fuZ+aXnbPQ+Vz8vTwI81eTnjA/I+EBXoT4ehLsYyTY15MQXyMhfp4E+RgJ8fUkyMdT7Rozm9SWs13fw+5F6nw7Fp6+kHQ1dLpe3crIK+EEktych8uSm2/vV+fouPghuCbFefcRjaMoMPcaOLYWutymDjm2R/o2+HCwWqMweLK68rdwLrNJrWf76z3157ZXwI0fqEOkXc1Upa5Ttn6WWpxrEdUFLn5AncCxnhmWG6u4vMqa7GQXlpNTVEFOUTmnis7s51QfrzCZG3SPQG8Pgn3VZCfY10ioj4GLlP30KFpBu9xlBJSdSXTMBi/KWl2GueP1eF00HE8/J80CLi44ktych0uSm8oyeCNRrb+49zdoJRP4ubUTm2HOFYACt34MnW+27XWFGfDRVeoEa0lD4M4v3aMF4UKx5TP46SmoKlPngBn+FnS60TVDmItPwZZPYMNH6lBrAJ1erUfp+6A6f4ybDaVWFIXC8ipyCss5VVxRnfCoSU9eSQV5pZWcLqkkr6SC0yUV5JVUUlhmS6uQQhfdYYYa1jNUv47W+kzrMxWKgU10YKOhB9u8e5Hjm4S/j5FAb08CvD0I9PHE38sDX6MBP8vW6IGvl7r18zLga/SwHvN0RXG1cFtNLrmZMWMGb7zxBhkZGXTr1o3//Oc/9Olz7tEQX3/9NS+++CJpaWkkJSXx2muvMWzYMJvu5ZLkxtLVERirDjOWLzz3t/RlWPmWOhrn/mXqKtXnU5oH866FzO3qsNlxf8g8RlrI2gPfjFX/HUAdzXPNVIi6yPH3MpvUep+t/1W7ZarK1OM+oeqAgeT7IDjO8ffVUKXJTH6pJeGpJK+ksjrxOfNzYZmaBBWUVVJYWklU6QEuqfyLwcpa2ulP1LpethLIKnMX/jJfxCZzOw4pLQDbk0CjQW9NfHyNBny9PPCrkRj5eBrwtj706tZDj49RPebloR7/+3k+nga8qveNBj06RyamiqL+rpQXqX/wlhdBRZG6rSoFUyWYq9StqULdN1cnlTqDWr+n01dvq3/We6otgkZftUvQ+rAc8wMPo+Peg5toUsnNV199xahRo5g5cyZ9+/Zl2rRpfP311+zdu5fIyMizzv/rr78YOHAgKSkpXHvttXzxxRe89tprbN68mc6d61912+nJjaKof80f36DWAlz2vOPvIRzPVAkfD1X/3YLiYMzPENyq7nPzj8Nnt6qTovlFwn2/qvOSCG1UlauJ6appZ4Ywtx8OlzxuLd5tMLMJTmxSk5ntX9euM2nRDfr8n9rS5+Sup6aoymSm5OQeqvYvxSNtGX4n12CoKql1TolHEGk+nTno3YkD+rbs17XiRFUQJRUmSipMFFdUUVJuanB3WkPodODtYVATIg89xpoPgx5vg0KIrohwXT4hFBCi5BOs5BNozifQlIe/KQ//qtP4VeXhXZmH0VSMXjG5LH4rD2/wDlJHuHkH1f3w+ftzwWfOd8P1yJpUctO3b1969+7N9OnTATCbzcTFxfHoo4/y/PNnJwYjRoyguLiYH3/80Xrs4osvpnv37sycObPe+zk9ubEUEhu84Ilt2tQBiIYpzIR5w9TRU/5R6hD+9teced5sgm3/g1//CaW56qKEdy2A6PqTauECp9Pg94mw6wes6zCFtlVrqdpeoS6zUd9fs2Yz5OxVk9yja9URcDVHCPmEQOdbodudENvT7bqe3FpVhTrB5cE/4Mgadf0sS+tXTb5hENVZLcwPjoeQeCoDW1Hi25JifCipNFFcbqK4vIriChMlFVUUl6vb0goTZVUmyirNlFWaKK00UV69X1ZlUp+vNFNWdeZ4VWU53pV5hFBIiK6QUAoJ1RVYt2G6AsJ1BYRRQKiugBCK0Osa9rVZrHhRjA9FijfFeFOKF1WKgSoMVOJBJR5UYaAKtbXfgBk9ZgwoZ/Z1ZryowltXia+uHB/Uh3f11gPHJFLlel/KPAIo9wig3OBPuWcglR4BVHgGUuERQKUxiErPAKo8A6jyCsLkGYjJKxCzpz+K0Y/QAD8GtotwSCwWTSa5qaiowNfXlwULFnDjjTdaj48ePZq8vDy+//77s17TqlUrxo8fzxNPPGE9NmnSJL777ju2bt1a7z2dltwUpEPqZ7DyHXW13oHPwBX/ctz1hWsUnFQXbMzerf4ceZE6n0p5IRxaAQXH1ePRXeCO/za7bohmIXsvrH5PndW45rpKHt7q6MXQ1uAXcaa1paIISk6pyVHuYfXnmryCIPFKuOgmdeizzO3iGFUV6iSaR9fCiY2QuVP9w0I5TyuNoXrVc78w8A1XR2V5+qj/tp4+6ohFFLUFXTGrD7NJXXOrolCdTqC8SN1WFELJaSjPtzt0BR3lxmDKPEMo9Qyh2DOEIkMwRR4hFOiDKdAHka8PIo9A8hUfChVvisxGyk3qFAAVJnOtbZVJocpsptKkYDIrVJrMVJkVm6cCqMmDKnwpI1BXSiDFBOpKCKKYQF0xgZQQqCupPq7+HKQrJqB6G0gJ/ro6Es4G2OvRgfb/Wlf/iXaw5/tb03annJwcTCYTUVFRtY5HRUWxZ8+eOl+TkZFR5/kZGRl1nl9eXk55+ZnZNgsKCuo8r9EytsEf/1b34y+FAU855z7CuQJj1JqbP/4N62dD1k71YeEdpHZ39H9MZmp1VxHt4cYZMHSqOjfLnh/VloKSHLU2x1Kfcy6evhDTU13moc3lanGw/Fs7nodRXaG8ZfKZY5WlkL0HMnZA7kE4fURNOvOOqAmoqRwKT6oPR9Lp1dopv3A1ebI8/MLVRNgvXE2m/CLALwKdTwjeBg+8gWDHRlKLoihUmRWqTAqV5uokqDrxqXms0mTGZD6TIFmSpZpJ05mf1WsUmhVOmxXM1fcwmxVMZlCqKvCoKsSzsgDPigKMVUV4VRXgWVmAV1Uh3lWFeJmK8DYV4lNViI+pEG9zEb6mInzNRXig1gt5eXs78ZOpn/t1qjlYSkoKkydPdv6N2l6h9vO3vwa6jpC/7poyTx8Y8ioMfFr9cszZD96B6l/9SVeDp7b/0QobeQVAtzvUh6LAqYNqy8Dpw2pBeGWJ+pe9V6CatIbEq8XhYYluWW9wQfD0UbsPY3qc/VxFiZqgFueoEyWW5KgtqpWlavdWZalakKvTqcmKTq8W4Or01YW2/uDlD0Y/dd/or3Yz+oWrdSZuOPBDp9PhadDhaQAfmsjEoFUVUFFEglmDOqMaNP0vODw8HIPBQGZmZq3jmZmZREfXXasSHR1t1/kTJkxg/Pjx1p8LCgqIi3NCV4LBE+78wvHXFdrxCVHXBRNNn04H4YnqQzRNRl8wtjp3ob9wDx5G8NB+5KimqarRaKRXr14sXbrUesxsNrN06VL69etX52v69etX63yA33///Zzne3l5ERgYWOshhBBCiOZL87bX8ePHM3r0aJKTk+nTpw/Tpk2juLiYMWPGADBq1ChiY2NJSVFn+X388ccZNGgQb731FsOHD+fLL79k48aNzJ49W8u3IYQQQgg3oXlyM2LECLKzs5k4cSIZGRl0796dxYsXW4uGjx49ir5GX2j//v354osv+Ne//sU///lPkpKS+O6772ya40YIIYQQzZ/m89y4msvWlhJCCCGEw9jz/e1+5eFCCCGEEI0gyY0QQgghmhVJboQQQgjRrEhyI4QQQohmRZIbIYQQQjQrktwIIYQQolmR5EYIIYQQzYokN0IIIYRoViS5EUIIIUSzovnyC65mmZC5oKBA40iEEEIIYSvL97YtCytccMlNYWEhAHFxcRpHIoQQQgh7FRYWEhQUdN5zLri1pcxmMydPniQgIACdTufQaxcUFBAXF8exY8dk3ap6yGdlO/msbCefle3ks7KPfF62c9ZnpSgKhYWFxMTE1FpQuy4XXMuNXq+nZcuWTr1HYGCg/PLbSD4r28lnZTv5rGwnn5V95POynTM+q/pabCykoFgIIYQQzYokN0IIIYRoViS5cSAvLy8mTZqEl5eX1qG4PfmsbCefle3ks7KdfFb2kc/Ldu7wWV1wBcVCCCGEaN6k5UYIIYQQzYokN0IIIYRoViS5EUIIIUSzIsmNEEIIIZoVSW4cZMaMGSQkJODt7U3fvn1Zv3691iG5pT///JPrrruOmJgYdDod3333ndYhua2UlBR69+5NQEAAkZGR3Hjjjezdu1frsNzSBx98QNeuXa2ThvXr149ffvlF67CahKlTp6LT6XjiiSe0DsXtvPTSS+h0ulqPDh06aB2W2zpx4gQjR44kLCwMHx8funTpwsaNGzWJRZIbB/jqq68YP348kyZNYvPmzXTr1o0hQ4aQlZWldWhup7i4mG7dujFjxgytQ3F7K1as4OGHH2bt2rX8/vvvVFZWcvXVV1NcXKx1aG6nZcuWTJ06lU2bNrFx40auuOIKbrjhBnbu3Kl1aG5tw4YNzJo1i65du2oditu66KKLSE9Ptz5WrVqldUhu6fTp01xyySV4enryyy+/sGvXLt566y1CQkK0CUgRjdanTx/l4Ycftv5sMpmUmJgYJSUlRcOo3B+gLFy4UOswmoysrCwFUFasWKF1KE1CSEiI8uGHH2odhtsqLCxUkpKSlN9//10ZNGiQ8vjjj2sdktuZNGmS0q1bN63DaBKee+455dJLL9U6DCtpuWmkiooKNm3axODBg63H9Ho9gwcPZs2aNRpGJpqb/Px8AEJDQzWOxL2ZTCa+/PJLiouL6devn9bhuK2HH36Y4cOH1/p/lzjb/v37iYmJoU2bNtx1110cPXpU65Dc0g8//EBycjK33XYbkZGR9OjRgzlz5mgWjyQ3jZSTk4PJZCIqKqrW8aioKDIyMjSKSjQ3ZrOZJ554gksuuYTOnTtrHY5b2r59O/7+/nh5efHAAw+wcOFCOnXqpHVYbunLL79k8+bNpKSkaB2KW+vbty/z5s1j8eLFfPDBBxw+fJgBAwZQWFiodWhu59ChQ3zwwQckJSXx66+/8uCDD/LYY48xf/58TeK54FYFF6Ipevjhh9mxY4f0959H+/btSU1NJT8/nwULFjB69GhWrFghCc7fHDt2jMcff5zff/8db29vrcNxa0OHDrXud+3alb59+xIfH8///vc/7rvvPg0jcz9ms5nk5GSmTJkCQI8ePdixYwczZ85k9OjRLo9HWm4aKTw8HIPBQGZmZq3jmZmZREdHaxSVaE4eeeQRfvzxR5YtW0bLli21DsdtGY1GEhMT6dWrFykpKXTr1o13331X67DczqZNm8jKyqJnz554eHjg4eHBihUreO+99/Dw8MBkMmkdotsKDg6mXbt2HDhwQOtQ3E6LFi3O+kOiY8eOmnXjSXLTSEajkV69erF06VLrMbPZzNKlS6W/XzSKoig88sgjLFy4kD/++IPWrVtrHVKTYjabKS8v1zoMt3PllVeyfft2UlNTrY/k5GTuuusuUlNTMRgMWofotoqKijh48CAtWrTQOhS3c8kll5w1VcW+ffuIj4/XJB7plnKA8ePHM3r0aJKTk+nTpw/Tpk2juLiYMWPGaB2a2ykqKqr1V8/hw4dJTU0lNDSUVq1aaRiZ+3n44Yf54osv+P777wkICLDWcAUFBeHj46NxdO5lwoQJDB06lFatWlFYWMgXX3zB8uXL+fXXX7UOze0EBAScVbfl5+dHWFiY1HP9zdNPP811111HfHw8J0+eZNKkSRgMBu68806tQ3M7Tz75JP3792fKlCncfvvtrF+/ntmzZzN79mxtAtJ6uFZz8Z///Edp1aqVYjQalT59+ihr167VOiS3tGzZMgU46zF69GitQ3M7dX1OgPLxxx9rHZrbuffee5X4+HjFaDQqERERypVXXqn89ttvWofVZMhQ8LqNGDFCadGihWI0GpXY2FhlxIgRyoEDB7QOy20tWrRI6dy5s+Ll5aV06NBBmT17tmax6BRFUbRJq4QQQgghHE9qboQQQgjRrEhyI4QQQohmRZIbIYQQQjQrktwIIYQQolmR5EYIIYQQzYokN0IIIYRoViS5EUIIIUSzIsmNEEIIIZoVSW6EEEII0axIciOEcIrLLruMJ554Qusw7Hbq1CkiIyNJS0tr9LXuuOMO3nrrrcYHJYSwiyy/IISwm06nO+/zkyZN4rHHHsPT05OAgAAXRXVul112Gd27d2fatGn1njt+/HgKCwuZM2cOv/76K9dcc815z//111+5+uqr63xux44dDBw4kMOHDxMUFNSQ0IUQDSCrggsh7Jaenm7d/+qrr5g4cSJ79+61HvP398ff31+L0BqlpKSEjz76yLqa+MCBA2u9186dO/PQQw/x0EMPWY9FRESc83qdO3embdu2fPbZZzz88MPOC1wIUYt0Swkh7BYdHW19BAUFodPpah3z9/c/q1vqsssu49FHH+WJJ54gJCSEqKgo5syZQ3FxMWPGjCEgIIDExER++eUX62vMZjMpKSm0bt0aHx8funXrxoIFC+yK9Z577mHFihW8++676HQ6dDrdObucfv75Z7y8vLj44osB8PHxsb4nk8nEqVOnGDBgQK33ajAYznv/6667ji+//NKumIUQjSPJjRDCZebPn094eDjr16/n0Ucf5cEHH+S2226jf//+bN68mauvvpq7776bkpISAFJSUvjkk0+YOXMmO3fu5Mknn2TkyJGsWLHC5nu+++679OvXj3HjxpGenk56ejpxcXF1nrty5Up69epV53NbtmwBoGfPnna95z59+rB+/XrKy8vtep0QouEkuRFCuEy3bt3417/+RVJSEhMmTMDb25vw8HDGjRtHUlISEydO5NSpU2zbto3y8nKmTJnC3LlzGTJkCG3atOGee+5h5MiRzJo1y+Z7BgUFYTQa8fX1rbe15ciRI8TExNT53ObNm4mLiyMsLKzW8ZtuuomQkBBuvfXWOl8XExNDRUUFGRkZNscshGgcqbkRQrhM165drfsGg4GwsDC6dOliPRYVFQVAVlYWBw4coKSkhKuuuqrWNSoqKujRo4dT4istLcXb27vO5zZv3lxnq83jjz/Ovffey/z58+t8nY+PD4C1NUoI4XyS3AghXMbT07PWzzqdrtYxyygss9lMUVERAD/99BOxsbG1Xufl5eWU+MLDwzl9+nSdz23evJmxY8eedfyyyy5j+fLl57xmbm4ucP7CYyGEY0lyI4RwS506dcLLy4ujR48yaNCgRl3LaDRiMpnqPa9Hjx589tlnZx3Pycnh2LFjdtfbgDocvGXLloSHh9v9WiFEw0hyI4RwSwEBATz99NM8+eSTmM1mLr30UvLz81m9ejWBgYGMHj3a5mslJCSwbt060tLS8Pf3JzQ0FL3+7JLDIUOGMGHCBE6fPk1ISIj1+ObNmwH7i4lBLVI+1zw4QgjnkIJiIYTbeuWVV3jxxRdJSUmhY8eOXHPNNfz000+0bt3aes68efPqnVTw6aefxmAw0KlTJyIiIjh69Gid53Xp0oWePXvyv//9r9bxLVu2EBUVdc5i43MpKyvju+++Y9y4cXa9TgjRODJDsRCiSZs0aRIrVqw4b92LPX766SeeeeYZduzYUWfrTl2WL1/O9OnTz5qD54MPPmDhwoX89ttvDolNCGEb6ZYSQjRpv/zyC9OnT3fY9YYPH87+/fs5ceLEOefDqWnw4MFs3bqV4uJiWrZsyddff02/fv0AtYD6P//5j8NiE0LYRlpuhBBCCNGsSM2NEEIIIZoVSW6EEEII0axIciOEEEKIZkWSGyGEEEI0K5LcCCGEEKJZkeRGCCGEEM2KJDdCCCGEaFYkuRFCCCFEsyLJjRBCCCGaFUluhBBCCNGsSHIjhBBCiGZFkhshhBBCNCv/D/pVFkiheuekAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "source.plot_lifetime(port = 0, parameters={'theta': 0, 'theta_c': -np.pi/4, 'fss': 4},\n", " end=6, label='excite H, collect A')\n", "\n", "source.plot_lifetime(port=0, parameters={'theta': np.pi/4, 'theta_c': -np.pi/4, 'fss': 4},\n", " end=6, label='excite D, collect A').show()" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:17:50.020919Z", "start_time": "2024-02-09T09:17:49.314238Z" } } }, { "cell_type": "markdown", "source": [ "As expected, for collection along a polarisation not aligned with the exciton axes, we can see a characteristic beating due to the fine structure splitting if we excite a superposition of exciton states. This phenomenon has been extensively exploited to filter the excitation laser in polarisation while still collecting single photons from the device. This allows for resonant excitation of the exciton, but will filter away roughly half of the single photons. For more discussion on how the fine structure impacts the source quality, see [[H. Ollivier et al., ACS Photonics 2020, 7, 4, 1050–1059](https://pubs.acs.org/doi/abs/10.1021/acsphotonics.9b01805)].\n", "\n", "One very interesting consequence of this beating is related to the fact that it delays the emission of single photons. Or, in other words, filters only photons that were emitted late with respect to the excitation pulse. This can be seen in the above plot where the initial rise time of the photon is shifted significantly to the right. Since noise causing $g^{(2)}$ arises due to re-excitation of the exciton early in the lifetime, this polarisation filtering also removes most of the noisy photons. As a result, $g^{(2)}$ can have a substantial dependence on the polarisation configuration. To explore this phenomenon, let's switch from using the default perfect pulses to using a default Gaussian pulse shape that produces a small amount of multi-photon emission. Then, we can simply sweep over different excitation polarisation angles and append the value of $g^{(2)}$ predicted by the Source.g2() source class method." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 23, "outputs": [], "source": [ "source = Source.exciton(pulse=Pulse.gaussian(), parameters={'fss': 4})\n", "\n", "theta_set = np.linspace(0, 1, 40)\n", "g2_data = [[source.g2(port=0, parameters={'theta_c': theta_c, 'theta': theta * np.pi}) for theta in theta_set]\n", " for theta_c in [0, -np.pi/4]]" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:17:52.451622Z", "start_time": "2024-02-09T09:17:49.507609Z" } } }, { "cell_type": "markdown", "source": [ "Once we have the data, then we can plot!" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 24, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAG0CAYAAADXb+jjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvCElEQVR4nO3dd3wUdf7H8dem9wQISSih966ho8QSDXYsJ2IBrKcCilhREe8sqIced8hPFD3BdiB2hUMxCiJVEpDewSCQhFBSSd35/THJhkACCSSZ3c37+XjsYyeT2dnPTsq+9zvf+X5thmEYiIiIiAgeVhcgIiIi4iwUjERERERKKBiJiIiIlFAwEhERESmhYCQiIiJSQsFIREREpISCkYiIiEgJL6sLcDV2u50DBw4QHByMzWazuhwRERGpAsMwyMrKomnTpnh4VN4upGBUTQcOHCA6OtrqMkREROQs7Nu3j+bNm1f6fQWjagoODgbMAxsSEmJxNSIiIlIVmZmZREdHO97HK6NgVE2lp89CQkIUjERERFzMmbrBqPO1iIiISAkFIxEREZESCkYiIiIiJdTHqJYUFxdTWFhodRlSRd7e3nh6elpdhoiIWEzBqIYZhkFKSgrHjh2zuhSpprCwMKKiojQ+lYhIPaZgVMNKQ1FERAQBAQF6k3UBhmGQm5tLWloaAE2aNLG4IhERsYqCUQ0qLi52hKJGjRpZXY5Ug7+/PwBpaWlERETotJqISD2lztc1qLRPUUBAgMWVyNko/bmpb5iISP3l1MFo+vTptGrVCj8/P/r168fq1asr3XbTpk3ceOONtGrVCpvNxtSpU0/ZZvLkyfTp04fg4GAiIiIYOnQo27Ztq/G6dfrMNennJiIiThuM5s6dy/jx45k0aRJJSUn07NmT+Ph4Rz+Qk+Xm5tKmTRteeeUVoqKiKtxmyZIljB49mpUrV7Jo0SIKCwu5/PLLycnJqc2XIiIiIi7CZhiGYXURFenXrx99+vThzTffBMxZ7aOjoxk7dixPPfXUaR/bqlUrxo0bx7hx40673aFDh4iIiGDJkiUMHjy4SnVlZmYSGhpKRkbGKVOC5OXlsWfPHlq3bo2fn1+V9ifOQz8/ERH3dbr37xM5ZYtRQUEBiYmJxMXFOdZ5eHgQFxfHihUraux5MjIyAGjYsGGl2+Tn55OZmVnuJhV7/vnn6dWrl+PrUaNGMXToUMvqERERqS6nDEbp6ekUFxcTGRlZbn1kZCQpKSk18hx2u51x48YxaNAgunXrVul2kydPJjQ01HGLjo6uked3NikpKYwdO5Y2bdrg6+tLdHQ011xzDQkJCVaX5lDVoFXZdosXL8Zms2mMKRF3k3vEvNmLra5E3EC9vVx/9OjRbNy4kV9//fW0202YMIHx48c7vs7MzHS7cLR3714GDRpEWFgY//jHP+jevTuFhYV8//33jB49mq1bt1pdooiIKT8LDqyD/Ynm7cBayNhX9n3fEPALA/9Q8G9QshxWdu/fAIKbQOtY8NEVxHIqpwxG4eHheHp6kpqaWm59ampqpR2rq2PMmDF89913/PLLLzRv3vy02/r6+uLr63tWz2MYBscLrfkE4+/tWeWrrB588EFsNhurV68mMDDQsb5r167cddddjq+Tk5MZO3YsCQkJeHh4MGTIEKZNm3ZKy15l7HY7r776Ku+88w4pKSl06NCBiRMnctNNNzm22bRpE08++SS//PILhmHQq1cvZs2axYcffsjs2bOBsqvHfv75Zy666KIqPbeIuKCiAkjdCAeSYH+SGYQObQNO0zU2P9O8ZZxh396B0Plq6H4ztLkIPJ3y7VAs4JS/CT4+PsTExJCQkOA4JWK320lISGDMmDFnvV/DMBg7dixffvklixcvpnXr1jVUccWOFxbT5bnva/U5KrP57/EE+Jz5x3vkyBEWLlzISy+9VC4UlQoLCwPM43/dddcRFBTEkiVLKCoqYvTo0QwbNozFixdXqabJkyfz0UcfMWPGDNq3b88vv/zC7bffTuPGjYmNjWX//v0MHjyYiy66iJ9++omQkBCWLVtGUVERjz32GFu2bCEzM5P3338fOH3fMBFxUflZ8Nu7sOU7SFkPxQWnbhMaDU3Pg2Yx5q1JT/D2h7wMOH4Ujh+DvGOV36dsgGN/wPq55i2wMXS70QxJzc4HDd1RrzllMAIYP348I0eOpHfv3vTt25epU6eSk5PDnXfeCcCIESNo1qwZkydPBswO25s3b3Ys79+/n3Xr1hEUFES7du0A8/TZJ598wtdff01wcLCjv1JoaKhj5OP6ZufOnRiGQadOnU67XUJCAhs2bGDPnj2OU4kffPABXbt25bfffqNPnz6nfXx+fj4vv/wyP/74IwMGDACgTZs2/Prrr7z99tvExsYyffp0QkNDmTNnDt7e3gB06NDBsQ9/f3/y8/Or1Gr43XffERQUVG5dcbH6H4g4rfwsWP0OLJ9mhptSfmFlAajZ+dD0fAiupJU6MNy8nYlhwJ+/wfpPYdMXkHMIVs0wbw3bmAGpx83QqG2NvDRxLU4bjIYNG8ahQ4d47rnnSElJoVevXixcuNBx2iY5ORkPj7K+4wcOHOC8885zfD1lyhSmTJlCbGyso0XjrbfeAjjl9Mv777/PqFGjavw1+Ht7svnv8TW+36o+d1VUdbSGLVu2EB0dXa5/VZcuXQgLC2PLli1nDEY7d+4kNzeXyy67rNz6goICx89t3bp1XHjhhY5QdC4uvvhix8+71KpVq7j99tvPed8iUoPyMs1AtOLNskDUqB0MHAutLjSDSk234NhsEN3XvA2ZDLt+hg2fwtb5cGQ3LHnFvDU93wxI3W+GQE3zVF84bTACsy9QZafOTj5906pVqzO+ydf1kE02m61Kp7Os1L59e2w2W613sM7OzgZg/vz5NGvWrNz3Svtw1WSrXWBgoKOlsNSff/5ZY/sXkXOUlwmr34blb5qnt8AMRLFPmqe1POpovkJPb+hwuXnLzzbD0YZPzbB0IMm8LZ4MQ16BnsN1mq0ecO53bal1DRs2JD4+nunTp/PQQw+d0s/o2LFjhIWF0blzZ/bt28e+ffscrUabN2/m2LFjdOnS5YzP06VLF3x9fUlOTiY2NrbCbXr06MHs2bMpLCyssNXIx8dHp8NEXF1eJqx622whcgSi9hD7RN0Goor4BkHPYeYtOw02fQmJsyFtE3z1gPn11VMhtNkZdyWuyynHMZK6NX36dIqLi+nbty+ff/45O3bsYMuWLfz73/929AeKi4uje/fu3HbbbSQlJbF69WpGjBhBbGwsvXv3PuNzBAcH89hjj/HII48we/Zsdu3aRVJSEtOmTXNcbTZmzBgyMzO55ZZbWLNmDTt27ODDDz90zGfXqlUr1q9fz7Zt20hPT9dkryKuJC8DlrwGU7vDzy+aoSi8A9zwLoxeZZ6ysjIUnSwoAvr9Ff76C1w6CTx9YMcP8H/9IelDs5+SuCUFI6FNmzYkJSVx8cUX8+ijj9KtWzcuu+wyEhISHP10bDYbX3/9NQ0aNGDw4MHExcXRpk0b5s6dW+XneeGFF5g4cSKTJ0+mc+fODBkyhPnz5zuuDmzUqBE//fQT2dnZxMbGEhMTw8yZMx2tR/feey8dO3akd+/eNG7cmGXLltX8wRCRmrf5a5jaA35+qSQQdYQb34MHV0KPvzhXIDqZpxdcOB7+utTsAJ6fCd+MgY9uhGP7zvx4cTlOO1eas9Jcae5LPz+RGmYvhoS/w7Kp5tfhHc1TZl2vd+4wVJniIlg5HX56CYrzwScY4l+E80eq75ELcOm50kRExMXlHoGPbigLRQPHwgPLoftNrhmKwGw9GvQw3P8rNO8LBVnw7cPw4VA4+ofV1UkNUTASEZGadWAdvB0LuxeDdwDc9B+4/EX3GV26cQe4ayFc/hJ4+Zmv862B5sCUdrvV1ck5UjASEZGas+6/8J94yEg2xyC6J8G82szdeHjCwDFmK1iLAVCQDfMfhQ+uhcwDVlcn50DBSEREzl1RAcx/DL66H4ryoH083PszRJ55OA+X1qgtjFoAQ141W8f2LoX34uHwLqsrk7OkYCQiIucmKwVmXwO/zTS/jn0Khs8xZ7OvDzw8oP/9Zt+jhm3N1rL/xMPB362uTM6CgpGIiJy95JXw9mDYtxJ8Q2H4XLh4ghkW6ptGbeGu7yGqhzn/2qyrYa+GFXE19fA3V0REzplhwOqZMOsqyE6Fxp3hvp+h4xCrK7NWUGMY9R20HGSOefTRDbDtf1ZXJdWgYCQiItVjt8O3D8GCx8BeZI5LdM+Pmo2+lF8o3P45dLzS7G815zazU7q4BAUjqTHPP/88vXr1cnw9atQohg4dalk9IlILDAMWPgVJH4DNw7wM/6b3zXnGpIy3P9z8IfS8FYxis1P6iulWVyVVoGAkAKSkpDB27FjatGmDr68v0dHRXHPNNSQkJFhdmkN1g9aKFSvw9PTkqquuqr2iROqbpVNg9dvm8vVvmwM3atTninl6wXXTof9o8+vvn4aEFzTPmpNTMBL27t1LTEwMP/30E//4xz/YsGEDCxcu5OKLL2b06NFWl3fW3nvvPcaOHcsvv/zCgQMaV0TknK15H3560Vwe8qo58aucnocHxL8El0w0v146Bb57xJwuRZySgpHw4IMPYrPZWL16NTfeeCMdOnSga9eujB8/npUrVzq2S05O5rrrriMoKIiQkBBuvvlmUlNTq/w8drudyZMn07p1a/z9/enZsyefffZZuW02bdrE1VdfTUhICMHBwVx44YXs2rWL559/ntmzZ/P1119js9mw2WwsXry40ufKzs5m7ty5PPDAA1x11VXMmjWruodFRE60+WuYP95cvvAx8/J0qRqbDQY/Blf/E7BB4vvw+d3m2E/idNxkfHYnZRhQmGvNc3sHVKl5+8iRIyxcuJCXXnqJwMDAU74fFhYGmKGmNBQtWbKEoqIiRo8ezbBhw04bUE40efJkPvroI2bMmEH79u355ZdfuP3222ncuDGxsbHs37+fwYMHc9FFF/HTTz8REhLCsmXLKCoq4rHHHmPLli1kZmby/vvvA9CwYcNKn+vTTz+lU6dOdOzYkdtvv51x48YxYcIEbGryF6m+3Uvg83vAsJsTpl7yrNUVuabed4F/A/j8Xtj0JeRlmP2Q1D/LqSgY1abCXHi5qTXP/fQB8Dk16Jxs586dGIZBp06dTrtdQkICGzZsYM+ePURHRwPwwQcf0LVrV3777Tf69Olz2sfn5+fz8ssv8+OPPzJgwAAA2rRpw6+//srbb79NbGws06dPJzQ0lDlz5uDt7Q1Ahw4dHPvw9/cnPz+fqKioM76u9957j9tvvx2AIUOGkJGRwZIlS7jooovO+FgROcGBtTDnVigugM7XmK0e+oBx9rpeD74hMPd22PUTfHg9jPzG7KwtTkGn0uo5o4qdALds2UJ0dLQjFAF06dKFsLAwtmzZcsbH79y5k9zcXC677DKCgoIctw8++IBdu8yh89etW8eFF17oCEVna9u2baxevZrhw4cD4OXlxbBhw3jvvffOab8i9c7hXfDRTeY8YK0uhBveNecIk3PT7lIY8Q34hcGfq+HbceqQ7UTUYlSbvAPMlhurnrsK2rdvj81mY+vWrbVaTnZ2NgDz58+nWbNm5b7n6+sLmC1CNeG9996jqKiIpk3LWusMw8DX15c333yT0NDQGnkeEbeWeRA+HAq56eZIzrd8At5+VlflPqL7wM0fmC1G6+dA017Q/wGrqxLUYlS7bDbzdJYVtyo2dTds2JD4+HimT59OTk7OKd8/duwYAJ07d2bfvn3s27fP8b3Nmzdz7NgxunQ58ySRXbp0wdfXl+TkZNq1a1fuVtoK1aNHD5YuXUphYWGF+/Dx8aG4+PRXchQVFfHBBx/w+uuvs27dOsft999/p2nTpvz3vxpkTeSMjh81R2w+lgwN25iDFfqFWF2V+2kTa44DBfD9M7DnF2vrEUDBSIDp06dTXFxM3759+fzzz9mxYwdbtmzh3//+t6M/UFxcHN27d+e2224jKSmJ1atXM2LECGJjY+ndu/cZnyM4OJjHHnuMRx55hNmzZ7Nr1y6SkpKYNm0as2fPBmDMmDFkZmZyyy23sGbNGnbs2MGHH37Itm3bAGjVqhXr169n27ZtpKenVxigvvvuO44ePcrdd99Nt27dyt1uvPFGnU4TOZOCXPjkFkjbDEGRcMeXEBRhdVXuq/8D0GOYOQjkvFFmGBVLKRgJbdq0ISkpiYsvvphHH32Ubt26cdlll5GQkMBbb70FgM1m4+uvv6ZBgwYMHjyYuLg42rRpw9y5c6v8PC+88AITJ05k8uTJdO7cmSFDhjB//nxat24NQKNGjfjpp5/Izs4mNjaWmJgYZs6c6ehzdO+999KxY0d69+5N48aNWbbs1MkZ33vvPeLi4io8XXbjjTeyZs0a1q9ffzaHScT9FRfCZ3eWTQh7+xfQoJXVVbk3mw2u+Rc06Qm5h83pQwosuppZALAZVe19KwBkZmYSGhpKRkYGISHlm5bz8vLYs2cPrVu3xs9P5+JdjX5+Uq8ZBnz1IPz+CXj5mS1FLQdaXVX9cWwfvHOR2aer+1/ghpm6+q+Gne79+0RqMRIREXNE5t8/AZsn/GWWQlFdC4uGm2ebx3/DPM2rZiEFIxGR+m7favh5srl89RvQ8Qpr66mvWl0AQ0p+Dosmwq6fra2nnlIwEhGpz/IyS0a1LoZuN5kjW4t1+t4HPW81Rxn/7E44utfqiuodBSMRkfrsf0/AsT8gtIXZWqR+Lday2czRxZuebw6bMOc2KDh1KBWpPQpGtUD92V2Tfm5S72z4DH7/L9g84IZ3wE+DnzoFbz8Y9hEENobUjfD1GI2MXYcUjGpQ6WXlubm61NIVlf7cznVKEhGXcCwZvhtvLl/4GLQcYG09Ul5oM3NkbA8v2PQFLP+31RXVG5oSpAZ5enoSFhZGWloaAAEBAZrN3QUYhkFubi5paWmEhYXh6am5oMTN2Yvhi79CfgY07wOxT1pdkVSk5UAY8goseAx+fB4iu5nzrEmtUjCqYaUzv5eGI3EdYWFhjp+fiFtb+gYkLwefIHO8HE+9FTitPvfAwXWw9iP47C6472dzmhapNfprqGE2m40mTZoQERFR6Zxf4ny8vb3VUiT1w59rYHHJJeFXToGGra2tR07PZoMrX4e0rbB/jdnSd9dC8ND/q9qiYFRLPD099UYrIs4lPws+v7vk0vwboectVlckVeHtZw66+X8D4M/V8Nu70O+vVlflttT5WkSkvljwhDkuTmg0XKVL811KWDTETTKXf/ybJputRQpGIiL1wcbPS6b8KLk03z/M6oqkunrfDS0GQGEOfDtOl/DXEgUjERF3d2wffPuIuXzho5oHzVV5eMC108DTF3YlwPq5VlfklhSMRETcmb0YvrjPvDS/WW9dmu/qwtvDRSU/w4VPQfYha+txQwpGIiLu7Nd/ll2af+NM8NQApi5v4EMQ1d2cMuR/T1hdjdtRMBIRcVd/Jp5waf4/NP6Nu/D0Nk+p2TzMUbG3LrC6IreiYCQi4o4KcuGLe8BeBF1vgJ7Dra5IalLT82DgWHN5/njIy7C2HjeiYCQi4o5++Qcc2Q0hzeBqXZrvli6aYLYCZh2ERZOsrsZtKBiJiLibtC1lk45e+Q/wb2BtPVI7vP3hmpKfc+L7sPdXa+txEwpGIiLuxG6H7x4xT6F1vAo6XWV1RVKbWl8IMaPM5W/GQuFxS8txBwpGIiLuZN3HkLwCvAPhiletrkbqwmV/h+Am5qnTxa9YXY3LUzASEXEXOemwaKK5fPEEcxoJcX9+oeYULwDLp8GBdZaW4+oUjERE3MWi58yxbSK7Qb/7ra5G6lKnK82rD41i+GYMFBdaXZHLUjASEXEHe381T6Nhg6unaiDH+uiK18yO9ikbyjrfS7U5dTCaPn06rVq1ws/Pj379+rF69epKt920aRM33ngjrVq1wmazMXXq1HPep4iISygqMDtcg9kRN7qPpeWIRYIaQ3zJgJ6LX4X0HdbW46KcNhjNnTuX8ePHM2nSJJKSkujZsyfx8fGkpaVVuH1ubi5t2rThlVdeISoqqkb2KSLiEpb/C9K3Q2BjiNN4NvVaz1ug7aVQnA/fPGRepSjVYjMMw7C6iIr069ePPn368OabbwJgt9uJjo5m7NixPPXUU6d9bKtWrRg3bhzjxo07533m5+eTn5/v+DozM5Po6GgyMjIICQk5h1coIlIDjuyG/xsARXlww0zocbPVFYnVjiXD9P5QmAM3vgfdb7K6IqeQmZlJaGjoGd+/nbLFqKCggMTEROLi4hzrPDw8iIuLY8WKFXW6z8mTJxMaGuq4RUfrKg8RcRKGAfMfM0NR61jo/herKxJnENYCLiw5tZrwNyjKP/32Uo5TBqP09HSKi4uJjIwstz4yMpKUlJQ63eeECRPIyMhw3Pbt23dWzy8iUuM2fQm7EsDTx7xcW9N+SKn+D0JQlNl69Nt7VlfjUpwyGDkTX19fQkJCyt1ERCyXlwELS7oAXPgohLezth5xLj6B5lhWYM6bp0lmq8wpg1F4eDienp6kpqaWW5+amlppx2or9ikiYpmfXoTsVGjUDi54xOpqxBn1uh3CO8DxI/DrVKurcRlOGYx8fHyIiYkhISHBsc5ut5OQkMCAAQOcZp8iIpbYnwirZ5rLV70BXr7W1iPOydML4v5mLq98CzIPWFuPi3DKYAQwfvx4Zs6cyezZs9myZQsPPPAAOTk53HnnnQCMGDGCCRMmOLYvKChg3bp1rFu3joKCAvbv38+6devYuXNnlfcpIuL0iovg23GAAT2GQZtYqysSZ9bxCmgxAIqOw88vW12NS/CyuoDKDBs2jEOHDvHcc8+RkpJCr169WLhwoaPzdHJyMh4eZbnuwIEDnHfeeY6vp0yZwpQpU4iNjWXx4sVV2qeIiNP7bSakrDfnx7r8RaurEWdns5mTzL53mTky+oDRENHZ6qqcmtOOY+SsqjoOgohIjcs8AG/2gYJsc9qP3mrtliqaezts+RY6DIFb51pdjSVcehwjERGpwKJJZihq3hfOH2l1NeJKLp0ENk/YvhD2LrO6GqemYCQi4goObYcN88zlK/8BHvr3LdUQ3h5iSsL0oufMwUGlQvrLEhFxBUteBQzodDU07WV1NeKKYp8C70DYvwY2f211NU5LwUhExNmlbYWNn5vLsU9aW4u4ruBIGDjWXE74GxQXWluPk1IwEhFxdr+8hqO1qEkPq6sRVzZwDAQ2NicfTpxldTVOScFIRMSZpW2BjV+Yyxc9ZW0t4vp8g8taHRe/AvlZ1tbjhBSMREScWWnfos7XQFR3q6sRdxAzChq2hdx0WD7N6mqcjoKRiIizSt0Mm74yl2PVWiQ1xNMb4iaZy8vfhKzU029fzygYiYg4q9LWoi7XQVQ3q6sRd9L5WmjeBwpzYMkrVlfjVBSMREScUeom2PyVuazWIqlppVOFACTOhvQd1tbjRBSMRESc0eKST/FdhkJkF0tLETfVciB0uAKMYvPyfQEUjEREnE/KBtjyDWDTlWhSu+KeB5uHOY9a8iqrq3EKCkYiIs5myavmfdfrNRO61K6ITtDrNnP5pxesrcVJKBiJiDiTg+vNT+/YNMq11I2LJoCHN+xdCvt+s7oayykYiYg4k9LWom43mJ/mRWpbaDPoOcxc/vUNa2txAgpGIiLO4uDvsPU71FokdW7QOMAG2xaY42fVYwpGIiLOYnFJa1H3m6BxR2trkfolvD10udZcXjbV0lKspmAkIuIMDqyDbfPNK4QGP2F1NVIfXTDevN/wGRzda2kpVlIwEhFxBqXjFnW7CRp3sLYWqZ+a9oK2l5jjGtXjOdQUjERErLY/Cbb/z2wtilVrkViotNVo7UeQnWZtLRZRMBIRsVrplWjd/2L29RCxSqsLzDnUivJg5f9ZXY0lFIxERKy0PxG2L1TfInEONltZq9Fv70FehrX1WEDBSETESqV9i3oMg/B21tYiAtBhCDTuDPmZ8Nu7VldT5xSMRESscvB32PED2Dxh8ONWVyNi8vCACx4xl1e+BYXHra2njikYiYhYZdXb5n3XodCoraWliJTT7UYIawE5h8yO2PWIgpGIiBVy0s3xYgD6PWBtLSIn8/SCgQ+Zy8v+DcWF1tZThxSMRESskDgLivOh6XnQvLfV1Yic6rzbIbAxZCTDxs+trqbOKBiJiNS14iJY8x9zue9fzSuBRJyNtz/0L2nN/PWfYLdbW08dUTASEalrW7+DzP0QEA7dbrC6GpHK9bkHfEPg0FZzENJ6QMFIRKSurX7HvO99J3j5WluLyOn4hUKfu83lpW+AYVhbTx1QMBIRqUspG+CPZeDhBb3vsroakTPr/yB4+cH+NbB3qdXV1DoFIxGRulR6iX7nayCkqbW1iFRFUITZERvMViM3p2AkIlJXco/Ahnnmct+/WluLSHUMfMgciHT3z3BgrdXV1CoFIxGRupL0gTk5Z1R3aNHf6mpEqq5BS+h+k7ns5q1GCkYiInWhuKhs3ql+9+sSfXE9pdOEbPkWDm23tpZapGAkIlIXtv8PMvaBf0NzugURVxPRGTpeCRiw7F9WV1NrFIxEROpCaafrmJHmwHkiruiC8eb9+jmQ8ae1tdQSBSMRkdqWutm8zNnmAb3vtroakbMX3QdaXQj2Ilg90+pqaoWCkYhIbSsd0LHT1RAWbW0tIueqdJqQpNlQkGttLbVAwUhEpDYdPwrr55rL/XSJvriBDkMgrKX5u106/IQbUTASEalNaz+CwlyI6AotB1ldjci58/CEvveZy6tmuN00IQpGIiK1xV5c1g+j3326RF/cx3m3g3cgpG12u2lCFIxERGrLjh/g2B/gFwbdb7a6GpGa4x8GvYabyytnWFpKTVMwEhGpLatK3jDOHwE+AdbWIlLTSk+nbVsAR/daWkpNUjASEakNh7bB7sXmJfp97rG6GpGa17gjtL0EMNzq0n0FIxGR2lB6iX6HK8x5pkTcUb/SS/c/hPxsa2upIQpGIiI1LS8D1v3XXO53n7W1iNSmdnHQsC3kZ5ijYbsBpw5G06dPp1WrVvj5+dGvXz9Wr1592u3nzZtHp06d8PPzo3v37ixYsKDc97OzsxkzZgzNmzfH39+fLl26MGOGe3UaExEnsPZjKMyBxp2gdazV1YjUHg+PsvG5Vr0Ndru19dQApw1Gc+fOZfz48UyaNImkpCR69uxJfHw8aWlpFW6/fPlyhg8fzt13383atWsZOnQoQ4cOZePGjY5txo8fz8KFC/noo4/YsmUL48aNY8yYMXzzzTd19bJExN3Z7fBbSX+LvrpEX+qBnsPBJxjSt8Pun62u5pzZDMM5R2bq168fffr04c033wTAbrcTHR3N2LFjeeqpp07ZftiwYeTk5PDdd9851vXv359evXo5WoW6devGsGHDmDhxomObmJgYrrjiCl588cUq1ZWZmUloaCgZGRmEhIScy0sUEXe0/Qf45C/gGwrjN4NvkNUVidS+/z1pXoXZPh5u+9TqaipU1fdvp2wxKigoIDExkbi4OMc6Dw8P4uLiWLFiRYWPWbFiRbntAeLj48ttP3DgQL755hv279+PYRj8/PPPbN++ncsvv7zSWvLz88nMzCx3ExGp1Oq3zfvzblcokvqj732ADXZ8D4d3WV3NOXHKYJSenk5xcTGRkZHl1kdGRpKSklLhY1JSUs64/bRp0+jSpQvNmzfHx8eHIUOGMH36dAYPHlxpLZMnTyY0NNRxi47WBJAiUon0nbDzR8AGfXWJvtQjjdpC+5JGhtIrMl2UUwaj2jJt2jRWrlzJN998Q2JiIq+//jqjR4/mxx9/rPQxEyZMICMjw3Hbt29fHVYsIi6ltG9R+8uhYRtraxGpa/3vN+/Xfgx5rnt2xcvqAioSHh6Op6cnqamp5danpqYSFRVV4WOioqJOu/3x48d5+umn+fLLL7nqqqsA6NGjB+vWrWPKlCmnnIYr5evri6+v77m+JBFxd/lZ5hsC6BJ9qZ/aXAzhHSF9G6z7pCwouRinbDHy8fEhJiaGhIQExzq73U5CQgIDBgyo8DEDBgwotz3AokWLHNsXFhZSWFiIh0f5l+zp6YndDS4vFBGL/T4HCrKgUTtoc4nV1YjUPZut7EPBate9dN8pgxGYl9bPnDmT2bNns2XLFh544AFycnK48847ARgxYgQTJkxwbP/www+zcOFCXn/9dbZu3crzzz/PmjVrGDNmDAAhISHExsby+OOPs3jxYvbs2cOsWbP44IMPuP766y15jSLiJgyjrF9F3/vMsV1E6qOew80rMo/shp2LrK7mrDjlqTQwL78/dOgQzz33HCkpKfTq1YuFCxc6OlgnJyeXa/0ZOHAgn3zyCc8++yxPP/007du356uvvqJbt26ObebMmcOECRO47bbbOHLkCC1btuSll17i/vtds7lPRJzE7sXmGC4+QeYbg0h95RMI598BK940L9/vEG91RdXmtOMYOSuNYyQip/jvcHOG8T73wlVTrK5GxFpH/4B/9wLDDqNXm5PNOgGXHsdIRMRlHN0L2/5nLvdVp2sRGrSEjleay6vetraWs6BgJCJyLn57FzDMK3Iad7C6GhHnUDp/2u//heNHra2lmhSMRETOVkEuJH1oLpe+EYgItLoQIrpCYS6s/cjqaqpFwUhE5GxtmAd5xyCsZdmovyJScul+yYeF1e+AvdjaeqpBwUhE5GyUu0T/XvDwtLYeEWfT42bwbwDHksv64bkABSMRkbPxx3JI3Qhe/tDrNqurEXE+3v4QM8pcXjXD0lKqQ8FIRORsrC652qbHzRDQ0NpaRJxVn3vA5gF7l8Kh7VZXUyUKRiIi1ZXxJ2z5zlxWp2uRyoU2hw5DzOXE962tpYoUjEREqmvN+2AUQ8sLILKr1dWIOLfed5n36z6GwuPW1lIFCkYiItVRmAeJs8zlfhrQUeSM2l4CYS0gLwM2fWl1NWekYCQiUh2bvoTcdAhpDh2vsroaEefn4VnWCXvNfywtpSoUjEREqsowyjpd97kLPJ12Hm4R53LeHeDhDX/+BgfXW13NaSkYiYhU1Z9r4MBa8PSF80daXY2I6wiKgM7XmMtO3mqkYCQiUlWlAzp2uxECw62tRcTVlHbC3jAP8rOsreU0FIxERKoiK7Ws46g6XYtUX6sLoFF7KMiG9Z9aXU2lFIxERKoicRbYC6F5X2h6ntXViLgem62s1WjN+2afPSekYCQiciZFBWX9IjSgo8jZ63kLePlB6gazz54TUjASETmTLd9AdgoERULna62uRsR1BTQ0++gBrHnP2loqoWAkInImpZ2uY+4ELx9raxFxdaWn0zZ+AblHrK2lAgpGIiKnc/B32LcKPLyg951WVyPi+prFQFR3KM6H3/9rdTWnUDASETmd0r5FXa6D4ChraxFxB+U6Yf/H6TphKxiJiFQmPws2fGYux6i1SKTGdP8L+ATB4Z2wd6nV1ZSjYCQiUpkNn5ljrjRqb47BIiI1wzcYetxsLjvZSNgKRiIilUmcZd7HjDKb/0Wk5pSeTtvyrTmAqpNQMBIRqciBtXBwHXj6QM/hVlcj4n6iupsDptqLYO2HVlfjoGAkIlKRNe+b912ug8BG1tYi4q5KW40SZ4O92NpaSigYiYicrFyn61GWliLi1roOBb8wyEiGnQlWVwMoGImInGrDPCjMMTtdtxxkdTUi7svbH3rdZi47SSdsBSMRkZOp07VI3SkdOHXH93Bsn7W1oGAkIlLe/iRztGtPX+h1q9XViLi/8PbQejAYdkiabXU1CkYiIuWUthZ1uc6c8FJEal9pJ+ykD6C40NJSFIxERErlZarTtYgVOl4FgRGQnQrbFlhaioKRiEip0k7X4R2g5UCrqxGpP7x84Pw7zGWLO2F7Wfrs4vDrt7MJ3zyLBeGj2BPQA08beHjY8LDZ8LTZ8PCw4ekBHraSdR42vDxt+Hl54uvtgZ+XJ37envh5e+DrZd77eXvi6+XhWB/k602QnxeBPp7Y1KFUpDzDgMSSsYvU6VrkFHa7QXZBEdl5ReTkF5FXaCevqJi8wmLyHct28kvuzfXF5BfZKSw2sBvmrdhesmyHYsPAXvJ1aEFvJmHDY/diVq5ZTf/efS15nQpGTsJ/7w90Op7Epr0B/LswvFafy8MGgb5ehPh5E+znRZCvl3lf8nWwn/m9hoE+NAjwoWFg2S3U3xtPD71hiBs6kAQpG8xO1xrpWtxUUbGdo7mFHM0t4EhO2e1oTgGZeYVk5xeRmWeGn6y8QrLyisjOL3Lc17ZY755c4rmOoA0fgoJR/ebX725Y8B1DvVeTe8lL5HmGmMnaMDAMKLabKdsoWWc3oLDoxIRupvPS5O5I7CVpPq/QTnZ+UUlSh6w88xe9umw2CPP3dgSl0uDUONiXiBA/IoJ9iQzxIzLEl/AgX7w9dbZWXIQ6XYuLyi8qJi0zn7SsPNIy80nNzCM1K5/0rHxHADqaW8jh7Hwyz+L//sm8PW0E+nrhf8JZCV9vT/y8PBz3J5/B8PL0MM9+nHg2pOTewwaeHjZsNhsFRx9kbeYGAvuPOvcDc5YUjJxE1z4XQ2J3PFM3cIf/Suh/f40/h2EY5BXazU8BpZ8ATvhUYK4rJDuviGPHCzl20ieKzLwiDIOSTxuF7DqUc9rns9mgUaAPEcFmUIosDU6hfjQN86d5mD/NGvgT4KNfQ7FYXiZs+NxcLh1TRcQJZBwvZP/R4xw4dpwDGcfN0FMSfkrD0NHc6l3FVfoBt0GgD41KPuA2CPAhNMDbcQYh2M9cDvHzIuiEr4P9vPDz9qylVwvQGhhWi/s/s2q/I61atYpPPvmE5cuXk5KSgr+/P507d+aKK65g+PDhhIaG1kad7s9mg5iRsOAx85Nrv7/WeB8Hm82Gv48n/j6eRJzF4wuL7RyroAn2SE4Bh7LKPqUcyswjLSufIrtBenYB6dkFbD5Y+X4bBHjTNMyfZiVBqVmYP80b+NMsLICmYX40DPRRnyipXY5O1x2hxQCrq5F6wm43SM/O589jx9l/9Dj7j5kBqHR5/9HjZFXx9JWPlweRIb6OD6IRwX40DvZ1tOw3Cipr4VeXiNOrVjC6+uqrad68Oddccw1PPfUUjRs3Ji8vj507d7JkyRJuuukmxo4dy7XXXltb9bq3HjfDDxPh0BbYtxpa9LO6onK8PT1oHOxL42DfM25rtxscyS0wm3Wz8kgr+ZSTlpVHSkYef5b84WflFTlaoDYdyKxwX4E+nrRsFEjLRgEn3JvLTUL88NAfuJwLdbqWWlRUbGf/seP8cTiXPw7nsPdwrmM5+Ugu+UX2M+6jYaAPTcP8aBbmT1SIHxEhfo4uC6VBKNTfWx8ga4jNMAyjqhsfO3aMsLCwc97GlWVmZhIaGkpGRgYhISE1/wRfjYZ1H5lzxwz9v5rfv5PJzCtrJi79hHTip6dDWfmnfbyPlwctGgbQsqEZlFqFB9AmPIg2jQNpEuqnfxRyZn8mwruXmJ2uH92q/kVSbcV2gz+P5rL7UA67DmWbweeIGX72Hz1Okb3yt1kPG0SF+Dlay5ue1HLeNEzdDWpKVd+/q3W0w8LCOH78OEeOHKFZs2blvrdp0ya6du3q1qGoTsSMMoPRxi8g/mXwD7O6oloV4udNSBNvOjep+Jc0r7CYP48eJ/lIDnvTzX805j+cXPYdyaWgyM7OtGx2pmWf8tgAH09ahwfStrEZlNo2DqJt4yBahwfi71Ob58jFpZS2FnUdqlAkp5WVV+gIP6X3uw5ls/ew+b+oMr6lH+AaBdLqhBbvlo0CaBrmr4tUnEy1gtFnn33GuHHjCA8Px263M3PmTPr1M0/33HHHHSQlJdVKkfVK894Q0RXSNpn9Hvrea3VFlvLz9qRdRBDtIoJO+V5RsZ2DGXnsPZzjaJrek57L7vRskg/nkltQzKYDmRWeomsW5k+bxoG0iwiifUQwHSKDaB8ZTKi/d128LHEWeRmwsaTTdYw6XYt5kUp6dgE70rLYkZrNjrQsdqWZISjtNC3YPl4etAkPpE3jwBMCkBl+IoN1yt+VVCsYvfjiiyQmJhIZGUliYiIjR47k6aef5tZbb6UaZ+TkdEo7Yf/vCVjzPvS5R30eKuHl6UF0wwCiGwZwYfvy3ysstpN8JJddadnsTs8puz+UzbHcQvO03bHjLN2RXu5xEcG+dIgMpn3kCYEpIpjQAAUmt7RhHhTmlnS67m91NVKHHAEoNYsdadlsL7nfkZp12qu8Ggf70rZxIG1KWqDbNA6kXeMgmob5q0Ozm6hWMCosLCQyMhKAmJgYfvnlF66//np27typvhw1qcfNsOg5s9Vof6LZiiTV4u3p4Th1drIjOQXsLmkCNz8Rmv8MD2SYV9OlZeXz686KA1OHyGA6RgXRMSqEDpFBOvfvygwD1swyl3vfqQ8gbizjeCHbU7PYmpLFtpRMtqeYLUGVBSCbDVo0DKB9hPkhqV3jINpGmCEoxE8fktxdtf6rR0REsH79enr06AFAw4YNWbRoESNHjmT9+vW1UmC95N8Aul4Pv//X7P+gYFSjzMEpG9K7Vfn+JFl5hexMM8PSiZ8eKwtMpf88O0QG0ykqmI5RwXSMDKZ1eCBe6jPg/PYnQeoG8PKDHtaOmyI1I6+wmF2HstmWkmXeUs37gxl5FW5/cgAqbSFu2zhI/RDrsWpdlfbnn3/i5eVFVFTUKd9btmwZgwYNqtHinFGtX5VWKnkl/CcevAPMK2X8ND6UVUoD0/bULLalZLMtNZNtKdmkZ1fc38DH04O2EUGOsNQpKphOUSFEhviqZdWZfD0a1n4EPW6BG962uhqpBrvd4M+jx9maklnSCpTF1pRM9h7OpbiSK8CahvqZH16iQugYpQBUH1X1/btawUjqMBgZBvxffzi0Fa563exrJE7lcHZ+uU+lW1Oy2J6aRW5BcYXbhwV40zEymM5NQhyBqUNkMIG+Oh1X5/Iy4PVOZv+iu75X/yInlpFb6AhAW0sC0PaULHIq+TsL9fcu9/fVKSqYDlHBOgUmtXO5/mWXXcawYcO47rrraNy4sWO93W5n1apVfPjhh/Tt25dRo0addeEnmj59Ov/4xz9ISUmhZ8+eTJs2jb59K59Ubt68eUycOJG9e/fSvn17Xn31Va688spy22zZsoUnn3ySJUuWUFRURJcuXfj8889p0aJFjdRcY2w289L9hU+Z/SB6360+EE6mUZAvA9v5MrBd2aS/drvB/mPHHX0ZSv+Z70nP4VhuIav2HGHVniPl9tOiYUBJq1Lpp9lgWjUK0Om42rT+UzMUNe4E0c41kGp9lV9UzO5DOY4PGaV/P5WdBvPx9KBdRBCdmpT97XSKCiYiWC2zcm6q1WKUk5PDu+++yyeffEJaWhoNGjTg+PHj5OXlERsbywMPPOC4fP9czZ07lxEjRjBjxgz69evH1KlTmTdvHtu2bSMi4tQJLZYvX87gwYOZPHkyV199NZ988gmvvvoqSUlJdOvWDYBdu3bRt29f7r77boYPH05ISAibNm2if//+Fe6zInXWYgSQe8T8VFucD/f+BM1iavf5pNbkFRazMy3b0eRfGpgqG8DSx8uD9hFBjk+++qdfgwwDZlwAqRthyKu1Mi+hVK6iDw/bSj48VDYQYrMwfzo3KT01bf4ttAoP1Pg/Ui21fiqtoKCAw4cP4+fnR4MGDc660Mr069ePPn368OabbwJmq1R0dDRjx47lqaeeOmX7YcOGkZOTw3fffedY179/f3r16sWMGTMAuOWWW/D29ubDDz8867rqNBgBfHEfrJ8L54+Aa6fV/vNJnSo9HefoJ5GaxfaULI4Xnv50XKeoYNqXXCXXITKIsACfOq7chf25Bt691Ox0/ehW82IHqXGGYXAoO99xMUPpVWGnOw0W7OdVdiFDVAiddRpMalCtnEo7kY+PD02aNGHz5s2Ehobi4VFzyb2goIDExEQmTJjgWOfh4UFcXBwrVqyo8DErVqxg/Pjx5dbFx8fz1VdfAWawmj9/Pk888QTx8fGsXbuW1q1bM2HCBIYOHVppLfn5+eTnl32qz8yseD6vWhMzygxGGz6Hy18CvzoIY1JnKjsdl3wk1xGWtqWan6r3nuZ0XONgXzpEBjmGFCgdsFJvKBVwjHR9vUJRDTmcnc+21KyyKzpTs9melsWxSi6H9/a00bZxULnW0I5RwZrGR5zCOff67NatG35+fnTp0oWePXuWu53t9CDp6ekUFxc7xkwqFRkZydatWyt8TEpKSoXbp6SkAJCWlkZ2djavvPIKL774Iq+++ioLFy7khhtu4OeffyY2NrbC/U6ePJm//e1vZ/U6akSLARDeAdK3w8bPoPdd1tUidcLDw0ar8EBahQcypFvZFaClp+NKO3mXvgGVzil3KCufZTsPl9tXVIifY7DKthFl06KEB/nUzzegvAxzuh0wP3RIldntBimZeeY0GGnZ7DqU4xgd+nBOQYWPsdmgZcOAktbNIEcIaq3TYOLEzjkYLVmyhL/85S80a9aMrKwsZs6cyaZNm7DZbLRr146bb76ZRx991PI51Ox2cx6b6667jkceeQSAXr16sXz5cmbMmFFpMJowYUK5lqjMzEyio6Nrv+BSpZ2wv38aEmcpGNVjft6edGsWSrdm5YduyM4vYkdqaVgq+8SekpnnuJ08wnewn5cjJJ0YmFo2CnDvN6zSka7V6bpSeYXF7CkZJb50Koxdh7LZk55T6RWXANEN/ekYGewIQe0jgmkXEYSfty6HF9dyzsHo4Ycf5q233uL66693rEtISOCvf/0rt99+Oz/++CMfffQRq1evLncl2+mEh4fj6elJampqufWpqakVjqEEEBUVddrtw8PD8fLyokuXLuW26dy5M7/++multfj6+uLr61ulumtNz+Hw4/Nw8Hc4sBaanmdtPeJUgny9OK9FA85rUf60UMbxQnammWHJ/IRvfsrfdzSXrLwi1u07xrp9x8o9xsvDVjLZZdk8T60aBdKiUQDRDQLw8XLh0HTiSNcxo+r1VZ7HC4pJLpn93ZwJ3rzfeziHP48ep7Kep14eNlo2CigJ1GaY7hBpzmWoUeDFXZzzb/LWrVvp2rVruXWXXnop//znP5k9ezaLFy/m5ptv5umnn2bmzJlV2qePjw8xMTEkJCQ4+v/Y7XYSEhIYM2ZMhY8ZMGAACQkJjBs3zrFu0aJFDBgwwLHPPn36sG3btnKP2759Oy1btqziq7VIQEPocp35aTdxloKRVEmovzcxLRsS07L8CN95hcXsPZzjaA3YXRKYdh3KJregmN3pOexOzwEOlXuchw2ahPrTKjyAFg3LZglv3iCAZmH+hAV4O/fpuXo00rXdbnA4p4ADx46TfCSX5CO57E3P4Y+SMJSaWflkqAAhfl60iwhyzAfWtnEgbSOCaNHQzVsURaiBYBQTE8PHH398Sj+cbt268cMPP2Cz2Xj88ccZNqx6/4jGjx/PyJEj6d27N3379mXq1Knk5ORw553mDNgjRoygWbNmTJ48GTBbrmJjY3n99de56qqrmDNnDmvWrOGdd95x7LO0jsGDB3PxxRezcOFCvv32WxYvXnxuB6EuxIwyg9GGz+DyF8E32OqKxEX5eXuWXPJcviO/YZh9SHYfKmlFOFzWipB8JJfcgmLH5LvLOHzKfv29PWka5kfTMH+ahfnTJNSfpmF+NAvzp2mYP1GhftaeVintdN1lqPlhw4XlFhRx4NhxDhzLK7k/zv7S5YzjHMzIo6DIftp9BPt50aqkVdDRQtgwgLYRQTQKrKd90ESogWA0ZcoU4uLi2L17N8888wydOnWioKCAf/7znzRsaP7zady48Smnuc5k2LBhHDp0iOeee46UlBR69erFwoULHR2sk5OTy10JN3DgQD755BOeffZZnn76adq3b89XX33lGMMI4Prrr2fGjBlMnjyZhx56iI4dO/L5559zwQUXnOthqH0tB0GjdnB4J2z8XB1HpcbZbDaahJqBZlC78t8rvfQ6+XAuew/nknw4h72Hc/njSC77jx4nPTuf44XFJS1POZU+R3iQD+FBvjQO9iU8yJfwIJ8Tln0d32sY6FOzM5XnZZp/N+C0fzuFxXYOZxeQnp3Poex80rNK78116dlmB/u0rHwyjlc++3spmw0ig/1o1sDfcUr0xADk9C18IhapkSlBNm7cyMMPP8zPP/+Mr68vRUVFeHl58f7773PLLbfwxRdf8MQTT7Bz586aqNlSdT6O0YmWT4MfnjVPpd23uG6fW+Q08gqLScnIK2m5MFssSpdLWzYqG5upIh620sl+fQjx8ybE35sQP6+Se29C/L0I9itbLt0m0MeTAF8vArw98TgxWP32Lsx/FMI7wuhVtda/qKjYTsbxQo4dLyTzeCGZeUUl94VkHi8quT95fSFHcgoqnem9MsF+Xo7WuCahZS11pV9HhfrptJfICSyZKy05OZl169bh6elJTEyMo+Pz0qVLSU1N5aabbqqpp7KMpcEo5zC80QmKC+C+JdC0V90+v8hZMgyDjOOFHDiW52gNObEVJL20pSQrnyO5BZV2/q0OP28PAn288Pf2YHbBo7S17+GD0PtZ2ugvBPh4EuDjiY+nB77envh6eZQse+Dr5YmPlwe+XmXL3p42cvKLOZpbwLFcM8QczSngaOlybgFHcwrIzCs6p5o9PWw0CjRb1cKDfWkc5Et4sA+NT2hlaxzsS1Son8aoEqmmWh/gsSItWrSocM6xCy+8sCafpv4KbASdrzFPCSTNVjASl2Gz2QgL8KnSCN1FxXaO5BZwKCufjNwztbaUX59TUOQIVXmFdvIKC+hh20Vb3z3kG968nno+GdU8rX82gv28CPUv36IVfFLrVmkLWLCfF40CzdOKDQJ8yrd0iUid0/WVriZmlBmM1s+Dy14A3yCrKxKpUV6eHkQE+xER7FftxxqGQV6hndyCInILisktKKbRT9/Adjjc8gr+dt4FJeuLOF5QTEGxnfwiOwVFdvKLiskvtJNfbDfvi4pL1pvfD/T1JCzAh4YBPoQFetMgwIcGASX3gWXLof7emgBYxIUpGLmaVhdCwzZwZDds+sKcQ01EALNlyt/HE38fTxqB2el6z7cANL30AYa2bGZpfSLi/PSxxtWUjoQN5phGIlK5DfOgMMfsdN1igNXViIgLUDByRT1vBQ9v2J8IB9dbXY2IczKMsrGL6vlI1yJSdQpGriioMXS+2lwu/ccvIuUdWAspG8DTF3reYnU1IuIiFIxcVelksus/hfwsa2sRcUalp5q7XOfyI12LSN1RMHJVrS40R8IuyDanCRGRMvlZZX8XTjrStYg4JwUjV1WuE7ZOp4mU4+h03QFaDrS6GhFxIQpGrqznrWb/iYO/mzOHi4ip9DSaOl2LSDUpGLmywEZm/wmANf+xthYRZ3FgrflhwdMHeg63uhoRcTEKRq6utBP2xs8hL8PaWkScgTpdi8g5UDBydS36Q+NOUJhrXqEmUp+p07WInCMFI1dns0HMnebymvepkWnJRVzVhs/MKzUbtYeWg6yuRkRckIKRO+g5DLz8IW0T/Pmb1dWIWEedrkXkHCkYuQP/BtDtBnNZnbClvjqwFg6uU6drETknCkbuorQT9qYvIfeItbWIWCFxtnnf+Vrzik0RkbOgYOQumsVAZHcoyoPf51hdjUjdys8yB3UE6H2ntbWIiEtTMHIXNhv0HmUuJ6oTttQzjk7X7dTpWkTOiYKRO+l+M3gHQvp2+GO51dWI1A3DgDXvmcvqdC0i50jByJ34hUD3m8xldcKW+uLPNZCyAbz8oNdtVlcjIi5OwcjdlPav2PIN5KRbW4tIXfjtXfO+240a6VpEzpmCkbtpep55Ky6AdR9bXY1I7co5bF6JCdDnbmtrERG3oGDkjkpHwk6cBXa7paWI1Kp1H0FxPjTpZV6ZKSJyjhSM3FG3G8E3BI7shr2/WF2NSO2w28v60vW5x9paRMRtKBi5I98g6HGzuaxO2OKudv0ER/eCX6j5YUBEpAYoGLmr0tNpW+dDVqq1tYjUhtJO171uA58Aa2sREbehYOSuorpB875gLzL7YYi4k2PJsH2huVw6HY6ISA1QMHJnvdUJW9xU4izAgNaxEN7e6mpExI0oGLmzrteb/S+OJZv9MUTcQVE+JH1gLqvTtYjUMAUjd+btDz1vNZfVCVvcxZZvIecQBDeBjldaXY2IuBkFI3dXejpt+0LIPGBtLSI14bcT5kXz9LK0FBFxPwpG7q5xR3O2caO47PSDiKtK3QTJy8HmCeePtLoaEXFDCkb1QelVO0kfQHGRtbWInIvSU8KdroKQJtbWIiJuScGoPuh8DQQ0gsz9sOMHq6sROTv5WfD7HHNZna5FpJYoGNUHXr7mIHigTtjiutbPhYJsaNQeWg+2uhoRcVMKRvVFzCjzfuePcPQPS0sRqTbDgN9K50W7G2w2a+sREbelYFRfNGoLbS4GDEiabXU1ItWTvBLSNoGXP/QcbnU1IuLGFIzqE0cn7A+hqMDaWkSqo3RetB5/Af8wS0sREfemYFSfdLwCgqIgJw22zbe6GpGqyT4Em782l3vfbW0tIuL2FIzqE09vOH+EuaxO2OIq1n4A9kJo1hua9rK6GhFxcwpG9c35I8DmAXt+gfQdVlcjcnr2Ylgzy1zuo9YiEal9Ckb1TVg0tL/cXE6cZWkpIme0YxFkJIN/A3NSZBGRWqZgVB+VdsJe9zEU5llbi8jplHa6Pu92c1JkEZFapmBUH7WLg9BoOH60rFOriLM5ssccdwsg5k5raxGRekPBqD7y8ISYkgk41QlbnFXi+4ABbS81x+ESEakDCkb11Xl3gIcX7Ftpzlgu4kwKj5vjbYHmRROROuXUwWj69Om0atUKPz8/+vXrx+rVq0+7/bx58+jUqRN+fn50796dBQsWVLrt/fffj81mY+rUqTVctYsIjjJnKAdY8761tYicbP2ncPwIhLYou1hARKQOOG0wmjt3LuPHj2fSpEkkJSXRs2dP4uPjSUtLq3D75cuXM3z4cO6++27Wrl3L0KFDGTp0KBs3bjxl2y+//JKVK1fStGnT2n4Zzq2038bvcyA/29paREoZBqyYbi73vx88vaytR0TqFacNRm+88Qb33nsvd955J126dGHGjBkEBATwn/9U3CfmX//6F0OGDOHxxx+nc+fOvPDCC5x//vm8+eab5bbbv38/Y8eO5eOPP8bb2/uMdeTn55OZmVnu5jZax0LDNlCQBRs/t7oaEdPOBEjfBj7B5ilfEZE65JTBqKCggMTEROLi4hzrPDw8iIuLY8WKFRU+ZsWKFeW2B4iPjy+3vd1u54477uDxxx+na9euVapl8uTJhIaGOm7R0dFn8YqclIdHWauROmGLs1hZ0lp0/gjwC7G2FhGpd5wyGKWnp1NcXExkZGS59ZGRkaSkpFT4mJSUlDNu/+qrr+Ll5cVDDz1U5VomTJhARkaG47Zv375qvBIX0Os28PSBg+tgf5LV1Uh9l7oZdv1kjs7e769WVyMi9VC9OXmfmJjIv/71L5KSkrDZbFV+nK+vL76+vrVYmcUCG0GXobDhU/Py6GbnW12R1GelrUWdr4EGLa2tRUTqJadsMQoPD8fT05PU1NRy61NTU4mKiqrwMVFRUafdfunSpaSlpdGiRQu8vLzw8vLijz/+4NFHH6VVq1a18jpcRulI2Bs+g7wMa2uR+is7DdbPM5cHjLG2FhGpt5wyGPn4+BATE0NCQoJjnd1uJyEhgQEDBlT4mAEDBpTbHmDRokWO7e+44w7Wr1/PunXrHLemTZvy+OOP8/3339fei3EFLfpD485QmGteJi1ihd/eg+J8aNYbovtaXY2I1FNOeypt/PjxjBw5kt69e9O3b1+mTp1KTk4Od95pdhYeMWIEzZo1Y/LkyQA8/PDDxMbG8vrrr3PVVVcxZ84c1qxZwzvvvANAo0aNaNSoUbnn8Pb2Jioqio4dO9bti3M2Nhv0vhP+94TZCbvPPeY6kbpSeLxsXrQBo62tRUTqNacNRsOGDePQoUM899xzpKSk0KtXLxYuXOjoYJ2cnIyHR1mD18CBA/nkk0949tlnefrpp2nfvj1fffUV3bp1s+oluJYew2DRJEjbDPtWma1IInVl/aeQm27O4df5WqurEZF6zGYYhmF1Ea4kMzOT0NBQMjIyCAlxs0uJvx4Naz8yQ9IN71hdjdQXhgH/1x8ObYXLX4SBY62uSETcUFXfv52yj5FYpLQT9qavIPeIpaVIPbIrwQxFPkHm2EUiIhZSMJIyTc+HJj3NDrDrPrG6GqkvVpw4oGOotbWISL2nYCRlbLayVqM1/zFPcYjUJg3oKCJORsFIyut2kzlH1ZFdsOMHq6sRd7fy/8z7TldDg1aWliIiAgpGcjLfIPPSfYAlr6rVSGpP9qGycbM0oKOIOAkFIznVwLHg5Q/7E82OsSK1YU3pgI4xGtBRRJyGgpGcKiiirK/RYrUaSS0ozIPVM83lAaM1oKiIOA0FI6nYoIfAyw/+XA17llhdjbibDScO6Hid1dWIiDgoGEnFgqMgZpS5vOQ1S0sRN2MYsKKk03Xf+8DTaQfgF5F6SMFIKjfoYfD0gT+WwZ6lVlcj7mLXT3BoiwZ0FBGnpGAklQtpWvbGteRVa2sR91E6oON5d4B/mKWliIicTMFITm/QOPDwhr1L4Y/lVlcjri5tS8mVjjYN6CgiTknBSE4vLBrOu81cVl8jOVelAzp2vhoatra2FhGRCigYyZldMB48vGD3z7BvtdXViKvKPgS/zzWXNaCjiDgpBSM5swYtoect5rJajeRs/fauOaBj0/Mhup/V1YiIVEjBSKrmwkfB5gk7F8GfiVZXI64mLwNWvWUuDxyrAR1FxGkpGEnVNGwDPYaZy7+o1UiqadXbZjgK7whdNKCjiDgvBSOpugsfBZsHbF8IB9ZZXY24irzMskv0Y58AD09r6xEROQ0FI6m68HbQ7SZz+Zd/WFuLuI7Vb0PeMQjvAF2vt7oaEZHTUjCS6hn8GGCDrd9BygarqxFnl59V1lo0+HG1FomI01Mwkupp3LHsU7+uUJMzWT0Tjh+FRu2g241WVyMickYKRlJ9sU+Y91u+gdTN1tYizis/G5ZPM5fVWiQiLkLBSKovonPZlUXqaySV+e1dOH7EvKKxtG+aiIiTUzCSszP4cfN+05dwaJu1tYjzKcgp31rk6WVtPSIiVaRgJGcnqjt0uhow4JcpVlcjzua39yA3HRq0hu43W12NiEiVKRjJ2SttNdr4GaTvtLYWcR4FubD83+by4MfUWiQiLkXBSM5e017QYQgYdvU1kjJr/gM5hyCsZdlo6SIiLkLBSM5N7JPm/fq5ukJNzNaiZf8ylwc/Bp7e1tYjIlJNCkZybpqdD52vBQxI+LvV1YjVEmdBThqEtoAet1hdjYhItSkYybm79DmwecL2/8EfK6yuRqxSeByWTTWXLxwPXj6WliMicjYUjOTchbeH8243l398HgzD0nLEIomzITsVQqOh121WVyMiclYUjKRmXPQUePnBvpWwfaHV1UhdK8wray264BG1FomIy1IwkpoR0hT6/dVc/vFvYC+2th6pW0kfQNZBCGlW1nooIuKCFIyk5lzwCPiFwqEtsP5Tq6uRulKUD7/+01y+4BHw8rW2HhGRc6BgJDXHv4H5xgjw88vmG6a4v7UfQtYBCG4K54+wuhoRkXOiYCQ1q+9fIbgJZCSb00KIeyvKh6VqLRIR96FgJDXLJ8DsiA2wdArkZVpbj9SudR9D5p9mGFZrkYi4AQUjqXm9bodG7SH3cNkM6+J+ivJh6Rvm8qBx4O1naTkiIjVBwUhqnqcXXDrRXF4xHbLTrK1HasfKtyBjHwRFQcxIq6sREakRCkZSOzpfC03Ph8IcTTDrjrJSy36ulz4H3v7W1iMiUkMUjKR22GwQ97y5vOZ9OLLH0nKkhiX8DQqyoVkM9BxudTUiIjVGwUhqT5tYaHsJ2Avh55esrkZqyp+JZqdrgCteAw/9GxER96H/aFK7SluNNsyDg+stLUVqgN0O/3vCXO45HJr3trYeEZEapmAktatJT+h2o7mc8Ddra5Fzt34u7F8DPkFloVdExI0oGEntu/gZ8PCCnT/CnqVWVyNnKz8LfpxkLg9+DIKjrK1HRKQWKBhJ7WvUFmJGmcs/Pg+GYWU1crZ+mQLZqdCwDfR/0OpqRERqhYKR1I3BT4B3gHkaZut3Vlcj1XV4F6z8P3M5/mVN/SEibsupg9H06dNp1aoVfn5+9OvXj9WrV592+3nz5tGpUyf8/Pzo3r07CxYscHyvsLCQJ598ku7duxMYGEjTpk0ZMWIEBw4cqO2XIQDBkWWtDAl/h+Iia+uR6vnhWSguMK8y7DDE6mpERGqN0wajuXPnMn78eCZNmkRSUhI9e/YkPj6etLSKR1Fevnw5w4cP5+6772bt2rUMHTqUoUOHsnHjRgByc3NJSkpi4sSJJCUl8cUXX7Bt2zauvfbaunxZ9dugh8C/IaRvh9/etboaqaqdCbBtgdlPbMgr5hhVIiJuymYYztnho1+/fvTp04c333wTALvdTnR0NGPHjuWpp546Zfthw4aRk5PDd9+Vnabp378/vXr1YsaMGRU+x2+//Ubfvn35448/aNGiRZXqyszMJDQ0lIyMDEJCQs7ildVzv70H88eDdyCMXglhVTvuYpHiQnhrEKRvM1v8hky2uiIRkbNS1fdvp2wxKigoIDExkbi4OMc6Dw8P4uLiWLFiRYWPWbFiRbntAeLj4yvdHiAjIwObzUZYWFil2+Tn55OZmVnuJucg5k5oMcCcKuS78eqI7exWzzRDUUA4xD5pdTUiIrXOKYNReno6xcXFREZGllsfGRlJSkpKhY9JSUmp1vZ5eXk8+eSTDB8+/LTJcfLkyYSGhjpu0dHR1Xw1Uo6HB1zzb/D0gZ2LzIEfxTnlpMPiV8zlSyeCf5il5YiI1AWnDEa1rbCwkJtvvhnDMHjrrbdOu+2ECRPIyMhw3Pbt21dHVbqxxh0gtmT05P89ab4Bi/NJ+DvkZ0BUDzjvDqurERGpE04ZjMLDw/H09CQ1NbXc+tTUVKKiKh5ULioqqkrbl4aiP/74g0WLFp2xn5Cvry8hISHlblIDBj4MEV3h+BFYOMHqauRkB3+HpA/M5SteAw9Pa+sREakjThmMfHx8iImJISEhwbHObreTkJDAgAEDKnzMgAEDym0PsGjRonLbl4aiHTt28OOPP9KoUaPaeQFyZl4+cO00sHnAhk9hxyKrK5JShmG25GGY07m0rPhvTkTEHTllMAIYP348M2fOZPbs2WzZsoUHHniAnJwc7rzzTgBGjBjBhAllLQ0PP/wwCxcu5PXXX2fr1q08//zzrFmzhjFjxgBmKLrppptYs2YNH3/8McXFxaSkpJCSkkJBQYElr7Heax4D/R4wl78dZ045Idbb+DkkrwAvf7js71ZXIyJSp7ysLqAyw4YN49ChQzz33HOkpKTQq1cvFi5c6OhgnZycjIdHWa4bOHAgn3zyCc8++yxPP/007du356uvvqJbt24A7N+/n2+++QaAXr16lXuun3/+mYsuuqhOXpec5JJnYOu3cCwZEl6AK1+zuqL6rSAHFj1nLl84HkKbW1uPiEgdc9pxjJyVxjGqBTsT4KMbABvc/QNE97W6ovor4e+w9HVzfKnRq8Hb3+qKRERqhEuPYyT1TLtLoeetgAHfjIWifKsrqp/+WA6//tNcvvwlhSIRqZcUjMQ5xL8EgY3h0NayN2epO8ePwuf3gmGHnsOhi6bKEZH6ScFInENAQ7jiVXP5lymQtsXaeuoTwzA7v2f+CQ1aw5X/sLoiERHLKBiJ8+h6A3S4AuyF5ik1e7HVFdUPaz+EzV+Zk8Te9B74BltdkYiIZRSMxHnYbHDV6+ATDH/+Br+9a3VF7u/Q9pIxi4BLnoVmMdbWIyJiMQUjcS6hzeCy583lH/8GxzQFS60pyofP74bCXGg92ByNXESknlMwEucTcxe0GACFOfDdI2YfGKl5CX+HlPXg3xCuf8ec4FdEpJ7Tf0JxPh4ecM2/wdMHdi6CDZ9ZXZH72fEjrHjTXB76fxDSxNp6RESchIKROKfGHWDwE+by/EchfYe19biT7DT46n5zuc+90PEKa+sREXEiCkbivAY9DNH9ID8D/nuLOdaOnBu7Hb56AHIOQUQXuPwFqysSEXEqCkbivLx8YNhHENIcDu+EeXdCcZHVVbm2VTNg54/g5Qc3vqfRrUVETqJgJM4tKAKG/xe8A2D3z/DDs1ZX5LoO/g4/TjKXL38RIrtYW4+IiBNSMBLn16QHXP+2ubzqLUicZWk5LqkgBz67G4oLoONV0OceqysSEXFKCkbiGrpcCxc/Yy7PfxT2LrO2HlezcAIc3gHBTeDaaeZgmiIicgoFI3Edgx83pw2xF8Gnd8DRvVZX5Bo2fQVJswGb2fIW2MjqikREnJaCkbgOmw2umw5NekHuYfjvcMjPsroq55a+A759yFy+YBy0ibW0HBERZ6dgJK7FJwBu+QSCIiFtM3xxn3kJupzqyG6YfQ3kZUCz3mWnIkVEpFIKRuJ6QpuZ4cjTF7YtgJ80Fs8pjiXD7Gsh6yA07gy3zgVPb6urEhFxegpG4pqa94brSqa0+PUNWP+ptfU4k4z9MOtqyNgHjdrBiK8hMNzqqkREXIKCkbiuHjfDBY+Yy1+PgT8Tra3HGWSlmKfPjv0BDVrByG8hONLqqkREXIaCkbi2S56DDldAcT7MGW62ltRX2YfM02dHdkFotBmKQppaXZWIiEtRMBLX5uEBN8405/3KToU5t0JBrtVV1b3cI/DhUEjfBsFNzVAU1sLqqkREXI6Ckbg+32Bz2hD/hnBwHcy+GrJSra6q7hw/Zoai1I3m1Xojv4WGra2uSkTEJSkYiXto0Apu/RT8G8D+RJh5CaRssLqq2peXCR/daM6DFhAOI76B8HZWVyUi4rIUjMR9RPeBexKgUXvI/BP+MwS2LbS6qtqTnw2f3Az715iBcMTXENHJ6qpERFyagpG4l0Zt4Z5F0DoWCrLhv7fAiulgGFZXVrMKcs3XlrwCfEPhjq8gqpvVVYmIuDwFI3E//g3g9s8hZhRgwPdPw3fjoLjQ4sJqSGEezL0N9i4Fn2C44wto2svqqkRE3IKCkbgnT2+4eirEvwzYIHEWfHQDHD9qcWHn6Mge83Xs+gm8A+G2eeZglyIiUiMUjMR92WwwYDQMnwM+QbDnF3g3Dg7vsrqy6rPbYeUMeGsg/LEMvAPg1jnQcoDVlYmIuBUFI3F/HYfAXd9DSHM4vBPevRT2/mp1VVWXvhPevwIWPgmFudDyAnhgGbQebHVlIiJuR8FI6oeobnDvT9Asxjyd9sFQWPuR1VWdnr0Ylv0bZgyCfSvNVq+rXi8Zp6iN1dWJiLglBSOpP4IjYdR86Ho92Avh69Gw4HFzKg1nk7YV3rsMFk2EojxoczE8uAL63GOO9i0iIrVC/2GlfvH2hxv/A4OfML9e/Q5M7WYGpKN/WFsbmFfO/TIF3r7QHKjSNwSunQZ3fKkpPkRE6oDNMNxtgJfalZmZSWhoKBkZGYSEhFhdjpyLHYtg8WQzgADYPKH7X+CCcRDRue7rSdlgtmId/N38uv3l5pV1oc3qvhYRETdT1fdvBaNqUjByM4Zhjge09A3Y/XPZ+o5XwgXjzdG0a1vGn5A4G359A+xF4BcGV7wKPYaZV9aJiMg5UzCqJQpGbmx/EiybCpu/AUr+LFpeABc+Am0vrbmQUpRvjli980fY8SMc2lL2vU5Xw1VvmP2hRESkxigY1RIFo3ogfYcZkH6fa3bSBojqAYMehuZ9zBnsvf2qt8+je8uC0J5foDCn7Hs2D/NquQGjoctQtRKJiNQCBaNaomBUj2TsN+dZS3zfHD/oRL6hZqtOUCQERVR8n51qBqGdP8LhHeUfHxgB7eKgfZx5xVlAw7p7XSIi9ZCCUS1RMKqHco+YV6/9Pgcy90NxQfX3YfOE6H5mEGoXB5Hdddm9iEgdUjCqJQpG9ZxhQN4xyE4zW4Qc9ycsZ6VCdoo5bUfbi80g1OYi8Au1unoRkXqrqu/fXnVYk4jrs9nAv4F5a9zR6mpERKSGqS1fREREpISCkYiIiEgJBSMRERGREgpGIiIiIiUUjERERERKKBiJiIiIlHDqYDR9+nRatWqFn58f/fr1Y/Xq1afdft68eXTq1Ak/Pz+6d+/OggULyn3fMAyee+45mjRpgr+/P3FxcezYsaOSvYmIiEh947TBaO7cuYwfP55JkyaRlJREz549iY+PJy0trcLtly9fzvDhw7n77rtZu3YtQ4cOZejQoWzcuNGxzWuvvca///1vZsyYwapVqwgMDCQ+Pp68vLy6elkiIiLixJx25Ot+/frRp08f3nzzTQDsdjvR0dGMHTuWp5566pTthw0bRk5ODt99951jXf/+/enVqxczZszAMAyaNm3Ko48+ymOPPQZARkYGkZGRzJo1i1tuuaVKdWnkaxEREddT1fdvp2wxKigoIDExkbi4OMc6Dw8P4uLiWLFiRYWPWbFiRbntAeLj4x3b79mzh5SUlHLbhIaG0q9fv0r3CZCfn09mZma5m4iIiLgnpwxG6enpFBcXExkZWW59ZGQkKSkpFT4mJSXltNuX3ldnnwCTJ08mNDTUcYuOjq726xERERHX4JTByJlMmDCBjIwMx23fvn1WlyQiIiK1xCmDUXh4OJ6enqSmppZbn5qaSlRUVIWPiYqKOu32pffV2SeAr68vISEh5W4iIiLinpwyGPn4+BATE0NCQoJjnd1uJyEhgQEDBlT4mAEDBpTbHmDRokWO7Vu3bk1UVFS5bTIzM1m1alWl+xQREZH6xcvqAiozfvx4Ro4cSe/evenbty9Tp04lJyeHO++8E4ARI0bQrFkzJk+eDMDDDz9MbGwsr7/+OldddRVz5sxhzZo1vPPOOwDYbDbGjRvHiy++SPv27WndujUTJ06kadOmDB06tMp1lV7Ep07YIiIirqP0ffuMF+MbTmzatGlGixYtDB8fH6Nv377GypUrHd+LjY01Ro4cWW77Tz/91OjQoYPh4+NjdO3a1Zg/f36579vtdmPixIlGZGSk4evra1x66aXGtm3bqlXTvn37DEA33XTTTTfddHPB2759+077Pu+04xg5K7vdzoEDBwgODsZms9XYfjMzM4mOjmbfvn3qx1TLdKzrho5z3dBxrhs6znWjNo+zYRhkZWXRtGlTPDwq70nktKfSnJWHhwfNmzevtf2rg3fd0bGuGzrOdUPHuW7oONeN2jrOoaGhZ9zGKTtfi4iIiFhBwUhERESkhIKRk/D19WXSpEn4+vpaXYrb07GuGzrOdUPHuW7oONcNZzjO6nwtIiIiUkItRiIiIiIlFIxERERESigYiYiIiJRQMBIREREpoWBUh6ZPn06rVq3w8/OjX79+rF69+rTbz5s3j06dOuHn50f37t1ZsGBBHVXq+qpzrGfOnMmFF15IgwYNaNCgAXFxcWf82Yipur/TpebMmYPNZqvWPIX1WXWP87Fjxxg9ejRNmjTB19eXDh066P9HFVT3OE+dOpWOHTvi7+9PdHQ0jzzyCHl5eXVUrWv65ZdfuOaaa2jatCk2m42vvvrqjI9ZvHgx559/Pr6+vrRr145Zs2bVbpHVmihMztqcOXMMHx8f4z//+Y+xadMm49577zXCwsKM1NTUCrdftmyZ4enpabz22mvG5s2bjWeffdbw9vY2NmzYUMeVu57qHutbb73VmD59urF27Vpjy5YtxqhRo4zQ0FDjzz//rOPKXUt1j3OpPXv2GM2aNTMuvPBC47rrrqubYl1YdY9zfn6+0bt3b+PKK680fv31V2PPnj3G4sWLjXXr1tVx5a6lusf5448/Nnx9fY2PP/7Y2LNnj/H9998bTZo0MR555JE6rty1LFiwwHjmmWeML774wgCML7/88rTb79692wgICDDGjx9vbN682Zg2bZrh6elpLFy4sNZqVDCqI3379jVGjx7t+Lq4uNho2rSpMXny5Aq3v/nmm42rrrqq3Lp+/foZf/3rX2u1TndQ3WN9sqKiIiM4ONiYPXt2bZXoFs7mOBcVFRkDBw403n33XWPkyJEKRlVQ3eP81ltvGW3atDEKCgrqqkS3UN3jPHr0aOOSSy4pt278+PHGoEGDarVOd1KVYPTEE08YXbt2Lbdu2LBhRnx8fK3VpVNpdaCgoIDExETi4uIc6zw8PIiLi2PFihUVPmbFihXltgeIj4+vdHsxnc2xPllubi6FhYU0bNiwtsp0eWd7nP/+978TERHB3XffXRdluryzOc7ffPMNAwYMYPTo0URGRtKtWzdefvlliouL66psl3M2x3ngwIEkJiY6Trft3r2bBQsWcOWVV9ZJzfWFFe+FmkS2DqSnp1NcXExkZGS59ZGRkWzdurXCx6SkpFS4fUpKSq3V6Q7O5lif7Mknn6Rp06an/DFKmbM5zr/++ivvvfce69atq4MK3cPZHOfdu3fz008/cdttt7FgwQJ27tzJgw8+SGFhIZMmTaqLsl3O2RznW2+9lfT0dC644AIMw6CoqIj777+fp59+ui5Krjcqey/MzMzk+PHj+Pv71/hzqsVI5ASvvPIKc+bM4csvv8TPz8/qctxGVlYWd9xxBzNnziQ8PNzqctya3W4nIiKCd955h5iYGIYNG8YzzzzDjBkzrC7NrSxevJiXX36Z//u//yMpKYkvvviC+fPn88ILL1hdmpwjtRjVgfDwcDw9PUlNTS23PjU1laioqAofExUVVa3txXQ2x7rUlClTeOWVV/jxxx/p0aNHbZbp8qp7nHft2sXevXu55pprHOvsdjsAXl5ebNu2jbZt29Zu0S7obH6fmzRpgre3N56eno51nTt3JiUlhYKCAnx8fGq1Zld0Nsd54sSJ3HHHHdxzzz0AdO/enZycHO677z6eeeYZPDzU7lATKnsvDAkJqZXWIlCLUZ3w8fEhJiaGhIQExzq73U5CQgIDBgyo8DEDBgwotz3AokWLKt1eTGdzrAFee+01XnjhBRYuXEjv3r3rolSXVt3j3KlTJzZs2MC6desct2uvvZaLL76YdevWER0dXZflu4yz+X0eNGgQO3fudARPgO3bt9OkSROFokqczXHOzc09JfyUhlFDU5DWGEveC2utW7eUM2fOHMPX19eYNWuWsXnzZuO+++4zwsLCjJSUFMMwDOOOO+4wnnrqKcf2y5YtM7y8vIwpU6YYW7ZsMSZNmqTL9auousf6lVdeMXx8fIzPPvvMOHjwoOOWlZVl1UtwCdU9zifTVWlVU93jnJycbAQHBxtjxowxtm3bZnz33XdGRESE8eKLL1r1ElxCdY/zpEmTjODgYOO///2vsXv3buOHH34w2rZta9x8881WvQSXkJWVZaxdu9ZYu3atARhvvPGGsXbtWuOPP/4wDMMwnnrqKeOOO+5wbF96uf7jjz9ubNmyxZg+fbou13cn06ZNM1q0aGH4+PgYffv2NVauXOn4XmxsrDFy5Mhy23/66adGhw4dDB8fH6Nr167G/Pnz67hi11WdY92yZUsDOOU2adKkui/cxVT3d/pECkZVV93jvHz5cqNfv36Gr6+v0aZNG+Oll14yioqK6rhq11Od41xYWGg8//zzRtu2bQ0/Pz8jOjraePDBB42jR4/WfeEu5Oeff67w/23psR05cqQRGxt7ymN69epl+Pj4GG3atDHef//9Wq3RZhhq8xMREREB9TESERERcVAwEhERESmhYCQiIiJSQsFIREREpISCkYiIiEgJBSMRERGREgpGIiIiIiUUjERERERKKBiJiIiIlFAwEhERESmhYCRyji666CLGjRvncvs+3fPU1fNaqaZeY10cK3f7edTW6zEMgzfeeIPWrVsTEBDA0KFDycjIOO1jDh8+TEREBHv37q3Sc9xyyy28/vrrNVCtOCsvqwsQqW2jRo1i9uzZp6yPj49n4cKF57z/L774Am9vb8fXF110Eb169WLq1KnV2k9Fjzt533XFqud1RTV5rCr73dHPo2oef/xxvv76a2bPnk1gYCBDhw7l+eef55///Gelj3nppZe47rrraNWqVZWe49lnn2Xw4MHcc889hIaG1lDl4kwUjKReGDJkCO+//365db6+vjWy74YNG9bIfup63874vCcqKCjAx8fH6jIqVVpfXRwrZ/h5OLtVq1bxxhtvsGbNGs4//3wA7r33Xj7++ONKg1Fubi7vvfce33//fZWfp1u3brRt25aPPvqI0aNH10jt4lx0Kk3qBV9fX6KiosrdGjRowKFDh4iKiuLll192bLt8+XJ8fHxISEgAwG6389prr9GuXTt8fX1p0aIFL730kmP7E08LjBo1iiVLlvCvf/0Lm82GzWZj7969LFy4kAsuuICwsDAaNWrE1Vdfza5duxz7qOxxJ59yyM/P56GHHiIiIgI/Pz8uuOACfvvtt3Kv9aKLLuKhhx7iiSeeoGHDhkRFRfH8889X63hVdGrtdPu02+1MnjyZ1q1b4+/vT8+ePfnss8/K7fNMx+Ciiy5izJgxjBs3jvDwcOLj409b35gxYxgzZgyhoaGEh4czceJEDMOo8nE62dnWd/Kx+uyzz+jevTv+/v40atSIuLg4cnJyzvgclf0OVPQcZ3p9Z/M7cKbXX9X9ZmVlcdtttxEYGEiTJk345z//edpTZ1X53amKKVOmcOmllzpCEUBkZCTp6emVPmbBggX4+vrSv39/x7rOnTs7jv/JtzfffBOAa665hjlz5lS7RnENCkZSrzVu3Jj//Oc/PP/886xZs4asrCzuuOMOxowZw6WXXgrAhAkTeOWVV5g4cSKbN2/mk08+ITIyssL9/etf/2LAgAHce++9HDx4kIMHDxIdHU1OTg7jx49nzZo1JCQk4OHhwfXXX4/dbj/t4072xBNP8PnnnzN79mySkpJo164d8fHxHDlypNx2pacSVq1axWuvvcbf//53Fi1adE7H6nT7nDx5Mh988AEzZsxg06ZNPPLII9x+++0sWbLE8fgzHYPS5/Dx8WHZsmXMmDHjjPV4eXmxevVq/vWvf/HGG2/w7rvvVus4nagm6jt48CDDhw/nrrvuYsuWLSxevJgbbrjBEdhO9xxV/R2o6uur7u9AVV5/VfY7fvx4li1bxjfffMOiRYtYunQpSUlJlT5vVX53ziQ/P5/58+dz/fXXl1ufl5d32tNdS5cuJSYmpty6zz//HICEhAQOHjzI3r178fDwYN68edx7770A9O3bl9WrV5Ofn1/lGsWFGCJubuTIkYanp6cRGBhY7vbSSy85tnnwwQeNDh06GLfeeqvRvXt3Iy8vzzAMw8jMzDR8fX2NmTNnVrr/2NhY4+GHH67064ocOnTIAIwNGzac9nEnrsvOzja8vb2Njz/+2PH9goICo2nTpsZrr71W7jEXXHBBuf306dPHePLJJ8/6NZxun3l5eUZAQICxfPnyct+/++67jeHDh1f6nCcfg9jYWOO8886rdPuT6+3cubNht9sd65588kmjc+fO1TpOp/s5VbW+E/eTmJhoAMbevXur9Doqeo6Kaqru78HZ/A6cqbaq7DczM9Pw9vY25s2b5/j+sWPHjICAgAp/v872d+dky5cvNwDDz8+v3N+4j4+PER8fX+njrrvuOuOuu+4qt+6nn34yvLy8HP8D1qxZYwBGSkqKY5vff/+9Wj9ncS1qMZJ64eKLL2bdunXlbvfff7/j+1OmTKGoqIh58+bx8ccfO/ofbdmyhfz8fEfr0dnasWMHw4cPp02bNoSEhDg6eiYnJ1d5H7t27aKwsJBBgwY51nl7e9O3b1+2bNlSbtsePXqU+7pJkyakpaWd/Qs4zT537txJbm4ul112GUFBQY7bBx98UO5UTFWOwcmf3k+nf//+2Gw2x9cDBgxgx44d7Ny5s8rH6UQ1UV/Pnj259NJL6d69O3/5y1+YOXMmR48erdZznElVfw+q+ztQ1dpOt9/du3dTWFhI3759Hd8PDQ2lY8eOFT5nVX93zmT79u0EBgayYcOGcn/jrVq1KnecTnb8+HH8/PzKrduwYQMdOnRw/A/4/fffiYiIKNdK7O/vD5h9lMT9qPO11AuBgYG0a9eu0u/v2rWLAwcOYLfb2bt3L927dwfK/gGeq2uuuYaWLVsyc+ZMmjZtit1up1u3bhQUFNTI/k928hVMNpvtlFMiNbXP7OxsAObPn0+zZs3KbXNiB/eqHIPAwMBzqvFc1ER9np6eLFq0iOXLl/PDDz8wbdo0nnnmGVatWkXr1q3r9Pegur8DVa2tJn+3qvq7cyaZmZmEh4eX+xv/448/2LFjBzfeeGOljwsPDy8XXAHWr1/v+PsHMxid+DXgOGXZuHHjKtcorkMtRlLvFRQUcPvttzNs2DBeeOEF7rnnHscn4Pbt2+Pv7+/oiF0VPj4+FBcXO74+fPgw27Zt49lnn+XSSy+lc+fOp/wzruhxJ2vbtq2jf0upwsJCfvvtN7p06VLl+mpaly5d8PX1JTk5mXbt2pW7lfaRqeoxqI5Vq1aV+3rlypW0b9+edu3aVfs41WR9NpuNQYMG8be//Y21a9fi4+PDl19+WaXnONPvANTO70FNvf42bdrg7e1driN4RkYG27dvr3D7qvzuVEV4eDgZGRmOvlxgXoZ/5ZVXnvaYnHfeeWzevLncuvXr15drFfv9999PaSXbuHEjzZs3Jzw8vMo1iutQi5HUC/n5+aSkpJRb5+XlRXh4OM888wwZGRn8+9//JigoiAULFnDXXXfx3Xff4efnx5NPPskTTzyBj48PgwYN4tChQ2zatIm77767wudq1aoVq1atYu/evQQFBdGwYUMaNWrEO++8Q5MmTUhOTuapp56q0uNOFBgYyAMPPMDjjz9Ow4YNadGiBa+99hq5ubmV1lIXgoODeeyxx3jkkUew2+1ccMEFZGRksGzZMkJCQhg5ciQNGjSo0jGojuTkZMaPH89f//pXkpKSmDZtGq+//vpZHaeaqm/VqlUkJCRw+eWXExERwapVqzh06BCdO3eu0nNU9Dvg4VH+82tt/B7U1OsPDg5m5MiRjtoiIiKYNGkSHh4e5U57nrj9mX53quKSSy4hLy+PV155hVtuuYWPP/6Yb7/9ltWrV5/2cfHx8UyYMIGjR4/SoEED7HY7mzZt4rnnnnNss2vXLm644YZyj1u6dCmXX355lWoT16MWI6kXFi5cSJMmTcrdLrjgAhYvXszUqVP58MMPCQkJwcPDgw8//JClS5fy1ltvATBx4kQeffRRnnvuOTp37sywYcNO21fjsccew9PTky5dutC4cWOSk5OZM2cOiYmJdOvWjUceeYR//OMfVXrcyV555RVuvPFG7rjjDs4//3x27tzJ999/T4MGDWruYJ2FF154gYkTJzJ58mQ6d+7MkCFDmD9/Pq1btwbAw8OjSsegOkaMGMHx48fp27cvo0eP5uGHH+a+++4Dqn+caqq+kJAQfvnlF6688ko6dOjAs88+y+uvv84VV1xRpeeoyu/A2by+M6nJn88bb7zBgAEDuPrqq4mLi2PQoEF07tz5lL48pc70uwMwa9asCoNVqcjISGbNmsVbb71F165dWblyJb/++usZW526d+/O+eefz6effgqYISg3N7dcC1H37t2ZNGmSo4UuLy+Pr776ynGFmrgfm3Fi26OIiAs429HFpe7l5OTQrFkzXn/99bNu0Zo0aRJLlixh8eLFNVscZv+mxx9/nI0bN57SOleRt956iy+//JIffvihxmsR56BTaSIiUmPWrl3L1q1b6du3LxkZGfz9738H4Lrrrjvrff7vf/9zDK5Y06666ip27NjB/v37q9Svydvbm2nTptVKLeIcFIxERKRGTZkyhW3btuHj40NMTAxLly49p47KZ+ordK6qM6HtPffcU3uFiFPQqTQRERGREup8LSIiIlJCwUhERESkhIKRiIiISAkFIxEREZESCkYiIiIiJRSMREREREooGImIiIiUUDASERERKaFgJCIiIlJCwUhERESkxP8D1rvJ+2JWorMAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(theta_set, g2_data[0], label=\"Collect H\")\n", "plt.plot(theta_set, g2_data[1], label=\"Collect A\")\n", "plt.xlabel(\"Excitation linear polarisation angle, $\\\\theta$ ($\\pi$)\")\n", "plt.ylabel(\"$g^{(2)}$\")\n", "plt.legend()\n", "plt.show()" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:17:52.533180Z", "start_time": "2024-02-09T09:17:52.461814Z" } } }, { "cell_type": "markdown", "source": [ "In the above plot, we can explicitly see that the excitation polarisation plays a big role in determining the multi-photon emission probability. In particular, by choosing to collect only the anti-diagonal A polarisation corresponding to $\\theta_\\text{c} = -\\pi/4$, the $g^{(2)}$ can be significantly suppressed when exciting in the diagonal D polarisation corresponding to $\\theta = \\pi/4$. This is precisely due to the fact that the emission is delayed by the fine structure splitting.\n", "\n", "For now, the value of fine structure splitting is more-or-less fixed when fabricating the device, but there are ways to tune it to optimise the source characteristics [[H. Ollivier et al., Phys. Rev. Lett. 129, 057401 (2022)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.057401)]. Let's take a look at how the source quality changes as a function of the magnitude of fine structure splitting." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 25, "outputs": [], "source": [ "fss_set = np.linspace(-1, 1.9, 100) # log scale choices of FSS\n", "mu_data0 = []\n", "g2_data0 = []\n", "for i in [1, -1]:\n", " source.update_default_parameters(parameters={'theta': np.pi/4, 'theta_c': i * np.pi/4})\n", " mu_data = []\n", " g2_data = []\n", " for fss in fss_set:\n", " pn = source.photon_statistics(port=0, truncation=2, parameters={'fss': 10**fss})\n", " mu_data.append(pn.mu())\n", " g2_data.append(1 - pn.g2())\n", " mu_data0.append(mu_data)\n", " g2_data0.append(g2_data)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:18:01.127449Z", "start_time": "2024-02-09T09:17:52.533089Z" } } }, { "cell_type": "markdown", "source": [ "Let's plot it to see the result!" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 26, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1kAAAF3CAYAAABXOIFcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACm6klEQVR4nOzdd3hT1RsH8G+6B3RRaAuUvSlQtgWEimB/yhBURGQKgjJklK0MQQRFNqIoiiAOEAVcCCIyZFhGKZtCoQyBltmW7tLe3x8vt0m6SNK06fh+nuc8ubk59+a0TZO895zzHo2iKAqIiIiIiIjILKws3QAiIiIiIqKShEEWERERERGRGTHIIiIiIiIiMiMGWURERERERGbEIIuIiIiIiMiMGGQRERERERGZEYMsIiIiIiIiM2KQRUREREREZEY2lm5AYcvIyMCNGzdQtmxZaDQaSzeHiIiIiIgsRFEUPHjwABUrVoSVlfn6n0pdkHXjxg34+vpauhlERERERFREXLt2DZUrVzbb+UpdkFW2bFkA8ot0cXGxcGuIiIiIiMhS4uLi4OvrmxkjmEupC7LUIYIuLi4MsoiIiIiIyOzTiJj4goiIiIiIyIwYZBEREREREZkRgywiIiIiIiIzYpBFRERERERkRgyyiIiIiIiIzIhBFhERERERkRkxyCIiIiIiIjIjBllERERERERmxCCLiIiIiIjIjBhkERERERERmRGDLCIiIiIiIjNikEVERERERGRGDLKIiIiIiIjMiEEWERERERGRGTHIIiIiIiIiMiMGWURERERERGZkY+kGWMqFC0C5coCdHWBvL8XODrC1BTQaS7eOiIiIiIiKq1IbZLVokftjDg5SHB2z36rFySn3W2dn/Vvd7TJlgLJl5b4V+xGJiIiIiEqcUhtkubgAaWlASgqQkaH/WHKylJiYgm2Dk5MEXGXKaIMvFxcprq7abd19ORU7u4JtJxERERERGa7UBlnXrkngAgDp6RJspabKrRpkJSVpb7NuJyZqb3W3k5KAhATt/qzb8fHyfIB2f3R0/n4WR0fAzQ3w8Mi9eHoC5ctrb8uVA6yt8/e8RERERESUXakNsnRZW2uH9RU0RZFA7sEDCbjU8uABEBenvY2NlVt1W72vbsfGynGANvC7edPwdmg0EnyVLy+lQgXAy0tbdO97e8vwRiIiIiIiejyLBll79+7FRx99hKNHj+LmzZvYvHkzevTokecxu3fvRnBwME6fPg1fX19MmzYNgwYNKpT2moNGo53zVb58/s718KE28IqJAe7fB+7dy17u3gXu3AFu35Zy754Ee3fvSjl37vHP5eoKVKwIVKqU/dbXV0r58pxnRkRERERk0SArISEBTZo0weDBg/HCCy88tn5kZCS6dOmCN998E99++y127tyJ119/HT4+PggKCiqEFhctNjba4YDGePhQAi016Lp1S0p0tLbo3k9M1PaenT2b+3nt7LQBl1qqVgWqV5dSpQrnjxERERFRyadRFEWxdCMAQKPRPLYna/Lkyfj9999x6tSpzH2vvPIKYmJisG3bNoOeJy4uDq6urojdtg0uuY2Ba9dOu332rHT35KZNG233TXi4RC25ad1acsQDQEQEEBWVe92WLSWvPABcugTcuJF73WbNtGMdr1yRCWe58feXLBuA1LtyJfe6jRoBrq6IiwNuhd1ATOgl3LmDzHL7ttxGRwN77zbEfbgDALwQhVqIyHY6K430dj2sVQ8edTxRvTrg53UbDWzC4Vs5lyGJderI2EVA/g55RXk1awI+PrIdEwPovE6yqV5duuEA6Q48cSL3ulWqSAFkYt2xY7nXrVwZqFZNtpOSgKNHc6/r4yNtBmRC4KFDudf18gJq15bthw+Bf//Nva6nJ1CvnmwrCrB/f+51PTyABg209/fvl2Ny4uYG+Plp7x85IhMMNZrs6x44O+ufNyxMMs3kxNFR/7wnT8oEyJzY2wONG2vvnzkjVwHUNugWW1v9NkRESN2cWFnpt+HSJRmPm9N5rayAunW1da9f147d1aXWr1lT+x5x+7a8hnLj66udLHnvntTVfV7196zRyN9ZrZuYKL+znNoL6KczTUvT/7vlVoiIiEqBzNggNhYuasIGc1CKCADK5s2b86zz5JNPKmPGjNHbt3r1asXFxSXXY5KTk5XY2NjMcu3aNQWAEitfJbMXa2v9E/TsmXM9tSQna+v27Zt33bt3tXWHDcu77rVr2rrjxuVd99w5bd133sm77tGj2rpz5+Zd959/tHWXLs2zbuqv25TISEXZu1dRDg5ZlWfdnvgp8+4r+C7Pujc/Wqc8fPioDT//nHd7V67UtnfHjrzrLlyorXvgQN5133tPW/f48bzrTpmirXvhQt5133pLW/fGjbzrDhmirRsbm3fdV17R1k1Ly7tut276r3c7u9zrPv20fl03t9zrPvGEft1KlXKv26iRft06dXKvW7Omfl1//9zrenvr123bNve6Zcvq1+3cOfe6+XmPePXVvOvqvkcMHZp3Xd33iLFj865r6nvEvHmKYmUlxdpaUWxsFMXWVl4n9vaKsm+ftu7KlYri6qoo7u6KUq6copQvryheXvJ3qFhRUXbt0tbdsEFRatWSv3XduopSv76iNGwor4UmTRTlr7+0df/8U1ECAuTv9+STitKhg6IEBipKx46K0qmT/K+r/v1XUbp3V5Tnn5e/y0svKcrLLytKnz6K0q+fouzcqa177pyijBolv7vx4xVl8mT53cycqSizZyvKwYPaujdvKsqKFYry2WeK8uWXirJ2raJ8+638HD/9pP/7ffBAUXbvVpT9+xUlJERRQkMV5eRJqRMRoSj37mnrpqfL6yM9XSEiIsuIjY1VACixsbFmPW+xSnwRFRUFLy8vvX1eXl6Ii4tDUlISHB0dsx0zb948zJo1K/vJatbMOb1e1n0VK0pvSm50r/h6e+ddV3fCkpdX3nVtdP405cvnXVftHQPk6nZeddXeMUB6MfKqq/v7dHPLs66tqxOqVXvUiRPlCvyjX1eBXDxPSwNG9SmD5mWBixeB8iFlERFeJzPjYlYTJ7rgz2nSMfNyOWe84VkncwFpW1tA73q7q6t228kp75/N3V277eCQd13d8Zj29nnX9fTUbtva5l1X7aED5HWXV13d172VVd511d48VV511d48Ve3aOfc4KYr00umqWlVeF4qSvb63t/79ypX1X9O6KlbM3qaUFMPa6+MjPZw5hQu6v19AUmpmbZdK7d1VubvL8TmdN+t7hLOz/B50qXUB/fcIOzv9/6u82NjIa0j3uXXPbUxvk27dnP5eucnIyL7GhS7dcyUny5ji3KSmardjY6VnMTdxcdrt27eBgwdzr6s7J/fmTeCXX3Kv264d0LGjbF+9Cnz8ce51y5QBnnhCti9dAkaOzL3unDnAO+9o6wYG5l538mTggw9kOzISqFVLtq2t5fVhZyd/d1tb4PXXgdmz5fG7d4HnnpP3IPVNUHf7qae0v4vUVODDD+W9zd5e/9bRUf53mzSRuooibdZd6FH3M4WIiExSrIYL1qlTB6+99hqmTp2auW/r1q3o0qULEhMTcwyyUlJSkKLzhS0uLg6+vr7m7xKkfImNBS5cAM6fl3LhgowMPHs295FjTk4ycqxpUxkF6e8vI74KI0skUZGiBkNZA0JAbu3ttRd5UlKk5NaX5eamDYjV1Ke5nbdCBfniDsgQ3du3tW1RS3q61K1ZU7tuRnS0XGVRH8t6TJMm2gsL//0nw26z1lFLmzYy/BcALl8G/vpL/7nV2/R0oHNn7XDTiAhg7VrZ//Bh9vLyy0CnTlL37Flg+nT9x3WPGzYM6N9fW/eFF+RixcOHcquWhw+BiROBGTOk7rlzQP36uf9dx40DFi2S7WvXtMOWczJsGPDZZ7J9755cVMjNq68C334r26mp+hffAPn7qwFX167A559rH3vxRQnCnJ21aXmdnSUorVNH6qtOn9YuCFm2bPbnISIqAgpquGCx6sny9vZGdJZFpaKjo+Hi4pJjgAUA9vb2sOcbe5Hn6gq0aCFFV3q6fG86fVqm35w+LeXsWZmG8u+/+tOT1OkyTZvKuVq2lG2moKcSzcrK8NSeag+IIdSV0g3h5pa9Ry836voQhqhcOXsvam6qVZPeH0PUqgW8955hdevXB3780fC6ec0d1VWnjlxhSk3VL2lpcqvbM16uHPDzz9o6arCsbuvOVbSxkaArOVl/8Ue1qPM7AXm8TBl5Q1V7LdXUtWpRpacDmzbl/vM8+6x+kNWqlf48SFtbCbTLlgXat5cgV6VePFVfR7rF21t634iIipFiFWQFBARg69atevt27NiBgIAAC7WICpq1tVwAr1kT6N5duz89XXq7wsKkHDsm5fZtbQ/Yd99JXSsroGFDCbhatZLbRo04IoaILMzKStu79zhOTvpvgnlxcdH2aj1O2bLa3sq0NEm2kpiovdUNshUF+OKL7HXUBR/VIYiABGwuLnJMUpLsS0vTrh2iJudRffxxzglkABm2qTtktH17CRY9PCT49PTUlurVgf/9T78dXFuEiCzAosMF4+PjEfFoXH7Tpk2xaNEiPPXUU/Dw8ECVKlUwdepUXL9+HV9//TUASeHu5+eHkSNHYvDgwfj7778xevRo/P777wancC+wDCJkcYoiCRvDwmR00eHDUnJapNnRUZI9tmsHtG0LBAToT+kiIiIzefhQO/T0wQPpHVPHewPy5j17tgw5zVru3ZOrYxs3as9XpkzuWTqzBmQ1asjzqb2nFSpot+vUAV56SVvX2LmORFQiFFRsYNEga/fu3Xjqqaey7R84cCDWrFmDQYMG4fLly9i9e7feMePGjcOZM2dQuXJlTJ8+3ajFiBlklT7Xr2sDLrXExOjX0Wjk875tWwm8AgOz548gIqIiYP9+Cb7UXrG7d7Vri9Spo00soigSzOU2sTdrQFanjtStWFGKOlS1cmUZXtqqVcH/bERU6EpkkGUJDLIoI0Pmm+/fD+zbJ+XSpez16tcHnn5akpF16GD8os9ERGRBiqJdzFEtt25pt2vUAKZN09Z1cNDPgqkra0D20ksy5rxGDf1SuXLOmYuJqMhikGUmDLIoJzdvStC1fz+wZ48MOdT9z9BoJIFGx46ScKxDB21SNSIiKuYURYY93Lgh5fp1Kf/9J5kdGzcGli6VuunpMuY8p+UubG2BLl2AzZu1+w4c0PaIcX4YUZHDIMtMGGSRIe7dA3bvBv7+W0rWZGGOjtLL9dxzUpj4ioiolEhLA37/XZYhuHRJWyIj5bFXXgG+/17qpqdLetuUFLkyV6uWJP1o1Ei7Bgk/QIgsikGWmTDIIlPcvCnB1s6dwPbtcqFTV4MG2oCrXTtmLiQiKnXS0+XDIT1dlhMAJOXtk09KEJZTz1fPntq0+IoCrFypDb646CNRoWCQZSYMsii/FAU4cQL44w9g61YZCZKern3c3V2WinnhBeCZZ/g5SURU6j18CFy5AoSHy9CIEyeAkyeBXr20a4TpLjitrj2iLiDZooUEXxynTmR2DLLMhEEWmdv9+8COHRJwbd0qFy5Vjo6yPmfPnhJ4GbpWKxERlTLnzwPjx8saJDmtPRIcDCxcKNtpaZIOnxmZiPKNQZaZMMiigpSeLj1bmzfLCJArV7SP2dhI4ow+fSTo4rpcRESUoxs3JNg6ckTK4cOSeKNPH3l8715Za6RxY8nE1KGDLNLs6WnRZhMVRwyyzIRBFhUWRZEshWrAdfq09jF7e5m/1aeP9HA5OlqsmUREVNQpiqw/oqaHX74cGD06e71mzYDu3YHBgwFf38JtI1ExxSDLTBhkkaWcPw/88IMknTpzRru/TBmgRw8JuDp3ZtIMIiIyQHS09Gjt3i1rj+heyTt4UNb2AmQMu4uLXN0jomwYZJlJ5i/y7t28f5EajfZWLURmoCgy3/n774H164HLl7WPeXkBAwbIRch69SzWRCIiKm6ioyUj065dwFdfadfkGjYM+O47ICgIePVVGT7BgIsoE4MsM8n8RQIw6deoG3TlVsxxDkOfx9C6VlZSdLd19+V1XE7H5HW+xx2TtVhb6xfdfXmdz9paJjqpRfd+1nNmLWo9W1spWbdzKrrHmSnoVhTg338l4NqwAbh1S/tYQAAwZAjw8stA2bJmeToiIiptWraUeV0qDw9Zy2vgQHmMF5GplGOQZSb5DrKIAAm07Oyk2NrmvJ3XYzlsp1vb4fxVe4Qcs8exsw5IVByQAnvA3gEt2jmg47P2aNjcARoHe0nja//oVt12dJRtfmASEZFKUYDQUBmv/s03+gs9du4M/Pmn5dpGVAQwyDKTzF/k5cu5/yIVxfTyOLkdY+pzGVM/IyP3kp/j83osPT3nxxVFHlPrqCXr/dzOrdZ9+FBKerp2W72fV1HrpaVpi+799PScF44sDhwdpTg5Zd/Oeqtuq8XZWf9W3S5TRkrZsnJfHYZCRETFR3o6sHMn8PXXkpFp3Djg/fflsYwM4NAhoHVrXqyjUoVBlpkw8QUZRQ3kcgrMUlO1t+p2Sor+41nr5HSM7mMpKVKSk4HkZCgpKYiLTsad68lIuJMMWyUF9kiBoyYZLvZya5WSLO0sTFkDL7W4uOjff9w+dTI2P9CJiApXXJx8pqlrbf36q2QmbNNGFkju0oXvzVQqFFRsYGO2MxGVRFZWMqTPQjQAXB+VmBhgzRrgk0+ACxcAJEudp58G3nozDV2eToZNWhKQmAgk6dwm5bBP91bdTkjQ3le3ExK05cEDbTCn7ouOzv8PaWcni4ZlLW5uUtzd8y4W/PsQERVbWb9MXrwoF70OHAC6dQMaNQKmTJGJwTb8ukhkLPZkERUzGRnAX38BK1YAv/2mjXuqVgXGjpVkGQWSKENRpIctPl4Crvh47faDB3JVNOu27r6sjyUkmKddTk45B18eHvqlXDn9+y4uvEpLRKTr5k1gyRK5mhcfL/tq1AAmTpS0t7yoRSUQhwuaCYMsKkkuXwY++wz44gvgzh3Z5+oKvPGGrFNZqZJFm5e39HT5EI+NzbnExEi5f19b7t3TbsfG5u/5bWwk8PL01Jas97OWMmUYmBFRyXf/vlzJW7pUPlzq1QOOH2eQRSUSgywzYZBFJVFSErBuHbBoERAeLvtsbGRJlPHjgcaNLdu+ApGeLoGWbhCWtdy7l3NJTDTtOe3s8g7IypUDypeXUqGC3PJLCREVVwkJwJdfAv7+QPv2si8tDbh7F/D2tmjTiMyFQZaZMMiikiwjA/j9d2DhQmDPHu3+zp1lHnNgIDtiAMiwx7t35QqtblH33b6t//jt23KMKdzctAGXeptT8fSUWy4SSkRF2fz5kpHw/feB4cNlDUmiYoxBlpkwyKLS4sgRCbY2bpROHwBo2xaYPh145hkGW0ZLTJTAK2sAlrXcvq0t6i/eGGXL5h6EVaiQPWBzdDT/z0pERZO6rInukiW6S5cAEvToFisrubW1zX8CC0UBOnYEdu+W+82aAZ9+CrRqlb/zElkQgywzYZBFpc2VK8CCBcCqVZIdHgBatpRgq2tXBlsFJiNDhizeuiXl9m3Jxpg1EFPv37kjX5SMVaZM3j1kWQM1Z2f+0YkKkqLIGO64OCmxsdpttagZWuPjs2+rWWGTk7Pfqm/iprKzk/cAdRkO3Vt3d3kv8fLSFvV+hQraoc/p6cDnn8vwiNhYeT8ZPlyu6jk45P/3R1TIGGSZCYMsKq1u3gQ++ghYuVI+rwGgSRNg2jTghRe4vrDFKYok+tANvHIqukFbaqrxz2Nvn3Oyj3Llci+urgzMqPRQ53uqyXd0y/372u3ckvao608VNvVNvKDWTaxcGahdW1vKl5cFjX/5RR5v2RLYvLmIZ1wiyo5BlpkwyKLS7tYtSZCxYoU2Q2/DhsB77wE9evC7dLGhKPJlTg261MAraw+ZbjH1Kri1dc5p8dWS1zpmvLJNhS0jQ/43dAOhnIKi3BLm5DdzqUqjkaUiXFzkQoW6rS7krvYg6fYmOTvLshQODjIU2NFRu+3gIBdJ1GF/1tZya2MjAZb65q0oUtLTtSUjQxJW5NaDFh8vSYFu3ZIed7Wo7y2PCxrVAG/SJKBfP6B+fV65o2KDQZaZMMgiEnfvSnbeZcu03ylatJC5zJ07M9gqcRRF5pVlTfKhez+nkt/1zBwcJNhSF5fOWtTFp9UvoFlL2bJMBlKapKTkvN5eTkPusi73oPY0xcXJ6z2/nJxyf93qvnbVxdOzLqheUobmZmTIe8TFi8CFC9nLgwfZj3FzAwICZCJw27ayzf9jKqIYZJkJgywifTExMpR+8WLt9+kOHSTYatvWok2joiA5WZv6Pqe0+Hfv5twbEBNjvmFLdnYSbKlFDb50ewNy6hVwcpLi6Jj9Vi22tiXji3Bhefgw+1yhpCQJ4BMS5FZ3W+0t0S26vSgJCfqLlpsyBDY3Dg7ZAx/dYMjNLfceWDc3BgWGUBTp6QoNBQ4cAPbvB0JCsi+T4eoqQyVefhno1IlLW1CRwiDLTBhkEeXs1i1g3jzgk0+033Oeew6YMwdo2tSybaNiKCNDvjTrzmHJaX5L1l4K3W1T1zMzhpWVfBnXHZLl6ChfAtVia5t9Wx2yZWurLbr3dYdy6RZrawnqcitA7kGfOgQsI0N/KJhuUbPM6WacU7fT0rS3atG9ryZW0L3V3U5KKry5Rk5O2qBat6cza69nTj1M7u5Sj0GSZTx4ANStKxOBy5eXfbdvax93cwN69gR695ZMhba2FmkmkYpBlpkwyCLK27VrMj9r9WptRuBXXgHmzgWqV7ds26iUefhQ28ORdQiZWnLrIYmP1/aw5HRbuj76CoadnTYwVXsOs96q2zlls1OL2jOpljJl8p9qnCzrl19kbtaDB0CVKsCsWcDRo7KmSHS0tp6HB9CrFzBhAlCrluXaS6UagywzYZBFZJgLF4B33wW+/16+j9rZAW+9BbzzjlwoJiq2FEW/dyan4W+pqVLS0nLezqlnSHdfTj1JalETE2QtatvyorvuUdZ1kHLrPVN70B7X+6YmVlB79tRt9TZrEgYmNqC8nDkDPP88EBEhPVr79wM1agD//AP88APw44/aHi5ra6B/f0l3W7OmZdtNpQ6DLDNhkEVknLAwYOJE4K+/5L67u3wOjhzJ0ThERJSH+/eBp58Gjh2ToRAHDgDe3vLYw4eyqPHixcDWrbLP2hoYOFCu5tWoYbFmU+lSULEBL0MRUZ78/YE//wT++APw85PPzPHjJUPvhg0cdUVERLlwd5cPj5o1gchI4O23tY/Z2EgSjN9/B/79F/jf/6Tnd/VqmdP1+uvA5csWazpRfjHIIqLH0mjk8y8sDPjiC8DHRz4vX3kFeOIJ+XwkIiLKxstLrtT17y9rhuSkdWsJxg4cAIKCpJfryy9l0ePx401f44/IgjhckIiMlpAgCxp/+KE27fuAAcAHH0gARkRElCdFyT2T5oEDMil4xw6537SpDJ2oXbvQmkelB4cLElGR4ewMTJ8u85lfe032ff01UKcOMH8+LzoSEVEuFEVS2I4cmft48zZtpPfr11+BcuVkTlezZsC33xZuW4nygUEWEZnM21uGz4eEyGiP+Hhg8mSgUSPtPGYiIqJMx44BM2cCn34qwVZeunYFjh8HOnSQD5h+/eTKnjqEgqgIY5BFRPnWqpWM7lizRobfX7gAdOki5cIFS7eOiIiKjGbNgBUrZHvmTOCzz/KuX6kSsHOnDB+0spIPmhYtgBMnCrqlRPnCIIuIzMLKSjLvnj8vKd9tbaU3y88PmDFDlh4iIiLC8OHywaBu79mTd31rawnI/v4bqFgROHdOru59+ilT3FKRxSCLiMzKxUXmZZ06JUmiUlNlREijRsC2bZZuHRERFQnvvisZkxQFGDIESEx8/DEdOsjwwS5dZPLviBEyQZioCGKQRUQFok4dyci7caOM9rh4EXj2WeCll4D//rN064iIyKI0Gknprn5AGBoseXpKQowPPpD7778PfPxxwbWTyEQMsoiowGg0ElSdPQsEB8uIj59+AurVAxYuBNLSLN1CIiKyGFdXmZPl5ARUq2b4cRqNZFmaNUvujx4tV/SIihCuk0VEhebECRl+f+CA3G/USD5fAwIs2y4iIrKg27eB8uWNP05RJBX8p58CdnYyJv2pp8zfPirRuE4WERV7jRsD//wjad/LlQNOngTatpXPyNhYS7eOiIgsQjfAysgw/DiNBli+HHjxRZkA/PzzQFiY2ZtHZAoGWURUqKysZJmT8HC5VRTgk0+ABg2AzZst3ToiIrKYPXskJa0xgZK1NfDNN5IU48EDmfwbGVlgTSQyFIMsIrKIcuWkR2vnTqBWLeDGDeCFF4AePZgYg4ioVFqxQibxDh5s3KRdBwdgyxYZLhEVBTzzDHDrVoE1k8gQDLKIyKI6dpS5Wu+8A9jYAD//LL1aH38MpKdbunVERFRoli8HPDyAY8eAjz4y7lg3N0lpW7UqEBEhad7j4wukmUSGYJBFRBbn6AjMmSOfq088ISM+3noLaNcOOHPG0q0jIqJC4eUFLF0q27NmSa+WMSpWBP78U9K8HzkC9O7NxYrJYhhkEVGR4ecH7NsnI0bKlgX+/Rdo2lQCMKZ7JyIqBfr2BZ57ThJZDB5s/JCGOnWA33+XIYRbtwLr1xdMO4kew+JB1ooVK1CtWjU4ODigdevWOHToUJ71lyxZgrp168LR0RG+vr4YN24ckpOTC6m1RFTQrK2BESOA06e1n7PTpwMtWwKhoZZuHRERFSiNRtb2cHGRK23Llxt/jlatgLfflu0JEzhskCzCokHWhg0bEBwcjJkzZyI0NBRNmjRBUFAQbuUyWfG7777DlClTMHPmTJw9exZffvklNmzYgLfVfyQiKjF8fYHffpOkUeXKAcePy+fm1KkAr6sQEZVglStr52Rt327akL+JE4Hq1SWr0vvvm7d9RAaw6GLErVu3RsuWLfHxxx8DADIyMuDr64u33noLU6ZMyVZ/1KhROHv2LHbu3Jm5b/z48QgJCcG+ffsMek4uRkxU/Ny6BYweDWzYIPfr1AG+/FLmbBERUQmUkSE9WQEB0rtlip9/lpS1trYyPKJ2bbM2kUqGErcYcWpqKo4ePYpOnTppG2NlhU6dOuHgwYM5HtOmTRscPXo0c0jhpUuXsHXrVjz33HO5Pk9KSgri4uL0ChEVLxUqyLD6LVsAHx/g/HmgfXtgzBggIcHSrSMiIrOzsgLatDE9wAKA7t2BoCCZ1Dt2rNmaRmQIiwVZd+7cQXp6Ory8vPT2e3l5ISoqKsdjXn31VcyePRvt2rWDra0tatasicDAwDyHC86bNw+urq6ZxdfX16w/BxEVnuefl2yDQ4bI6JFly4AmTYC9ey3dMiIiKjAxMcCpU8Yfp9FItkJbW0mC8dtvZm8aUW4snvjCGLt378bcuXPxySefIDQ0FJs2bcLvv/+O9957L9djpk6ditjY2Mxy7dq1QmwxEZmbmxvwxRcyTN/XF7h4EejQgb1aREQl0l9/yZt9376mzc2qWxcYN062x47lpF4qNBYLsjw9PWFtbY3o6Gi9/dHR0fD29s7xmOnTp6N///54/fXX0ahRI/Ts2RNz587FvHnzkJGRkeMx9vb2cHFx0StEVPw98wxw8iQwdKjcZ68WEVEJ1KyZBFcnTgA7dph2jmnTZKz5xYvAokXmbR9RLiwWZNnZ2aF58+Z6SSwyMjKwc+dOBAQE5HhMYmIirKz0m2xtbQ0AsGD+DiKyEFdX4PPPs/dqjR7NXi0iohLBwwN4/XXZVjMOGqtsWe2x778PcFQTFQKLDhcMDg7GqlWrsHbtWpw9exbDhw9HQkICXnvtNQDAgAEDMHXq1Mz63bp1w6effor169cjMjISO3bswPTp09GtW7fMYIuISp9nnpHh+sOGyf3ly4HGjdmrRURUIowbJ4so/vWX6QsmvvqqpKRNTJT07kQFzKJBVu/evbFgwQLMmDED/v7+CAsLw7Zt2zKTYVy9ehU3b97MrD9t2jSMHz8e06ZNQ4MGDTBkyBAEBQXhs88+s9SPQERFhIuLrF/5559AlSrApUucq0VEVCJUrQr07i3bCxaYdg6NRq7AWVnJeiC7d5uteUQ5seg6WZbAdbKISr64OGDCBGDVKrlfqxbw1VdcV4uIqNgKCwOaNpUerYgIoFo1084zYgTw6adAo0bSK2ZjY85WUjFU4tbJIiIqKC4uMldr2zagcmX5PG7fXkacJCZaunVERGQ0f3+gc2fZzs9Y8Pfek3leJ0/KqvZEBYRBFhGVWEFBMldLXVdryRL5nD5wwNItIyIioy1dKmPBBwww/Rzlykm2QUDGmBMVEAZZRFSiubrKulpbtwKVKgEXLsiwwQkTgKQkS7eOiIgMVr++TLrNrwEDZIHiY8ckNTxRAWCQRUSlwrPPSq/WoEHSq7VwoSy/EhJi6ZYREZHRzp41/UpZuXJA9+6yvXat+dpEpINBFhGVGm5ukgDj119lXcpz54A2bYCpU4GUFEu3joiIDDJiBNCgAfD116afY9Aguf3mGyAtzSzNItLFIIuISp2uXaVXq18/ICMD+OADoHlz4OhRS7eMiIgeq25duV2wAEhPN+0cQUGAlxdw65ZkSSIyMwZZRFQqeXgA69YBmzYBFSoAp08DrVsDM2YAqamWbh0REeVqyBDA3V1Sx/7+u2nnsLUF+vaVbQ4ZpALAdbJykZ6ejjR2H1MJYmtrC2tra0s3o0i6cwcYORL44Qe536QJsGaNZCIkIqIiaPx4YNEiCZS++ca0c5w4IW/4trbAzZsyV4tKnYJaJ4tBVhaKoiAqKgoxMTGF3ziiAubm5gZvb29oNBpLN6VI+uEHGep/966sT/nOO8DbbwN2dpZuGRER6dm/X1LFuroCt29LoGSK5s1lUeLly4FRo8zbRioWGGSZyeN+kTdv3kRMTAwqVKgAJycnfhmlEkFRFCQmJuLWrVtwc3ODj4+PpZtUZEVHS6C1aZPcZ68WEVERlJ4u63JERwN//qldqNhYy5YBY8ZIsHXkiHnbSMUCgywzyesXmZ6ejvPnz6NChQooxy5jKoHu3r2LW7duoU6dOhw6mAdFkV6tkSO1vVpvvy09W+zVIiIqIoYNA1atkitjK1aYdo47d4CKFSXD4MmTgJ+fedtIRV5BBVlMfKFDnYPl5ORk4ZYQFQz1tc35hnnTaIDevYEzZ4AXXwQePgRmzwZatpS1K4mIqAh4801gwwZg3jzTz+HpKSlnASbAILNikJUDDhGkkoqvbeNUqABs3Cif4Z6eMke6VSvJQMh1tYiILKxZM+Dll4H89j6oa2atWydX1YjMgEEWEVEeNBr5DD99Wtur9d57Mnz/0CFLt46IiPLt2WeB8uW187uIzMDoIMva2hq3bt3Ktv/u3buc40FEJVaFCsCPP8pcLXVdrYAAYOJEICnJ0q0jIiql7t8H5swBevUy/Ry6a2atWWOWZhEZHWTllicjJSUFdpwRTkQlXK9eMlerXz8gIwNYsEAyEP7zj6VbRkRUCllZyaTZH38Ezp0z/TzqkMGffwbu3TNL06h0szG04rJlywDInI4vvvgCZcqUyXwsPT0de/fuRb169czfQipVAgMD4e/vjyVLluR439jjiQpCuXIydL93b+CNN4ALF4D27WWJlXnzAJ23RyIiKkiursDTTwPbtgFbtgBTpph2niZNZK2OsDCZiDt8uBkbSaWRwUHW4sWLAUhP1sqVK/WGBtrZ2aFatWpYuXKl+VtIRFREde0qwwYnTgS++AL4+GPg11+Bzz4DgoIs3ToiolKiR4/8B1kAMHCgBFlr1jDIonwzeLhgZGQkIiMj0aFDBxw/fjzzfmRkJMLDw7F9+3a0bt26INtKxVhqaqqlm0BUINzcZJmWHTuAatWAK1eA//0PGDBAll8hIqIC9vzzkqUoJAS4ft3087z6qiyMeOgQcPas+dpHpZLRc7J27doFd3f3gmgL5dO+fftga2uL5OTkzH2XL1+GRqPBlStXDD5PYGAgRo0ahVGjRsHV1RWenp6YPn165ny8bdu2oV27dnBzc0O5cuXQtWtXXLx4McdzjB07Fp6engh6dFnfkGPzkpGRgXnz5qF69epwdHREkyZN8OOPPxp8PFFB6dRJ1rEcN06mCKxbB9SvD3z7rSxuTEREBcTbG3jiCdn+5RfTz1OhAtCli2xzzSzKJ4OGCwYHB+O9996Ds7MzgoOD86y7aNEiszSsqFAUIDHRMs/t5CQXZgwVFhaG+vXrw8HBIXPfsWPH4O7ujqpVqwIA1qxZg9deey3XBCaqtWvXYsiQITh06BCOHDmCYcOGoUqVKhg6dCgSEhIQHByMxo0bIz4+HjNmzEDPnj0RFhYGKysrvXMMHz4c+/fvz9xn6LG5mTdvHr755husXLkStWvXxt69e9GvXz+UL18eHTp0MPyXRVQAypQBFi0CXnkFeP11Cbr69QO++QZYuRJ49G9IRETm1rMncPAgsHlz/ob6DRwoyS++/hp4/32AmbPJRAYFWceOHUNaWhoAIDQ0NNcFTUviQqeJiZabxB4fDzg7G17/+PHjaNq0qd6+sLAwNGnSJPO+q6sr6tat+9hz+fr6YvHixdBoNKhbty5OnjyJxYsXY+jQoXjxxRf16q5evRrly5fHmTNn4Ofnl7m/du3amD9/vl5dQ4/NSUpKCubOnYu//voLAQEBAIAaNWpg3759+OyzzxhkUZHRqhVw9Cjw0UeS9GrbNqBhQ/m8HjWKn9lERGbXo4csYujjI1fITf1O2qWLJNO4eVPmZzVvbs5WUiliUJC1a9euzO3du3cXVFson8LCwvDqq6/q7Tt27Bj8/f0z7/fs2RM9e/Z87LmeeOIJvaA5ICAACxcuRHp6Oi5duoQZM2YgJCQEd+7cQUZGBgDg6tWreoFS8xzemC5cuGDQsTmJiIhAYmIiOnfurLc/NTU1W3BJZGm2tsDbb8sCxsOGAXv3AmPHyvDBlSuBZs0s3UIiohKkdm2ZCJvf5YTs7IA2bYA//gAOHGCQRSYzOLsgAKSlpcHR0RFhYWGP/UJcUjg5SY+SpZ7bUOnp6Th16lS2YCM0NDRb71F+devWDVWrVsWqVatQsWJFZGRkwM/PL1tyC+ccuuEMPTYn8Y/+EL///jsqVaqk95i9vX0+fiKiglO3LrBrl2QfnDgROHwYaNkSGD1aernKlrV0C4mISghzrdeqG2S99ZZ5zkmljlFBlq2tLapUqYL09PSCak+Ro9EYN2TPUsLDw5GcnIyKFStm7jt48CCuX7+u15NlqJCQEL37//77L2rXro2YmBiEh4dj1apVePLJJwFIwg1D3L171+RjAaBBgwawt7fH1atXOTSQihUrK+nN6tYNCA4G1q8HliwBNm4Eli4FXnjB9JEtRESkQ1FkxfiaNQGdOepGadNGbg8cMF+7qNQxOrvgO++8g7fffhv3uBp2kRIWFgYAWL58OS5cuIA//vgDAwYMAKCfPn3z5s0GLRp99epVBAcHIzw8HN9//z2WL1+OMWPGwN3dHeXKlcPnn3+OiIgI/P33349NhqLKz7EAULZsWUyYMAHjxo3D2rVrcfHiRYSGhmL58uVYyyxAVAz4+ADffw9s3y6f/9evAy+9JOttRUZaunVERCXA008Dfn7AX3+Zfo5WrWTy7NWrwH//ma9tVKoYHWR9/PHH2Lt3LypWrIi6deuiWbNmeoUsIywsDEFBQbh06RIaNWqEd955B7NmzYKLiwuWLVuWWS82Nhbh4eGPPd+AAQOQlJSEVq1aYeTIkRgzZgyGDRsGKysrrF+/HkePHoWfnx/GjRuHjz76yKA25udY1XvvvYfp06dj3rx5qF+/Pv73v//h999/R/Xq1Y06D5ElPfOMZB6cPl3mbm3dKokx5s0DuKQcEVE+NGwot1u2mH6OMmUANWkYe7PIRBrlcbm8s5g1a1aej8+cOTNfDSpocXFxcHV1RWxsLFxcXPQeS05ORmRkJKpXr66XBr04CAoKQsuWLTFnzpx8nyswMBD+/v5YsmRJ/htGRUpxfo2XVOfOASNGyLwtQOZwLV8OZMnvQkREhti5UxYuLF9eMgSams71rbeAjz8GxoyR8d1UYuUVG+SHUXOygKIfRJVWx48fx+DBgy3dDCIyUr168p3gm2+ACROA8HDp6XrhBVlzi2trEREZoX17wN0duH0b2L9f7puiTRsJstiTRSYyerggAMTExOCLL77A1KlTM+dmhYaG4vr162ZtHBkmKioK0dHRaNSokaWbQkQm0GiA/v2B8+floqm1NbBpE1C/PjBnDpCcbOkWEhEVE7a2MtEVyN+QQTX5xbFjsmgqkZGMDrJOnDiBOnXq4MMPP8SCBQsQExMDANi0aROmTp1q7vaRAby9vaEoCho0aGCW8+3evZtDBYkswNVVRqUcOyYXX5OSZN6Wnx/w+++Wbh0RUTGhrgeanyCrShWgYkXg4UPgyBGzNItKF6ODrODgYAwaNAgXLlzQm9Px3HPPYe/evWZtHBFRadSoEbB7N/Ddd5KR8OJFuTDbrZsMJyQiojx07ixrZ0RGShpXU2g0TOVO+WJ0kHX48GG88cYb2fZXqlQJUVFRZmkUEVFpp9EAffpIUDVxImBjA/z2m/RqjR4N3L1r6RYSERVRZcrIpNYtWwA3N9PPwyCL8sHoIMve3h5xcXHZ9p8/fx7ly5c3S6OIiEiULQvMny8p37t1k5Ery5cDtWoBCxcCKSmWbiERURE0Zgzw/POAs7Pp52jbVm4PHJBFjomMYHSQ1b17d8yePRtpaWkAAI1Gg6tXr2Ly5Ml48cUXzd5AIiKSLIS//CLrazZpAsTESDbCBg2An37i5z8Rkdn5+wMODjJ04Px5S7eGihmjg6yFCxciPj4eFSpUQFJSEjp06IBatWqhbNmyeP/99wuijURE9MjTTwNHjwJffgl4ewOXLgEvvSSJMkJCLN06IqIiIi0N+OMPSdGakWHaOezsgJYtZZtDBslIRgdZrq6u2LFjB3799VcsW7YMo0aNwtatW7Fnzx4456dLloiIDGJtDQweDFy4AMyYATg6Avv2AU88IetrnT1r6RYSEVmYRgO8+KKkaM1PLxTnZZGJTFonCwDatWuHESNGYNKkSejUqZM520RERAYoUwaYNUu+P7z2miTT2rxZkmMMGQJcu2bpFhIRWYiNDdC8uWwfOmT6eRhkkYlsDK349ddfG1RvwIABJjeGiIiMV7kysHq1zNF65x1JqLV6NfDtt8CoUcDUqUC5cpZuJRFRIWvVSrr5Dx0CTP1+GhAgt2fOAPfvA+7u5msflWgGB1mDBg1CmTJlYGNjAyWXGdYajYZBFhGRhTRoID1Z//4LTJkC7NkjGQhXrZI08KNHAy4ulm4lEVEhadVKbvPTk1W+PFC7tozP/vdf4NlnzdM2KvEMHi5Yv3592NnZYcCAAdizZw/u37+frdy7d68g20pERAZ44glg1y5g2zZJjhUXJ9MSqlcH5s6V+0REJZ4aZIWF5W+9Cw4ZJBMYHGSdPn0av//+O5KSktC+fXu0aNECn376aY5rZhGpAgMDMXbsWEs3w2xK2s9DJZdGAwQFSSbC77+XFPD37slwQgZbRFQqVKsGeHpKpsHjx00/jxpk7d9vlmZR6WBU4ovWrVvjs88+w82bNzF69Gj88MMP8PHxQd++fZHCFTFLPQYgREWPlRXwyivAqVPAd9/pB1vVqgHvv89gi4hKKI1G25t1+LDp51EXJQ4JkRXhiQxgUnZBR0dHDBgwALNmzUKrVq2wfv16JCYmmrttVEykpqZauglE9BjW1kCfPvrB1v37wLRpEmzNmiXrbRIRlSjvvy9vfG++afo56tcHXF2BxETgxAnztY1KNKODrOvXr2Pu3LmoXbs2XnnlFbRs2RKnT5+Gu4nZVlasWIFq1arBwcEBrVu3xqHHTE6MiYnByJEj4ePjA3t7e9SpUwdbt2416bmNkZCQe0lONrxuUpJhdU2xb98+2NraIlmnQZcvX4ZGo8GVK1cMPk9KSgpGjx6NChUqwMHBAe3atcNhnStAgYGBGDVqFMaOHQtPT08EBQVh0KBB2LNnD5YuXQqNRgONRoPLly8DADIyMjBp0iR4eHjA29sb7777rlHPBwAPHjxA37594ezsDB8fHyxevFiv58yQcwQGBmL06NF5tmXbtm1o164d3NzcUK5cOXTt2hUXL140+HdHVNTlFmy9+y5QpQowdixw9aqlW0lEZCb+/kDDhvLmZyorK22WQc7LIgMZHGT98MMPePbZZ1G7dm0cPnwYCxcuxLVr1zB//nzUq1fPpCffsGEDgoODMXPmTISGhqJJkyYICgrCrVu3cqyfmpqKzp074/Lly/jxxx8RHh6OVatWoVKlSiY9vzHKlMm9vPiift0KFXKvmzUpTbVqOdczRVhYGOrXrw8HB4fMfceOHYO7uzuqVq0KAFizZg00Gk2e55k0aRJ++uknrF27FqGhoahVqxaCgoL0EpusXbsWdnZ22L9/P1auXImlS5ciICAAQ4cOxc2bN3Hz5k34+vpm1nV2dkZISAjmz5+P2bNnY8eOHUY9X3BwMPbv349ffvkFO3bswD///IPQ0FCjzmFIWxISEhAcHIwjR45g586dsLKyQs+ePZFh6mrxREWUbrC1fj3QtKlcpF26FKhZU7Idnzpl6VYSERURTH5BxlIMpNFolKpVqypvv/22snTp0lyLMVq1aqWMHDky8356erpSsWJFZd68eTnW//TTT5UaNWooqampRj2PrtjYWAWAEhsbm+2xpKQk5cyZM0pSUlK2x4Dcy3PP6dd1csq9bocO+nU9PXOuZ4rXX39dGTBggN6+GTNmKIGBgZn3N23apNStWzfXc8THxyu2trbKt99+m7kvNTVVqVixojJ//nxFURSlQ4cOStOmTbMd26FDB2XMmDHZ9rVr105vX8uWLZXJkycb/HxxcXGKra2tsnHjxsw6MTExipOTkzJmzBiDzmFIW3Jy+/ZtBYBy8uTJXH/G4iSv1ziVbhkZivLnn4rSsaP+e1HXroryzz/yOBFRsfTNN4rSr5+iHDhg+jn++kveFKtWNVuzqGjIKzbID4PXyapSpQo0Gg2+++67XOtoNBqMHj3aoPOlpqbi6NGjmDp1auY+KysrdOrUCQcPHszxmF9++QUBAQEYOXIkfv75Z5QvXx6vvvoqJk+eDOv8dAMbID4+98eyPnUuHXEApMdZ16MRdWYRFhaGV199VW/fsWPH4O/vn3m/Z8+e6NmzZ67nuHjxItLS0tBWneQJwNbWFq1atcLZs2cz9zVXV1E3QOPGjfXu+/j4ZPZWGvJ8ly5dQlpaGlqpk1cBuLq6om7duka1+XFtAYALFy5gxowZCAkJwZ07dzJ7sK5evQo/Pz+Df2ai4kajATp3lnL4MDB/PvDTT8Bvv0lp3lzW2erdG7C3t3RriYiM8OuvwIYNspigOuzPWK1ayZe4K1eA69eBQhhFRcWbwUHWZXNGAwDu3LmD9PR0eHl56e338vLCuXPncjzm0qVL+Pvvv9G3b19s3boVERERGDFiBNLS0jBz5swcj0lJSdHLfGhqynlnZ8vXzUt6ejpOnTqFpk2b6u0PDQ3Fi1nHM5qBsxENt7W11buv0WgsNvzucW3p1q0bqlatilWrVqFixYrIyMiAn58fk3tQqdKyJbBxI3D+PLBgAfD115IKfuBAWdR42DBg+HCgYkVLt5SIyACtWkmQlZ9FicuWBRo3ljW3Dh4EXnrJbM2jksmk7IKWkpGRgQoVKuDzzz9H8+bN0bt3b7zzzjtYuXJlrsfMmzcPrq6umUWdJ1TShIeHIzk5GRV1vvUcPHgQ169f1+vJepyaNWtmzrVSpaWl4fDhw2jQoEGex9rZ2SE9Pd2odhvyfDVq1ICtra1eIovY2FicP38+323WdffuXYSHh2PatGl4+umnUb9+fdy/f9+on4eoJKlTB/j8c+C//2RdrcqVpad+zhygalWZ03XwoAwsJCIqstSRMPkJsgCul0VGsViQ5enpCWtra0RHR+vtj46Ohre3d47H+Pj4oE6dOnpDA+vXr4+oqKhcexqmTp2K2NjYzHLt2jXz/RBFSFhYGABg+fLluHDhAv744w8MGDAAgH6K9c2bN+eZqMTZ2RnDhw/HxIkTsW3bNpw5cwZDhw5FYmIihgwZkmcbqlWrhpCQEFy+fFlvqF1eDHm+smXLYuDAgZg4cSJ27dqF06dPY8iQIbCysoJGo8lXm3W5u7ujXLly+PzzzxEREYG///4bwcHBBh9PVFJ5egJTpwKXLgE//AA8+aQsFbN+vXznaN4cWLmS620RURHVtKnM7bhxQ4b6mUqdlsDkF2QAiwVZdnZ2aN68OXbu3Jm5LyMjAzt37kRALuNl27Zti4iICL0v7+fPn4ePjw/s7OxyPMbe3h4uLi56pSQKCwtDUFAQLl26hEaNGuGdd97BrFmz4OLigmXLlmXWi42NRXh4eJ7n+uCDD/Diiy+if//+aNasGSIiIrB9+/bHpumfMGECrK2t0aBBA5QvXx5XDcwDbcjzLVq0CAEBAejatSs6deqEtm3b6mVSNLXNuqysrLB+/XocPXoUfn5+GDduHD766CODjycq6WxtgV69gL17gdBQ4LXXZH7WsWMyfNDHBxgyBPj3X/ZuEVER4uwMqPOq87MosdqTFRqafU0eoiw0imK5j8INGzZg4MCB+Oyzz9CqVSssWbIEP/zwA86dOwcvLy8MGDAAlSpVwrx58wAA165dQ8OGDTFw4EC89dZbuHDhAgYPHozRo0fjnXfeMeg54+Li4OrqitjY2GwBV3JyMiIjI1G9enW9NOjFQVBQEFq2bIk5c+ZYuimFIiEhAZUqVcLChQuN6q0q7Yrza5yKprt3gXXrZFihbp6ZRo2AoUOBfv0AE5dRJCIyn6FDgS++kG75uXNNO4eiSMKLmzflatOTT5q3jWQRecUG+WFQT1ZwcDASHq2Qu3fvXjx8+NAsT967d28sWLAAM2bMgL+/P8LCwrBt27bMZBhXr17FzZs3M+v7+vpi+/btOHz4MBo3bozRo0djzJgxmDJlilnaU5wdP34cjRo1snQzCsyxY8fw/fff4+LFiwgNDUXfvn0BAM8//7yFW0ZUupUrJwsYnz4N7Nsn62s5OAAnT0o2wooVgVdeAbZulSGGREQWoWYHzCsF9ONoNFwviwxmUE+Wra0t/vvvP3h5ecHa2ho3b95EhQoVCqN9ZlcSe7KioqLg4+OD06dPG5XooTg5duwYXn/9dYSHh2cONV20aFGJDiwLQnF9jVPxcv8+8O23wKpVwIkT2v1eXsCrrwL9+wP+/vJ9hYioUKhr8ZQpk7/zLFwITJgAvPCCrHNBxV5B9WQZlMK9WrVqWLZsGZ555hkoioKDBw/mOtelffv2ZmscGcbb2xsWHPVZKJo2bYqjR49auhlEZAB3d2DUKGDkSJm6sG4d8N13QHQ0sHixFD8/6fV69VUuN0NEhSC/wZVKTR526ZJ5zkcllkE9WVu2bMGbb76JW7duQaPR5PqFXqPRGJ3Cu7CVxJ4sIkPxNU6WkpYG/PmnrLn188+AzvKFaNtWEmq89BIDLiIq4s6elUWNXVyAmBh2yZcAFp2T1aNHD0RFRSEuLg6KoiA8PBz379/PVu7du2e2hhERUclhawt06SLrgUZFSaIMdc74/v0yr6tyZQm4liyRtbmIiMzq559lTtWECaafo1o1uY2LA/i9l/JgVAr3MmXKYNeuXahevbreAr+6hYiIKC9ubpLoa+9eCaaWLtVffmbcOMDXV74LzZ8vF45L+IhoIioMycmygvrevaafw9FRMvoAHDJIeTIphXt6ejq2bNmCs4/y9TZo0ADPP/+83iLBRRWHC1Jpxtc4FWXXr8s88h9+kN4tXTVrAl27At26SQ9YLksjEhHlLjISqFFDutYfPJCF/kzx5JOSTnX9eqB3b/O2kQqdRYcL6oqIiECDBg0wYMAAbNq0CZs2bUL//v3RsGFDXLx40WwNIyKi0qVSJUn7vm+f9HB9/DEQFCQB1cWL0uPVqRNQvrx8r/n6a0mmQURkkGrVAE9PmSR6/Ljp56lRQ27Zk0V5MDrIGj16NGrUqIFr164hNDQUoaGhuHr1KqpXr47Ro0cXRBuJiKiUqVRJshNu2wbcuQNs2gS89hpQoYJMhfjhB2DgQMDbG2jaFJgyBdi1C0hNtXTLiajI0mhkvSwAOHTI9PNUry63kZH5bxOVWAalcNe1Z88e/Pvvv/Dw8MjcV65cOXzwwQdoqw6qJyIiMpOyZYGePaVkZACHDwO//gr88YekiA8Lk/Lhh4CzM/DUU9ID9vTTkm2Zyb+IKFOrVrI6en6CLPZkkQGMDrLs7e3x4MGDbPvj4+Nhx0HyRERUgKysgNatpcyZA9y6BezYAWzfLinio6OB336TAkjPV4cOUgIDJfMygy6iUswcPVkMssgARg8X7Nq1K4YNG4aQkBAoigJFUfDvv//izTffRPfu3QuijURERDmqUAHo21fmZ924ARw7BnzwAdCxI+DgIEHYxo2yOLKfn9R/6SVg2TLg6FGZmkFEpUjLlpIdsEED4OFD086hBllXr/JNhHJldJC1bNky1KxZEwEBAXBwcICDgwPatm2LWrVqYenSpQXRRiqG4uPj0alTJyiKgmvXriEwMBANGjRA48aNsXHjRgDA/fv30aVLFwu3lIhKCisrwN8fmDwZ2LlT1gnduxd47z0ZOujoKPO7fvoJGDMGaNFC0sk/9RTw9tvS+3X3roV/CCIqWJ6eksp00ybAxugBXcLbW67ipKcD166Zt31UYhj96nJzc8PPP/+MiIiIzBTu9evXR61atczeOCq+vvjiC7z88svQaDSwsbHBkiVL4O/vj6ioKDRv3hzPPfcc3N3dUalSJRw8eBABAQGWbjIRlTD29pJp+ckngWnTJCnGkSPA7t2SwfDgQQnEdu+WoqpbV4YjtmwppUkT+T5FRARAruhUqwacOydDBtWeLSIdJobwQK1atRhYUa6+++47/PrrrwAAHx8f+Pj4AAC8vb3h6emJe/fuwdnZGd27d8f3339frIKswMBA+Pv7Y8mSJXrbphxPRIXHzk4WOG7TRu5nZMh3pIMHZRHkAwfkfni4lK+/lno2NkDjxtqgq0ULGWlka2u5n4WIzCA52fQrKDVqyBsGMwxSLoweLkhF1969e9GtWzdUrFgRGo0GW7ZssUg7UlJSEB0dDS8vr2yPHT16FOnp6fD19QUANGvWDAcOHCjsJhIRwcpKgqUhQ4AvvwTOnpXhgr//DsycCTz3nKzJ9fChZDH87DPg9ddlSKKzs6SOHzQIWLJE0sffu2fhH4iIDPPXX0C5cjJ501RMfkGPYXJPFhU9CQkJaNKkCQYPHowXXnjBYu24e/cu3N3ds+2/d+8eBgwYgFWrVmXuK1++PG7evFmYzctRamoqs2MSETw8JLh67jm5rygyt/3wYW05elTW6lJTx69dqz3e11d6vRo2lEQbDRsC9evLfDAiKiLKlZOrIhcvmn4OBln0GAyySpBnn30Wzz77bIE/T0hICMaPH4+jR4+ibt26WLZsGTp06ICTJ0/Cz88PDg4OSE5O1jsmJSUFPXr0wJQpU9BGHasDIDk5GY5GfvsIDAyEn58fAGDdunWwtbXF8OHDMXv2bGge5Wbetm0b5syZg1OnTsHa2hoBAQFYunQpatasqXcOGxsbfPPNN2jUqBF27dr12OMeJyMjAx9++CE+//xzREVFoU6dOpg+fTpeeuklo35GIioaNBqgalUp6r+xogBXrkiAdfy49jYyUubAX7smvWEqKyugZk0JuBo2lN6zevVk7pezsyV+quwUBUhJkXlrKSn626mpgKurTEEBZK7/0aNyjKLIPmtrGVZpYyPJRB4NVgAgafUdHaVwiCUVCepn+q1bcsXExcX4czDIosdgkEVGOXXqFJ5++mmMHTsWX3zxBU6fPo1evXrB3t4e9erVAwB4eHggKSkJDx8+hI2NDRRFwaBBg9CxY0f0799f73wRERGoX79+5v01a9bgtddeg6J+cudi7dq1GDJkCA4dOoQjR45g2LBhqFKlCoYOHQpAevWCg4PRuHFjxMfHY8aMGejZsyfCwsJgZWWVeY7hw4dj//79mec15Li8zJs3D9988w1WrlyJ2rVrY+/evejXrx/Kly+PDh06GPZLJqIiTaORgKNaNaBHD+3+2FjgxAng1Ckpp0/L7d27wIULUrKO4q5aVQKu+vWl1K0L1K4N+PgYtp6XogDx8cDt2/I85cppv/vdvi1DGWNipDx4IHUTEuS2Tx9JCAIAUVGS1To3AwcCa9bIdlKSJAbJzUsvSdp8tX3e3trHrK0BJycJuJycZO2yr77SPj5xogRibm5SypWT43185NbJ6fG/E6LHcnGRscC3b0tvVtOmxp+DQRY9hklB1j///IPPPvsMFy9exI8//ohKlSph3bp1qF69Otq1a2fuNlqWogCJiZZ5bienIrdq5ujRo9G9e3fMmTMHAFCvXj2sXbsW//33H2x0UqF26NABISEhaNu2Lfbv348NGzagcePGmfPE1q1bh0aNGmHPnj16vW+urq6oW7fuY9vh6+uLxYsXQ6PRoG7dujh58iQWL16cGWS9+OKLevVXr16N8uXL48yZM5m9YLVr18b8+fP16hlyXG5SUlIwd+5c/PXXX5mJPGrUqIF9+/bhs88+Y5BFVMK5umqzGaoURS6W6wZd587J/K87d6RH7MoVWUxZl5MTULmyrOtVvz4QECDBl729pJu/c0e+H965I71NqvHjgQULZDspCZg7N/f2Xr2q3c46WtrWVvbZ28ut7ghwNbEaoP2ISk+X8vChBEeqjAz986anS7D34IHcj4nR/10tXZr7skPt2gH//KO9P2IEULYsUL26tlStKm0meqxateSfKCLCtCCrenW5vXdPrrC4upq3fVTsGR1k/fTTT+jfvz/69u2LY8eOIeXRu3tsbCzmzp2LrVu3mr2RFpWYCJQpY5nnjo8vsLEkU6ZMwYcffphnnbNnz2b2TgHAlStXsGvXLpw6dUqvnr29PZo0aaK3b8SIEVizZg3atm2Ldu3aISPrJ+0jv/76K3788cfM+z179kTPnj0f2/4nnngic2ggAAQEBGDhwoVIT0+HtbU1Lly4gBkzZiAkJAR37tzJfP6rV69mBkvNmzfPdl5DjstNREQEEhMT0blzZ739qampaGrKGzgRFXsaDeDlJeXppyWQUBNkKIoEW/v3A6tXSzAWHy+BSGIicP68lH37AJ2prDmyt5dASDdRmqcnMHq0tleobFn5SClTRm6rVNHW9fCQ74l2dlLy6rh3cjI8oZq1tQRaKSkS9CUm6t/qjtLKyJAA8v59be/b7dvSy3bzpn6PWEaG/E6yriWr0QCVKgFdugArV2r3R0dLwFrErluSJdWsKalFTZ2XVaaMtjcsMlIy4hDpMDrImjNnDlauXIkBAwZg/fr1mfvbtm2b2btBRd/48eMxaNCgPOvUyLLuQ1hYGOzs7NCwYUO9/WfPnsXrr7+ut++JJ57AmTNnoCiKXjCk6/79+3jrrbdyTJKRX926dUPVqlWxatUqVKxYERkZGfDz80NqampmHeccAlhDjstNfHw8AOD3339HpUqV9B6z56VVolIlKUm+v0VEyHe4iAjtdkKCDIubP196vWrUAKZOzX4OFxdtMFS2rAw3vHpVOw9KV0qKBCPz5knq+Ro19Ht4qleXfd7eOQdQGo1p01IModFI8OfgoN8jlpW1NfDuuzk/pigyN0z18CHw4YfA5cvy/VYtiYnAf/9JwKhKT5eeNzs7/YQkTZsCzZsXnXlxVMjUZYgiIkw/R40aEmRdusQgi7IxOsgKDw9H+/bts+13dXVFjG6/f0nh5CSXFi313AWkfPnyKF++vFHHWFtb4+HDh0hOTobDo8ulO3fuxOnTp7P1ZAHA4MGD8zyfu7s7euhOaDBCSEiI3v1///0XtWvXhrW1Ne7evYvw8HCsWrUKTz4at7Nv377HntPU41QNGjSAvb09rl69yqGBRKVAQoKsp6UO//PzA3r3lsfu3JGeq9zcv6/d9vGRuVNVqsgQQR8f6fnKKUlEaqoEFhcvZi+XLsmyP2ryjT17sh9vby8BR9bgq3p12e/uXjR7ezQa/WGAdnZAcLB+HUXRdiro5lP67z8JypKTJfA9eFD7mLU18OabwMcf65+nKP4OyMyaNQOCgoBGjUw/R40aQEgI52VRjowOsry9vREREYFq6oDsR/bt25et56NE0GiKzWWu+Ph4ROhckYmMjERYWBg8PDxQRXdciImaN28OW1tbTJw4EePGjcPp06cxduxYAMgxyDLF5s2bMXXqVJw7dy7PelevXkVwcDDeeOMNhIaGYvny5Vi4cCEACd7KlSuHzz//HD4+Prh69SqmTJny2Oc29ThV2bJlMWHCBIwbNw4ZGRlo164dYmNjsX//fri4uGDgwIEGn4uIip4HD4DZs2Ve1dmzMpdKV69e2iCrUiXpLalSRS6Yq6VmTZk3pDusz8oKGDPGsDbY2QF16kjJSlFkWJzaq3Ppkn4vz7Vr0uOlLracExcXbVIPNRjT3S7K0040GhkSWKGC/v6qVSUgvnBBm5Tk5ElJx3/jhn79GzfkO/cTT0iQ/Mwz8ndk0FUCdesmJT+Y/ILyYHSQNXToUIwZMwarV6+GRqPBjRs3cPDgQUyYMAHTp08viDaSgY4cOYKnnnoq837wo8t8AwcOxBo1LVQ++Pj4YPXq1ZgyZQq++uorPPPMMxg4cCDWrVsHDw+PfJ8fkLl94bl9+usYMGAAkpKS0KpVK1hbW2PMmDEYNmwYAMDKygrr16/H6NGj4efnl5lmPjAwMM9zmnqcrvfeew/ly5fHvHnzcOnSJbi5uaFZs2Z4++23DT4HEVnOvXuSnvz4cSnVq0tgBUjvyLJl+sPWypXTZgbUHeRhZSVf5guTRiPDAb29JVFGVmlp0quTNfhSS3S0ZLM+cUJKTtzdcx6KqAaPRXW5QXWoYMOG2kAYkN+HTs4mhITIa2DrVimA9Cw+84y2eHoWbtupCGOQRXnQKI/LlZ2FoiiYO3cu5s2bh8RHWffs7e0xYcIEvPfeewXSSHOKi4uDq6srYmNj4ZJlAHpycjIiIyNRvXr1zOFwlLuMjAwEBgaiXbt2mJtXCiszCwwMhL+/P5YsWVJoz1lS8DVOpE9RJHAKCQEOHco+B97fHzh2THt/3jxJEtGggQRWJekLd2KizPmKjJQhiWpRg7A7d/I+3spKeu5q1tQvai9ecRgUkpYmwfU//wA7dgC7d8v8OtWaNZLOHpAhiNbW7OUq9uLiZGyuKSuG79oFdOwoqT/Pnzd/26hQ5BUb5IdRPVnp6enYv38/Ro4ciYkTJyIiIgLx8fFo0KABylgqAx8Vmr179+L27dto2rQp7ty5g48++ghXrlzJTMtORFRUKYpcbN6/X9aTGjdO9ms0wCef6H8/qllTpms0biyJEXTllKCipHBykjW7dJLK6omPz7kH7NIlKYmJ2sBs587sx/v4yHfRnEpRueZjawu0aCFl3DiZx3XgAPDnn1J0k8d++qnM5Xr5ZSl+fgy4ip1OneTF+vPPQPfuxh+v9mRduSIZVqytzds+KtaMCrKsra3xzDPP4OzZs3Bzc0ODBg0Kql1UBEVHR2PKlCm4fv06vLy80KlTJxw6dMhsQwWJiMzl4UMgLEyCqn37pERFyWNlygBvvaUdJjZ8uMzZadlSvlzzLS1nZcrIfKWc8gQoivx+c0rIEREhge3Nm1L27tU/1spKhhzWr6+/MHP9+vprblmCg4N0VHTsCHzwgf5jmzdLcD5njpT69bUBF78eFRPlysmtqRkGK1eWN5LUVJnQ5+trvrZRsWf0nCw/Pz9cunQJ1dVF2KjU6NWrF3r16mXpZmD37t2WbgIRFTFZM8J17w788Yd+HbWXom1bGQJWtqzsf5S/h/JBo5GeKh8fWTQ4q/v3JfGEbjl/Xm5jY7UB2W+/6R/n7S09impw17ixBDNFoedryxbg11+BH34Atm2TZCizZkkJCJDsjjlliKQiRE3jbupaWdbWkhUmIkK6cxlkkQ6T1slS5181b94821pD5hzLSERElJtLl2Skz86dMjXi5Eltpri2bWWYV9u28qW/XTsJsEyZdkH55+4OtGolRZeaEfHsWSlqOvyzZ4Hr16V3LCpKhuqprK0lu2KjRjKss2VLGdZZ2JkPXVyAvn2lxMYCv/wiAdf27bJGrW6AdetW9qyHVASYa60sNcji8i2kw+gg67nnngMAdO/eXW+RWXXR2fT0dPO1joiI6JGkJElEsHWr9FJlvfi8a5c2c1xwsMyfymnhXSo6dDMi6iTHBSD5CM6elUyHJ09qb+/d0wZiP/ygrV+3rgRcavH3L7yg2tUV6N9fSnS0pPtXRUbKvLOgIGDECOB//+PUnSKjZk25zU+QpY7sYoZBysLoIGvXrl0F0Q4iIqJsMjK0gdL33wNDhmgfs7GR9Yw6dZI1jXR7SdhjVfy5uACtW0tRKYpMfTl5UrIAHjki611duaJd/+ubb6Sura30cD35pLY3szDm23l5SVHt3Ck5EdS08DVqAO+8IwEZhxNamNqTdfmyzKsyZQ0CpnGnXBidwr24Ywp3Ks34GqeiTlHki/OmTTLn5Y03tHOmbtyQoOrZZ4HnnpNkBOq8Kirdbt3SBlxquXUre72GDSXYevJJIDBQFo0uDBERwMqVwOrVMj8NkO/m06ZJsGVj9CVvMgtFkbUFkpJkkmDt2saf48cfZSXygAAZo0zFTkGlcDc6yNqbNS1QFu11V2MsghhkUWnG1zgVRenpkgVw0yYp165pH3vmGZnjosqa4IIoJ4oiw/T27ZM1r/btk/leWTVsqF1kuH17SWNfkBITJfX7hx8Ct2/LRYLLl5nR0qKGDZPxm5MnSxILY4WGSpepl5c2hSkVK0UmyLLKYYC77tysoj4ni0EWlWZ8jVNRk5Ym0yJ0AytnZ6BLF+CFF2T+SmEnNKCS6fZtbTr/vXuBo0clGFPZ2UkPlxp0NWlScAF9QoKsz2ZlBYwfL/sURYYTBgWxZ6tYiYmRzC6ALCZXHFbdJj1FYjFiALiv9nM/kpaWhmPHjmH69Ol4//33zdYwIiIqWRRFhnHt369dDNjWVhZxjY+XtOsvvCALvnJOFZlb+fJAz55SAEmgsXOnZC7cvl0CfTVbpdqp8cILwEsvybwwcyZRcXYGJk7U3/f330DXrpI18eOPpWeNigE3Nwmy7t+X7lM/P0u3iIoIo4Ms1xwuKXbu3Bl2dnYIDg7G0aNHzdIwIiIqGS5cAL79FvjuO9kG5IuuOjLnyy8BT08mAaDC5eEhU2l69ZILAOfPS8D1558S8Fy+DCxaJKVSJQm4XnxR5nQVRHbAW7fku/rJk5IJvG9f4KOPZO0xKmDx8cCdO6YNFwQkw+D9+5L8gkEWPWK26zJeXl4IDw831+mIiKgYi42VuSetW8uaRrNmSYDl6Ai88ook8lL5+DDAIsvSaCQF/FtvyQLDt28DP/0EvPqqzJu6fh1YvlySZVSsCIwcKb2y5kwd1qePBHrDhkl7vv1W/ncWLpRhtVRA9uyRP/Kzz5p+DjXDYGSkedpEJYLRPVknTpzQu68oCm7evIkPPvgA/v7+5moXEREVYz//LGsCAXLVv1MnuTLfowczAlLR5+QkPVcvvACkpAA7dkjQ9fPP0uP0ySdS/PyAwYOBfv1kOGJ+eXoCn30GDB0KjBoFhIQAEybIEMatW/N/fspB1apye+mSZOExpZuSadwpB0YHWf7+/tBoNMiaL+OJJ57A6tWrzdYwIiIqHm7fBtaulQVl+/WTfS+9JF8We/WSK/S66wYRFSf29jJXqmtX6VH6+2/g668l6Dp1Sha+njQJ6NYNeO016RDJb+KKFi0kG/iaNTI/bOhQs/wolBNfX+lKT02VLssqVYw/B4MsyoHRwwUjIyNx6dIlREZGIjIyEleuXEFiYiIOHDiAevXqFUQbqRiKj49Hp06doCgKrl27hsDAQDRo0ACNGzfGxo0bAUgSlS5duli4pURkCkWRDG0vvyzzVSZOBObO1Q6fcnKSBBdjxzLAopLD1lay/337LXDzpvRmtWwJPHwIbN4syVt8fYGZM3Nep8sYVlbSS3bxovQAq7ZsAX77LX/nJh3W1jKnCpAFzUzBIItyYHSQVbVqVb3i6+vLVNCUzRdffIGXX34ZGo0GNjY2WLJkCc6cOYM///wTY8eORUJCAtzd3VGpUiUcPHjQ0s0lIgMlJgKrVgH+/jI5f+NGubrfsqVkDCziq3gQmY27OzB8OHDokCSrCA6WIYNRUcDs2dIhMnQocOZM/p7HxUWbSv76dekt69ZNFupOSMj/z0EAatWSW3MEWeacqEfFmtEd2suWLctxv0ajgYODA2rVqoX27dvDuiBS71Cx8d133+HXX38FAPj4+MDnUXokb29veHp64t69e3B2dkb37t3x/fffIyAgwGJtDQwMhL+/P5YsWWKxNphTSft5qGh54w3gm29k28lJhgeOGCFrChGVVn5+kqBi3jzp0Vq0SIKvL76Q8uyzsh5Wx475W3urXDnp3Vq0CPj8cxm6+M03kmCG8kENsi5eNO34KlWk6zE5WaJspoQkmBBkLV68GLdv30ZiYiLcHy2+dv/+fTg5OaFMmTK4desWatSogV27dsHX19fsDabc7d27Fx999BGOHj2KmzdvYvPmzeihO8agkKSkpCA6OhpeOYwROnr0KNLT0zNfG82aNcO7775bKO1i8EFkHEUBdu+WxYLVaQqDB8tckZEj5Yq6ugYnEcmCxr17yzDaAwck8NqyBfjjDylNmkgiiz59TMuv4OAg5+zSBRg4UDpe2rYFpk2TwkWMTVSzptya2pNlayvjRK9ckQyDDLIIJgwXnDt3Llq2bIkLFy7g7t27uHv3Ls6fP4/WrVtj6dKluHr1Kry9vTFOXWmSCk1CQgKaNGmCFStWWLQdd+/ezQzAdd27dw8DBgzA559/nrmvfPnyuHnzZoG3KVU3XzQR5enhQ2DDBhkC2LEjsHSp9rHAQEkzHRzMAIsoNxqNBD+bNsnSBaNGSc/v8eNA//6y4PCmTaaPLOvYEThxQoK19HRZIuHJJyUTIpmgdWvJnd+9u+nn4LwsysLoIGvatGlYvHgxaqpRP4BatWphwYIFmDp1KipXroz58+dj//79Zm0oPd6zzz6LOXPmoKe6nH0BCQkJQbt27eDo6Ah/f3/s3bsXGo0Gp06dAgA4ODggOTlZ75iUlBT06NEDU6ZMQZs2bTL3Jycnw9HR0ajnT0lJwejRo1GhQgU4ODigXbt2OHz4sF6dwMBAjBo1CmPHjoWnpyeCgoKwZ88eLF26FBqNBhqNBpcvX86sn5GRgUmTJsHDwwPe3t56vWuGPN+DBw/Qt29fODs7w8fHB4sXL0ZgYCDGjh1r8HkCAwMxevToXNsBANu2bUO7du3g5uaGcuXKoWvXrrho6vAGoiwSEoCPP5a1eV55BTh6VNa1srfX1tFoCmYhVqKSqmZNWWPr2jXg/fdlEeSzZ2Vh41atJD28KcGWu7ss8P3dd4Crq2Qk1P1fJSO0bi3pUAcONP0cDLIoC6ODrJs3b+Lhw4fZ9j98+BBRUVEAgIoVK+LBgwf5bx0VOadOncLTTz+NwMBAHDt2DNOnT0evXr1gb2+fmV3Sw8MDSUlJma8TRVEwaNAgdOzYEf3799c7X0REBOrXr595f82aNdA8ZsD6pEmT8NNPP2Ht2rUIDQ1FrVq1EBQUhHv37unVW7t2Lezs7LB//34sWbIEAQEBGDp0KG7evImbN2/qDWddu3YtnJ2dERISgvnz52P27NnYsWOHwc8XHByM/fv345dffsGOHTvwzz//IDQ01Oh259UOQHorg4ODceTIEezcuRNWVlbo2bMnMjIy8vydET3ORx/JcjFvvSWjXcqVA959F7h6VbIGElH+eHgAb78t38GnTwecnYEjR4BnnpGeqX//Ne28ffpI4o0PP9Tui49n/oVCxyCLslKM9NxzzynNmjVTQkNDM/eFhoYqzZs3V7p06aIoiqL88ssvip+fn7GnLhSxsbEKACU2NjbbY0lJScqZM2eUpKSk7AfGx+destbPq25iomF18wmAsnnz5nyfJ6unnnpK6dOnj96+bt26KU2bNtXb179/f2Xfvn2KoijKP//8o2g0GqVJkyaZ5cSJE4qiKMrixYuVFStWZB63adMmpW7durk+f3x8vGJra6t8++23mftSU1OVihUrKvPnz8/c16FDh2xt6tChgzJmzJhs5+zQoYPSrl07vX0tW7ZUJk+ebNDzxcXFKba2tsrGjRsz68TExChOTk6Zz2fIefJqR25u376tAFBOnjz52J9TUR7zGqdSbdw4RQEUpUYNRVmxQlESEizdIqKSLTpaUcaOVRQ7O/nfAxSle3dFOX06f+dNTVWUwEBFeflls3ydKD3i4xXlxAlFuX3btOO/+07+iE8+ad52UYHLKzbID6N7sr788kt4eHigefPmsLe3h729PVq0aAEPDw98+eWXAIAyZcpg4cKFBp9zxYoVqFatGhwcHNC6dWscOnTIoOPWr18PjUZTOMkdypTJvbz4on7dChVyr/vss/p1q1XLuV4BmzJlSuawudzKuXPn9I65cuUKdu3ahXfeeUdvv729PZpkSS02YsQIrFu3DgDQrl07ZGRkICwsLLM0atQIAPDrr7+iT58+mcf17Nkz2/PqunjxItLS0tC2bdvMfba2tmjVqhXOnj2rV7d58+YG/z4aN26sd9/Hxwe3bt0y6PkuXbqEtLQ0tGrVKrOOq6sr6tata3S7c2uH6sKFC+jTpw9q1KgBFxcXVKtWDQBw9epVg39Wohs3gDFj9K+cBwcDP/wg861GjJD5I0RUcCpUABYvljlbQ4ZIcrpffpHkGFOmmJ6ePSQE2LdP/p/btgV0RsZTXnr0ABo3Nn0RMvZkURZG56Hx9vbGjh07cO7cOZw/fx4AULduXb0vlE899ZTB59uwYQOCg4OxcuVKtG7dGkuWLEFQUBDCw8NRoUKFXI+7fPkyJkyYgCeffNLYH4EAjB8/HoMGDcqzTg31DeORsLAw2NnZoWHDhnr7z549i9dff11v3xNPPIEzZ85AUZRch//dv38fb731Vo5JMszB2dnZ4Lq2trZ69zUajUWG4D2uHd26dUPVqlWxatUqVKxYERkZGfDz82NiDzLIf//JkKJVq2SC/PnzkvEMACpXBnr1smz7iEqjKlUkzfvEicCkSRJoffgh8P33knTm+eeNS/verh2wa5dc/z1+XOZq/fijJK2hPNSqBfz1l+lp3NXvTDduSCp3riFb6hndk6WqV68eunfvju7du+sFWMZatGgRhg4ditdeew0NGjTAypUr4eTkhNWrV+d6THp6Ovr27YtZs2ZlCwQKTHx87uWnn/Tr3rqVe131G43q8uWc6xWw8uXLo169enkWOzs7vWOsra3x8OFDvaQWO3fuxOnTp7P1ZAHA4MGD85xf5e7ubnQvZM2aNTPnWanS0tJw+PBhNGjQIM9j7ezskG7kSqmGPF+NGjVga2url8QiNjY28yJEftutunv3LsLDwzFt2jQ8/fTTqF+/Pu7fv2/Uz0Ol03//Scr1mjUlsUVKinwRGz/e0i0jIlXdusDPP0uQVbWqzIfs2VMS3kVGGneudu1kvlfz5sDdu0CnTpJ8g/O08pDfBYk9PWUkkqJIKncq9QzqyQoODsZ7770HZ2dnBAcH51l30aJFBj95amoqjh49iqlTp2bus7KyQqdOnXDw4MFcj5s9ezYqVKiAIUOG4J9//snzOVJSUpCik9M0Li7O4PbpMaJXpMDqPkZ8fDwidN4cIiMjERYWBg8PD1RRF7nJh+bNm8PW1hYTJ07EuHHjcPr06czseTkFWabYvHkzpk6dmuuQQWdnZwwfPhwTJ07M/Lnmz5+PxMREDBkyJM9zV6tWDSEhIbh8+TLKlCkDDw8PWFnlfZ3BkOcrW7YsBg4cmFmnQoUKmDlzJqysrDKDzPy0W+Xu7o5y5crh888/h4+PD65evYopU6YYdCyVXnPnSnpntbOzfXtg5kzgqafytygqERWMbt2Ap5+WTIQffSSj13bulHWwxo83PIOgry/wzz+Smfybb4DRoyXgKqSlKYuf/K6VpdFIb9aJEzJkMB8dEFQyGBRkHTt2DGlpaZnbuXlcVris7ty5g/T09GyL1np5eeX6JXvfvn348ssvERYWZtBzzJs3D7NmzTKqXcXVkSNH9IZqqgHxwIEDsWbNmnyf38fHB6tXr8aUKVPw1Vdf4ZlnnsHAgQOxbt06eHh45Pv8gPQAhYeH51nngw8+QEZGBvr3748HDx6gRYsW2L59+2OHHU6YMAEDBw5EgwYNkJSUhMjIyMw5Tfl9vkWLFuHNN99E165d4eLigkmTJuHatWtw0BkuYGq7VVZWVli/fj1Gjx4NPz8/1K1bF8uWLUMgx4BQHsqVkwCrfXsJtvhyISr6nJwkyOrfX+ZI7toFvPMO8PXXwNq1knHcEI6OckyTJnLB5YUXCrbdxVp+e7IA/SCLSj2NohjWeXzp0iVUr17d6EAqLzdu3EClSpVw4MABBAQEZO6fNGkS9uzZg5CQEL36Dx48QOPGjfHJJ5/g2UcJJAYNGoSYmBhs2bIlx+fIqSfL19cXsbGxcHFx0aubnJyMyMhIVK9eXe/LMeUsIyMDgYGBaNeuHeYyx7OehIQEVKpUCQsXLjS4p6ow8DVesiUlyXDAGjW0+XjS0uRqNnuuiIonRZH5WcHBQHS0rFM3Y4akg7cxYmb9vXuSRl73vHxP0JGYqB1ddPeu/i/LUMHBks0kOBgwIgEcWVZcXBxcXV1zjA3yw+A5WbVr18bt27cz7/fu3RvR0dH5enJPT09YW1tnO090dDS8vb2z1b948SIuX76Mbt26wcbGBjY2Nvj666/xyy+/wMbGJsdFWe3t7eHi4qJXyDR79+7FTz/9hEuXLuHQoUPo3bs3rly5ggkTJli6aRZ37NgxfP/997h48SJCQ0PRt29fAMDzzz9v4ZZRaZCWBqxcKRdiJ02Sog4PtLWVNXj4ZYqoeNJogFdflQWMX3kFSE+XIb9PPmlcjgbdmGHvXkl2HBtr/vYWW05OQKVKsm1qbxYzDJIOg4OsrB1eW7duRYKp+UUfsbOzQ/PmzbFz587MfRkZGdi5c6dez5aqXr16OHnypF4q8O7du+Opp55CWFiY3uKyZH7R0dGYNGkSGjRogF69esHFxQWHDh0y21DB4m7BggVo0qQJOnXqhISEBPzzzz/w9PS0dLOoBFMUma/RqBEwfLgktapaVa5yW1tbunVEZE7u7tKj9e23gKurLMHQpAmwerVxCS1SU2UY4vbt0sOts0oIjR4NfPABkMOFfoOoQZaxmUqoRDI6hbu5BQcHY+DAgWjRogVatWqFJUuWICEhAa+99hoAYMCAAahUqRLmzZsHBwcH+Pn56R3v5uYGANn2k/n16tULvZjjOUdNmzbF0aNHLd0MKkVOn5a1rtRrVOXLA9OnyyR3QyfGE1Hx8+qrsv7VwIHAnj2yxtavv8rSDIZc17OzA7ZsAf73P+DYMclE+OefsmxnqTdpUv6O1+3J4njMUs/gnix1gdqs+/Krd+/eWLBgAWbMmAF/f3+EhYVh27Ztmckwrl69ips3b+b7eYiISpKoKAmw7OyAyZNlQdO33mKARVQaVK0q//8ffihDgrdskR7tP/807PimTWXB4qpV5b2jXTvgzJkCbXLpoEaqDx7IvC4q1QxOfGFlZYVnn30W9o8+wX/99Vd07Ngx24KvmzZtMn8rzSivyW1MCkAlHV/jxVdiIhAaKl+GVAsWSIKL6tUt1y4isqxjx4B+/SRI0mgki+DkyYZ1oly/DjzzjBxbrpz0jDVsWPBtLrJSUyXqvHdPJr2ZolIlGbsdEgK0amXe9lGBsHjii4EDB6JChQpwdXWFq6sr+vXrh4oVK2beVwsREZmPogAbNwL16snwnqgo7WMTJjDAIirtmjaVhYeHDpX3i6lTgd69AUOmzVeqJEkwWrSQjpdSnxDv5EnAzw946SXTz1GxotxyslupZ/CcrK+++qog20FERFmcPi1DAHftkvtVqgCXL5s+J5uISiZHR+Dzz4HmzeU9Y+NG4Nw5GUaoThPKTblykgRj/nxg9uxCaW7RpS5IfOuWDPkrW9b4c6jJwDhcsNQzuCeLiIgKR2ysLLPSpIkEWA4OkrL53DngiScs3ToiKqreeEPeM7y8pFOmRQtgx47HH+fhIUn17OzkvqLIiLlSx81Nmz3EmPz4usqVk1sGWaUeg6wcGDhNjajY4Wu76EtKktEqixfLejg9esh8iXfflavVRER5adsWOHpUpgPdvy/DjBcsMDzNe0aGZDJv3RoolXnHatWSW1PXymKQRY8wyNJha2sLAEhMTLRwS4gKhvraVl/rVPQ4Osp8ijp1gG3bgM2bOe+KiIxTqZIksRg8WIKmiROBvn0lgc7j3Lsn6+9FRACdOgG3bxd8e4sUdcgge7Ionyy+TlZRYm1tDTc3N9x6NFnRycnJLGnqiSxNURQkJibi1q1bcHNzgzVXqi0y4uJk8eDBg4HGjWXf7NmSIUwdukNEZCwHB+CLL4BmzYCxY2Uh46tXgV9+0U4byomnJ/D335Jc78wZoHNnuZ/XMSWKuXqySuV4S9LFICsL70czym8xKwyVQG5ubpmvcbIsRQF++AEYN06G5Bw+LOvWaDSAk5OlW0dEJYFGA4wcKUOQe/QA9u+X4Gn7dqBy5dyPq15dAqv27YHjx2XI4Y4dQKlIIp3fIIuJL+gRBllZaDQa+Pj4oEKFCkhLS7N0c4jMxtbWlj1YRcSFC8CoUdqFQ2vXljlX7DgnooLQoQPwzz9AUJD0TrVpI4FW/fq5H1Onjix4HBgoF4F69gT++KMULHj+xBPA++9L5iFTcLggPWLwYsQlRUEtOEZE9DjJycCHHwLz5gEpKfJlZepUWTiUa0MTUUG7ckUCrfBw6XD57TcgICDvY44dkyAtIUHmiXbuXDhtLbYOH5asI5UrA9euWbo1ZACLL0ZMRET58+230mOVkgI884ykWJ45kwEWERWOqlVlWHLr1jJl6Omngd9/z/uYpk2BH3+UJDwMsAzAnix6hD1ZREQFSFG0wwAfPpR5Ef37Ay+/zOGBRGQZCQlAr14y/M/aGvjyS2DgQMOPf/gQsCnJE07OnJFuv6ZNjV/9PTZW1tsCJJ0j194o8tiTRURUjCgKsH69TBxPSpJ9NjYyPKd3bwZYRGQ5zs7Azz8D/frJenyDBgEffWTYsZGRMl3pl18KtImWNWwY8Nxz0u1nLBcXiVwBZhgs5RhkERGZ2dWrQLduQJ8+8hn9ySeWbhERkT5bW2DtWmDCBLk/aZLMF32cFSuko+eVV4BDhwq2jRbj5SW30dHGH6vRMMMgAWCQRURkNunpwNKlQIMGMs/Bzg6YNUsyCRIRFTVWVtKD9f77cv/ttx8faM2bJ8kzkpKArl1NX7O3SFOHCEZFmXY852URGGQREZnFmTNA27ay6GdCAtCuHRAWJgsNl/iUx0RUrL39NjBnjnb7gw9yr2trC2zcKNOVbt8Gnn0WuHOncNpZaBhkkRkwyCIiMoOpU4GQEBmOv3IlsGdP3mvQEBEVJe+8A7z3nmxPnSrLTeSmbFnpra9aVdb9695dlqgoMfIzXBDQBlmck1WqMcgiIjKRbm7W5cslW9fp08Abb8gwHCKi4mTaNG2gNWUKMH9+7nV9fCQ7obs7cPCgBGYlRn57sjgni8Agi4jIaCkp8mVkxAjtvipVgB9+kPUniYiKq2nTgNmzZXvy5LwDrfr1ZQ2tdu0kcUaJYa6eLAZZpVpJXuWAiMjs/v0XGDwYOHtW7r/5pqQzJiIqKaZPl576mTMl0NJogIkTc67bsSPw1FMlbFmKWrUkujT1qhmDLAJ7soiIDJKUJF8y2raVAMvLS67gMsAiopJoxgzJjgpIL9WSJbnX1Q2w1q/XXoQqtsqVkzf8Pn1MPx5gkFXKMcgiInqMgwclk9aCBUBGhizgefo08OKLlm4ZEVHBmTEDePdd2R43Dvj667zrf/mlxCXduwP37xd484ouJr4gMMgiIspTcjLQsycQHi4TvX/5BVi3TvsZSkRUks2YIQEWIEOlf/st97rdusn81IgIoHdv4OHDwmljgTh9Gti6Fbh50/hjmfiCwCCLiChPDg6SOXDAAPnM7dbN0i0iIio8Go304vfvLwuu9+oF/PNPznUrVJALUU5OwI4dwIQJhdtWsxoxAujSBdi71/hjOVyQwCCLiEhPYiIwfrzMt1L16gWsXSupiomIShsrKxkK2LWr9O536wYcP55z3SZNpLcfAJYuleOKJTWNuykZBnWHC+qu9UGlCoMsIqJHDhyQuVeLFslFzAcPLN0iIqKiwdZWlqlo1w6IjQX+9z/g0qWc677wgjZpxvDhwL59hddOs1HTuJuyVpYaZKWnyy+LSiUGWURU6qmZA9u1A86fl7lXX30FlC1r6ZYRERUdjo7Ar78CjRtL7NG5c+4xyLRpwEsvAWlppo24s7j8LEjs4CBjJgEmvyjFGGQRUan277/azIGKop171aWLpVtGRFT0uLkB27YBNWpIT9b//gfExGSvZ2UFrFkjQdnbbxdyI80hvwsSM/lFqccgi4hKrYsXpfdKN3Mg514REeXNxwf480+JQ44fl5TtycnZ6zk7yzwuVXp64bUx3/LTkwUw+QUxyCKi0qtmTUlJ3L8/cOoUMwcSERmqZk1g+3bA1VWyDQ4aJOsI5ubGDaB9e+CbbwqtifmTn8QXAIMsgo2lG0BEVFhSUoC5c4EhQ2QtFwD49FPA2tqy7SIiKo6aNAE2bwaCgoANG2QI4dy5Odf9+mtJLnTsGNCokRxbpNWoAXz0EVCpkmnHM8gq9diTRUSlQmgo0KIFMHs28Prr2qy6DLCIiEz31FPAqlWyPW+edjuriRNl/lZSkmQfvH+/8NpoEnd3WeirTx/TjtdN406lEoMsIirRUlOBd98FWreWIYHlywNvvikLbBIRUf4NHAjMmCHbw4fLfK2srK2Bb78FqleXhBn9+uU9vLDYY+KLUo9BFhGVWCdOSHA1axbw8KGkEz59Wq6iEhGR+bz7rgRO6enyXnvyZPY6Hh7ATz9JhvOtW2VkQZF2+jTw++/A9evGH8vhgqUegywiKpF27pThgWFh8lm3YQOwcaP0ZBERkXlpNMAXX0hyiwcPZBmMGzey12vaFPjsM9meNUtimCLrrbckPeKePcYfyyCr1GOQRUQlUps2kv2qRw+5GPnyy5ZuERFRyWZvL4kw6tYFrl2TjK3x8dnrDRgAjBgBNGwI1KlT+O00WH7SuDPIKvUYZBFRiZCWJhOuHz6U+46OwL59wKZN2jUliYioYHl4SO+Up6ckHHr11ZzXx1q8WBaDr1278NtosPwsSMzEF6UegywiKvaOH5e5V8OGyQe3qlw5JrggIipsNWvK4u4ODsCvvwLBwdnr2NkBZcpo7585o836WmTkpyeLiS9KPQZZRFRspabKmP4WLWTtFXd3wNfX0q0iIqKAAGDdOtletkw7Dysn8+fL2llfflk4bTOYOXqy4uJkqAWVOgyyiKhYOnYMaNlSMlo9fAj07ClXQl95xdItIyIiQLIMzpkj26NGAX//nXO99HRJ5z5qlAwxLDLy05Pl7q4dSsEhg6USgywiKna+/FICrBMn5GLh+vWSFlj9PCQioqLh7bdlXpa6jMaFC9nrTJ4sSTJSUoAXXyxCMUl+gixra8DNTbY5ZLBUYpBFRMXOE08AVlbygX3mDNC7N+deEREVRWpq99atgfv3JZiKidGvY2UFrF0rCxVfvizZB4vEQsXVqwMLFuhP9jUGk1+UagyyiKjIS0iQydOqhg1locuNG4EKFSzXLiIiejxHR2DLFqByZSA8XC6MqZlgVe7uMiLB3l6yE86bZ5Gm6nN1BcaPB/r0Me14Jr8o1RhkEVGRtnOnTIju0QM4ckS7v25dizWJiIiM5O0tGQednIA//8w542DTpsAnn8j29OkyJLxY41pZpRqDLCIqkmJigNdfBzp1AiIj5QpoYqKlW0VERKZq2lSbcXD5cmDlyux1Bg8Ghg8HVqyQC2wWd/o08NtvwH//GX8sg6xSjUEWERUpiiILCDdooE3nO3IkcOoU0L69ZdtGRET588ILwPvvy3ZuGQc/+UQCrSIx13bsWJlItmuX8ccyyCrVikSQtWLFClSrVg0ODg5o3bo1Dh06lGvdVatW4cknn4S7uzvc3d3RqVOnPOsTUfEyaJBkl7p5E6hdG9i7F/j4Y6BsWUu3jIiIzGHqVKBvX0ndnlvGQVVMDLBqVaE1LTtzLEjMxBelksWDrA0bNiA4OBgzZ85EaGgomjRpgqCgINy6dSvH+rt370afPn2wa9cuHDx4EL6+vnjmmWdw/fr1Qm45ERWEJ54AbGyAd94Bjh8HnnzS0i0iIiJzMiTjICBDxFu1AoYNA77+utCbKcyxIDF7skoliwdZixYtwtChQ/Haa6+hQYMGWLlyJZycnLB69eoc63/77bcYMWIE/P39Ua9ePXzxxRfIyMjAzp07C7nlRGQOJ08C+/dr77/xhgyBnzNHMlIREVHJ4+Cgn3GwTx/p2dLl5CRrbAHy2RAWVtitRP56shhklWoWDbJSU1Nx9OhRdOrUKXOflZUVOnXqhIMHDxp0jsTERKSlpcFD7ZLNIiUlBXFxcXqFiCwvKUl6q5o1A/r1kzTtgKyXUqeOZdtGREQFz9sb+PlnuaC2bRswaVL2OjNmAM8+CyQny3yuQh95pwZZ7MkiI1k0yLpz5w7S09PhpXbFPuLl5YUoA68YTJ48GRUrVtQL1HTNmzcPrq6umcXX1zff7Sai/PnjD8DPD5g7V9ZKadpUgi4iIipdmjWThYgBYNEiIOtAJisr4JtvZF3gyEi5KFeoCxWr31HZk0VGsvhwwfz44IMPsH79emzevBkODg451pk6dSpiY2Mzy7Vr1wq5lUSkunZNJjk/9xxw6RJQqRKwebNkE/T0tHTriIjIEnr1AmbOlO0339QfQg5I/oiffpIhhn/8AcyeXYiNM1fiC0UxX5uoWLBokOXp6Qlra2tEZ+mCjY6Ohrf6os7FggUL8MEHH+DPP/9E48aNc61nb28PFxcXvUJEhe/KFaB+ffmgtLYGxo8Hzp6VRYaJiKh0mzFDMsumpQE9e8pnhq6mTYHPPpPttWuB+PhCaljVqsDChcCyZcYfq/ZkpaRwocdSyKJBlp2dHZo3b66XtEJNYhEQEJDrcfPnz8d7772Hbdu2oUWLFoXRVCLKp6pVgc6dgTZtgNBQYMECpmUnIiJhZSXBk78/cPs28Pzz2QOpAQNkDa3Dh4EyZQqpYS4uQHCwZOYwVpkygK2tbHPIYKlj8eGCwcHBWLVqFdauXYuzZ89i+PDhSEhIwGuvvQYAGDBgAKZOnZpZ/8MPP8T06dOxevVqVKtWDVFRUYiKikJ8oV3SICJDREfLYpK6HdVffw388w+QR+czERGVUs7OkgjDy0uW8BgwIPv8q+HDi9Hwco2G87JKMYsHWb1798aCBQswY8YM+Pv7IywsDNu2bctMhnH16lXcvHkzs/6nn36K1NRUvPTSS/Dx8cksCxYssNSPQEQ6UlOll6p2bWDlSmDiRO1jZcvK1UoiIqKcVKkic3Xt7ORWnauVky+/BAYOLITpTqdPA7/+KhOLjcUgq9TSKErpmokXFxcHV1dXxMbGcn4WkZlt3QqMGwecPy/3W7QAli+XBYaJiIgMtXYtMGiQbK9bJ1kFdV26BNStKxlq58yRJUEKzP/+B2zfDnz1lbZRhmrfXoZwbNgAvPxygTSP8qegYgNeUyaifAsPB7p0kXL+vAz1WL0aCAlhgEVERMYbOBCYMkW2hwyROEVXjRrAihWyPW2aLGxcYLggMZmAQRYR5dvnn0svlq2tDA88fx547TUODSQiItO9/75kHExNlYyDERH6jw8bBowaJdv9+gEnTxZQQ9S1srggMRmBX4GIyGhpaYDOVEnMmAH07QucOgXMny/JmIiIiPLDykoSJrVoITFK167A/fv6dRYvBp5+GkhIALp3l8yEZseeLDIBgywiMpiiAL/8ItkBe/fWTjZ2dQW++QaoU8ey7SMiopLFyUk+d3x9ZWi62rOlsrEBfvgBqFULuHxZFrxPSzNzIxhkkQkYZBGRQY4eBTp2lLVLzp2ThYSzLhZJRERkbj4+ktyvTBlg1y5gxAj9jIIeHhKIubrKeow2NmZuQH6GC3p4yO29e+ZrDxULDLKIKE9XrwL9+8twjd27AXt7mYwcEQFUq2bp1hERUWnQpAmwfr0MIfzyS1kqRFf9+sCFC5IEQ6Mx85OzJ4tMwCCLiHJ19KgMAfzmG7nfr58ktZg3T64YEhERFZYuXWQOFgBMnizraOkqX167nZAAHDtmpieuUgVYtEjSGRq78hGDrFKL62QRkR5F0V4FTE+X+VflywMLFwLNm1u2bUREVLopCvDWWxLvODrKCItWrfTrREcDzz4LREZK6nc/P4s0VZw+LQ3w8GCgVURxnSwiKlCJicCHHwL+/kBysuyztpYPsF27GGAREZHlaTTAkiWyPnBSkvRuXbigX8fVVRJmxMRIvatXLdHSR9SerPv35collRoMsohKuZQU4OOPgZo1Za7ViRPAunXax8uXL4Dx7URERCZSMwo2bw7cuQMEBelPl3JwkEQYDRoA169LoJXvvBOnT8tJjc34pCa+UBQgNjafjaDihEEWUSmVnAx88onMuXrrLfmAqlYNWLsWGDzY0q0jIiLKXdmywO+/ywXCyEgZHhgXp33cwwPYtg2oXFmy4XbtKiM2TDZpkqTX/esv446zs5O0iACHC5YyDLKISqGYGPlgGjlShlH4+EjAFR4ODBggwwSJiIiKMi8vYPt2oEIFICwM6NlTRmeofH0l0HJzAw4elPUdHz408cmYYZCMxCCLqJTQXbzRzU2GWfj6ylDBixeB4cPlghsREVFxUbMm8Mcf0ln099/AwIFARob28YYNgd9+kyGER44A166Z+EQMsshIDLKISrg7d4CZMyWg0v1wWbVK1roaOVIyNBERERVHzZoBmzYBtrbAhg1AcLB+pvW2bYEtW4ADB4Dq1U18kvwsSMwgq1RikEVUQl28KAFUlSrA7NnArVvA6tXax7282HNFREQlQ+fOMqcYAJYuBT76SP/xoCD9AOv2bSOfID89WWryi3xn36DihEEWUQkTEgK89BJQu7bMs0pKkqt8P/4ITJ9u6dYREREVjD59ZM1gQBYrVoOurH75RQKu9euNODl7sshINpZuABGZT3w80KmT3AKSbWniRCAwkGnYiYio5Bs3DrhxA1iwQDLlOjhIwgtd27cDCQlA376SCKNfPwNOzDlZZCQGWUTF2P37wObNwGuvSRBVpgwwapR8Bowfb+FV7omIiCzgww9lZN7q1cCrr8o+3UBr2TLJQvjll5JRNzXVgKVLKlcGFi+WHi1FMe7KJYOsUolBFlExFBoKfPop8O23Mhywdm3gySflsXnzLNs2IiIiS7KykuROigJ89ZX0WGk0wMsvy+PW1sDnn8u85E8/BYYMkaBr+PA8TursDIwda1qDGGSVSgyyiIqJ5GRg40aZZ/Xvv9r9fn7yGBEREQkrK+CLL2T7q6+0PVpqoGVlBaxYAdjbA0uWACNGSI/WmDEF0BgmviiVGGQRFQORkUDLltqLYLa2ktxixAhJTcv5VkRERPrUQEtRgDVrJNDSaIBeveRxjUYSZdjbyxDD0NDHjAQ8dUpS9zZpAlSrZnhD2JNVKjG7IFERFBcnq9OrqlYFXF1lras5c4CrV4HvvgPatWOARURElBs10Bo4EEhPlwyEGzdqH9doZJj9xo0yhyvPz9R33gF69JDMGcZgkFUqsSeLqIhQFGDfPpmIu3GjLBB8/bpcYbOykvf0atUAG/7XEhERGczaWj5bAUnr3qePBFMvvST7dLcByTj4008ytFAv6DI1jbsaZCUkyOQve3uTfg4qXtiTRWRh588D774L1KkDtG8vHwCJiYCnJ3DlirZerVoMsIiIiEyhBloDBkiP1iuvSPKorBRFEmG88ookzEhM1HnQ1DTurq5ytRRgb1YpwiCLyIKWLwfq1gVmzQIiIiR50ZAhwP79wNmzEngRERFR/llby5BANdDq10+G4CuKto5GI0PxbWyA77+XzL3Xrj160NSeLCsrwN1dtpn8otRgkEVUSO7dk6toBw5o93XsKG/6zz4LrFsnF8e++AJo04ZzrYiIiMzN2lqyDU6YIPenT5eLm2lp2jpDhwI7d8qIktBQSTx14AC4IDEZhUEWUQG6cUNSrnfuDFSoALz+uvReqRo2lAtiW7fKFbUyZSzXViIiotLAygr46CP5fLaykqDrueeA2FhtnfbtgcOHgcaN5XM6MBD4/YiJPVkAg6xSiEEWkZllZMibd0AAUKkSMHIk8NdfMjShcWOgdWv9+ur7LhERERWe4cOBX3+Vofp//SVLoujOha5WTXqwXnxRerqmfcyeLDIcp9ET5VNaGnDmjCybAchVse++A8LC5H5AANCzp5RatSzWTCIiIsriueeAf/4BunQBTp8GnngC+O03oHlzedzZGfjhB5m71aJhJeC/JTJsMCNDm8zCEAyySh0GWUQm+O8/YNs24I8/5OpXUpK8b5YtK49PnAjExMhyGhUrWrKlRERElJemTYGQEAm0Tp6UoYLffw907y6PW1kBM2YAgCOAMQCAX36RVO8vvGDgk3h4yC0TX5QaDLKIDBQaKm+627fLm7AuT09Jxa5e+Xr11cJvHxEREZnG11fWquzVC/jzT+D55yU5xvvvA3Z2+nXv3JE51rdvy1DCjz/W5sTIFXuySh3OySLKQVqapFG/dUu77+BBYMECCbA0GhlSMGsWcOiQzIFVAywiIiIqflxcZKjgyJFyf8EC+aw/d06n0qlTcPl7Cyb3ugRra1m0uEED4Ouv9VPBZ8Mgq9RhkEUEGe73zz/Ahx/KcAEPD1knY8sWbZ2gIGDwYJlvdfu2BF0zZkhqV2OGZRMREVHRZGsrPVNbtkhcdOwY0KwZ8Nlnj4KoGTNg17snxjfchsOHAX9/4P59YOBAmd919WouJ2aQVepwuCCVaufPyxvj0aP6a2QA8n6ou9J7rVqyzhURERGVbM8/LxdRBw6Uuddvvilzsb9z84IjAERHo2lTGc2yYIGMbNm2DfDzk+8W2YYPMsgqdRhkUYmXmChXog4dktK0KTBpkjzm5SWTXRVF3hDbtpWFgDt2lHTr7KEiIiIqnSpWlHnYixcDU6dK79aKMt6YAGSmcbe1lcd69pRFjRs00A+wMpMQMvFFqcMgi0qcjAxZWFANqk6elDWqVNeva4MsV1dg82agUSOgenWZa0VEREQESIA0frxcfH31VeDiuQoAgGN/3oJPlDagqldPph0kJ2uPPXcO6NZNgrD+geVgC0hPlqLwC0cpwCCLiq3bt2UtquPH5f6ECXJrZQVMm6a/VqC3tywC3KqV9FTpev75QmkuERERFVNNm8rUgu+fdwf+AmIux+DJWnLRdvx4WU/LygpwctIes3gxEBEhPVwLqpbDGUDyvj94IFk2qETTKEqeuVBKnLi4OLi6uiI2NhYufIEXK998Axw+LIsFnj6tH0RVqiRrV6mmTpULRa1aSalUiReNiIiIKJ+2bQOefRbhTv6ol3gMAODjA8yeDbz2GmBtra2akACsXAnMny/ZihPhCEck46vpl9BlVHVUqGChn4H0FFRswCCLioT0dODKFZksqpbYWGDdOm2d9u2lK16l0UgyiiZNJLvPlCn6b25EREREZvXvv0BAAJTq1bFh7iW8/TYQGSkP+flJQPW//+lf2FWDrT6TKqNixnW0wGHE1W6B8HBeAC4KGGSZCYMsy0lOlt6mWrW0+6ZOBX7+WbrTs2b302iA+Hht1/uKFfJG1rChTCxt2BAoU6bw2k9ERESl3J07wIYNkjnrpZeQkiLfT+bMkVTuAPDUU8DYsZLS3UZnYk6GX2NYnT6J0XW3w+WlZzBnjuxPTQXeegt44QXg6af1j6GCxyDLTBhkFbxDh2Su1LVrwOXLEhhFRgI3bkjglJQE2NtL3ddeA9askW17e6B2baBOHW3p3Vt/fDMRERFRUXP/PvD++8Dy5RI0AUDlysDQocDrr0umQjz1FLB7N/Ddd0h/uU/m6JtfftHOD69QQQKtjh2leo0a7O0qaAyyzIRBlmnu3ZPhfNevS7B0/bq2/PefzJVycJC6uoFTVmXKSLa/atXkfmionLtOHXkzYsp0IiIiKq6uXAE++QRYvVo6vQCZyvD888Ant16C176fJBIbNSrzmLNnpTds/frsy2j5+krG5KefLsQfopRhkGUmDLK0YmIkecTt20B0tGyrJTpa/tmdnaXu4MHyT56biAigZk3ZXrkS+P13eWOoWlVSo6ulXDlekSEiIqJibN8+iYY6dgTKls2xSkoK8NNPwKefSnUAWIk38AY+x9/t34X93Jlo3Vp/aGBaGrB/P7BrF/D337KOZ1oacOYMUL++1Pn8czmvn58UdQoFp0+YjkGWmZS0ICsjQ4IWNXA5eVLWZbh3T7/cuSPljz+0WUPfeEP+WXOjGzjNnCl1K1aUUqmSdrtKFVnEVw3IiIiIiEosLy9JF3j8ONC48WOrnzoFfPYZUO3ztzE+dR6W4S2MwTK4ukoPVVCQlKpV9Y9LSAAOHpQ66ve8gQOBr7/O/hzVqknAtWYN4Okp+65fl+O8vTlSKC8FFRtwap2FPHwoSR3U8uCBfnnlFe3VjXXr5KpGTEz2EhsrwZO7u9RdsUL+kXNz5442yPL0BNzc5NbbW94zvL212+o5AeDdd4FZs8z8SyAiIiIqblxdJciKiTGoup+fjBBM8fEA3gGaVrkH9wcyj2vTJikAULcu0Lkz0KyZZE5u0ADo1En/XMHBQLt2spTNqVNSoqNlDvzly/o9WtOmSdBlayujiypWBMqX15a339bOe79+XeaSubnJ90Rma86/IhFkrVixAh999BGioqLQpEkTLF++HK1atcq1/saNGzF9+nRcvnwZtWvXxocffojnnnsu3+1QFAl+bG21+65dk56gpCTJjpeUBCQmym1SkkxoVK1ZI0kfEhPl6kNiov52aChgZyd1Bw4Evvsu97Y89xzg4SHb+/fnPVTv/n1tQNSgAfDkk3KsbvH0lFK+vPa4OXNkkqYhOMSPiIiICBKJAHKl2wj2PuUAAE82uIvbvwFHjgDbt0sJCQHCw6WorK0l8GrSRDrMGjeWOez9+gGOjtp6d+5I0BUZqZ0fD8j3VGtrGXJ46ZIUXTNmaLcnTwa+/VZ7v0wZiSXVsm2b9iL9hg3SiVemjJSyZSVYU8uTT2q/78bEyPM7OkopTcGbxYOsDRs2IDg4GCtXrkTr1q2xZMkSBAUFITw8HBVyWKXtwIED6NOnD+bNm4euXbviu+++Q48ePRAaGgo/Pz+Dn7d5c/mjp6RI8KTe2tvLi1I1YgTw22+5n2fwYO0LZts2eeHlJjFR+6JTrzTY2MiLU32hurhISU/XHtejh3QDu7nlXHQDp9GjpRiCgRMRERGRkdQgy8CerEzlJMjC3buwtgZat5YyY4ac6u+/gb17gRMnJIi5d0/mY505A3z/vf6pPDwkYVilStrbihWBH3+UoMjNTRZIXrhQvn9GRwM3b8o8/Nu3gbg47XdSQL53OjjId2FAO9Lq+nW5rxvU/fJL3h0Fd+9qOwomT9afmmJjI+dycJDbgwcfZV6E9PZt3izfxe3s5LZ/f6BbN+N+zUWFxedktW7dGi1btsTHH38MAMjIyICvry/eeustTJkyJVv93r17IyEhAb/pRD5PPPEE/P39sXLlysc+nzruEogFkPO4S3WeEwAMGiRXGNQXhIODzD1ydJRoff167VWDH36QKwnOzvJY1tt27bQv6MRECc7UVOZEREREVAy8/DKwcSOwbJkscGWo3bslL3v9+hI55UFRJJvz8eMSdKmB1+XL8h3SWHZ2clFfDW5yurW11c7dUhQJvDIypNStK49ZWUnTb96Uzoq0NBlm+PCh9v5bb8n3Wysr6Xw4dCj3dn34oQSFGo0Ebnv26D/+yivAlCnSm1dQSuScrNTUVBw9ehRTp07N3GdlZYVOnTrh4MGDOR5z8OBBBAcH6+0LCgrCli1bcqyfkpKClJSUzPuxj7p2N26Mg4eHvAjU4uAgL8K4OG2QtWzZ434G7XoI//uflNwkJ2uvEADygtRpGhEREREVdepEpqgo+dJoqIwMuX3wwKDjypaVC/Tt2mn3KYr0et28KUGYbomKkhGMcXH6BZDvqlnTwxvj118NrzttmuF1J0/O+/H16yUJW/Xqhp/TWHGPfknm7neyaJB1584dpKenw8vLS2+/l5cXzp07l+MxUVFROdaPiorKsf68efMwK4eMDb16+ZrYaiIiIiIq9ebOlWKs//6T7hsyyPvvG55DID/u3r37aLSbeVh8TlZBmzp1ql7PV0xMDKpWrYqrV6+a9RdJxUdcXBx8fX1x7dq1EpHGn0zD1wHxNUB8DRBfAxQbG4sqVarAQ51IZiYWDbI8PT1hbW2N6Ohovf3R0dHw9vbO8Rhvb2+j6tvb28M+h4lPrq6u/Gcq5VxcXPgaIL4OiK8B4muA+BogWJl5MTGLLk1mZ2eH5s2bY+fOnZn7MjIysHPnTgQEBOR4TEBAgF59ANixY0eu9YmIiIiIiAqTxYcLBgcHY+DAgWjRogVatWqFJUuWICEhAa+99hoAYMCAAahUqRLmzZsHABgzZgw6dOiAhQsXokuXLli/fj2OHDmCz3XzQxIREREREVmIxYOs3r174/bt25gxYwaioqLg7++Pbdu2ZSa3uHr1ql73XZs2bfDdd99h2rRpePvtt1G7dm1s2bLF4DWy7O3tMXPmzByHEFLpwNcAAXwdEF8DxNcA8TVABfcasPg6WURERERERCWJRedkERERERERlTQMsoiIiIiIiMyIQRYREREREZEZMcgiIiIiIiIyo1IRZL3//vto06YNnJyc4ObmZtAxiqJgxowZ8PHxgaOjIzp16oQLFy4UbEOpwNy7dw99+/aFi4sL3NzcMGTIEMTHx+d5TGBgIDQajV558803C6nFZA4rVqxAtWrV4ODggNatW+PQoUN51t+4cSPq1asHBwcHNGrUCFu3bi2kllJBMeY1sGbNmmz/8w4ODoXYWjK3vXv3olu3bqhYsSI0Gg22bNny2GN2796NZs2awd7eHrVq1cKaNWsKvJ1UcIx9DezevTvb+4BGo0FUVFThNJjMat68eWjZsiXKli2LChUqoEePHggPD3/sceb4PlAqgqzU1FT06tULw4cPN/iY+fPnY9myZVi5ciVCQkLg7OyMoKAgJCcnF2BLqaD07dsXp0+fxo4dO/Dbb79h7969GDZs2GOPGzp0KG7evJlZ5s+fXwitJXPYsGEDgoODMXPmTISGhqJJkyYICgrCrVu3cqx/4MAB9OnTB0OGDMGxY8fQo0cP9OjRA6dOnSrklpO5GPsaAAAXFxe9//krV64UYovJ3BISEtCkSROsWLHCoPqRkZHo0qULnnrqKYSFhWHs2LF4/fXXsX379gJuKRUUY18DqvDwcL33ggoVKhRQC6kg7dmzByNHjsS///6LHTt2IC0tDc888wwSEhJyPcZs3weUUuSrr75SXF1dH1svIyND8fb2Vj766KPMfTExMYq9vb3y/fffF2ALqSCcOXNGAaAcPnw4c98ff/yhaDQa5fr167ke16FDB2XMmDGF0EIqCK1atVJGjhyZeT89PV2pWLGiMm/evBzrv/zyy0qXLl309rVu3Vp54403CrSdVHCMfQ0Y+hlBxRMAZfPmzXnWmTRpktKwYUO9fb1791aCgoIKsGVUWAx5DezatUsBoNy/f79Q2kSF69atWwoAZc+ePbnWMdf3gVLRk2WsyMhIREVFoVOnTpn7XF1d0bp1axw8eNCCLSNTHDx4EG5ubmjRokXmvk6dOsHKygohISF5Hvvtt9/C09MTfn5+mDp1KhITEwu6uWQGqampOHr0qN7/sJWVFTp16pTr//DBgwf16gNAUFAQ/+eLKVNeAwAQHx+PqlWrwtfXF88//zxOnz5dGM2lIoLvA6Ty9/eHj48POnfujP3791u6OWQmsbGxAAAPD49c65jrfcDG+OaVfOq4Wy8vL739Xl5eHJNbDEVFRWXr5rexsYGHh0eef89XX30VVatWRcWKFXHixAlMnjwZ4eHh2LRpU0E3mfLpzp07SE9Pz/F/+Ny5czkeExUVxf/5EsSU10DdunWxevVqNG7cGLGxsViwYAHatGmD06dPo3LlyoXRbLKw3N4H4uLikJSUBEdHRwu1jAqLj48PVq5ciRYtWiAlJQVffPEFAgMDERISgmbNmlm6eZQPGRkZGDt2LNq2bQs/P79c65nr+0CxDbKmTJmCDz/8MM86Z8+eRb169QqpRVTYDH0NmEp3zlajRo3g4+ODp59+GhcvXkTNmjVNPi8RFU0BAQEICAjIvN+mTRvUr18fn332Gd577z0LtoyICkvdunVRt27dzPtt2rTBxYsXsXjxYqxbt86CLaP8GjlyJE6dOoV9+/YVyvMV2yBr/PjxGDRoUJ51atSoYdK5vb29AQDR0dHw8fHJ3B8dHQ1/f3+TzknmZ+hrwNvbO9tE94cPH+LevXuZf2tDtG7dGgAQERHBIKuI8/T0hLW1NaKjo/X2R0dH5/o39/b2Nqo+FW2mvAaysrW1RdOmTREREVEQTaQiKLf3ARcXF/ZilWKtWrUqtC/mVDBGjRqVmfjscSMTzPV9oNjOySpfvjzq1auXZ7GzszPp3NWrV4e3tzd27tyZuS8uLg4hISF6VznJsgx9DQQEBCAmJgZHjx7NPPbvv/9GRkZGZuBkiLCwMADQC7ypaLKzs0Pz5s31/oczMjKwc+fOXP+HAwIC9OoDwI4dO/g/X0yZ8hrIKj09HSdPnuT/fCnC9wHKSVhYGN8HiilFUTBq1Chs3rwZf//9N6pXr/7YY8z2PmBKZo7i5sqVK8qxY8eUWbNmKWXKlFGOHTumHDt2THnw4EFmnbp16yqbNm3KvP/BBx8obm5uys8//6ycOHFCef7555Xq1asrSUlJlvgRKJ/+97//KU2bNlVCQkKUffv2KbVr11b69OmT+fh///2n1K1bVwkJCVEURVEiIiKU2bNnK0eOHFEiIyOVn3/+WalRo4bSvn17S/0IZKT169cr9vb2ypo1a5QzZ84ow4YNU9zc3JSoqChFURSlf//+ypQpUzLr79+/X7GxsVEWLFignD17Vpk5c6Zia2urnDx50lI/AuWTsa+BWbNmKdu3b1cuXryoHD16VHnllVcUBwcH5fTp05b6ESifHjx4kPmZD0BZtGiRcuzYMeXKlSuKoijKlClTlP79+2fWv3TpkuLk5KRMnDhROXv2rLJixQrF2tpa2bZtm6V+BMonY18DixcvVrZs2fL/9u49qOb8/wP485TOkW42UQqLCt10MduKVsd2IeQ2LG27khV7sSQKsw77dWcnacpgdpPMDha7pa01s7QqqxW2ohvLiFbaJdu0CVHn8/ujr8906pyuh3x/no+Zz4zP+3w+79vnnHFevS9HuH79ulBQUCAsW7ZM0NHREU6fPt1dTaAu+OSTTwQTExMhIyNDqKioEI9Hjx6J17yo7wOvRZAVHBwsAGhxnDlzRrwGgJCQkCCeK5VKQaFQCObm5oJMJhO8vb2Fa9euvfzKk1Y8ePBACAwMFAwNDQVjY2MhJCREJcguLS1VeU+UlZUJ48aNE0xNTQWZTCbY2NgIERERQnV1dTe1gDojNjZWGDRokCCVSgV3d3fh/Pnz4mteXl5CcHCwyvVHjx4Vhg0bJkilUsHBwUFIS0t7yTUmbevIeyAsLEy81tzcXJg0aZKQm5vbDbUmbXm+HXfz4/lzDw4OFry8vFrc4+LiIkilUmHo0KEq3w3of09H3wPbt28XrK2thZ49ewqmpqaCXC4Xfvnll+6pPHWZumff/Dv/i/o+IPlvBYiIiIiIiEgL/mfXZBEREREREb2KGGQRERERERFpEYMsIiIiIiIiLWKQRUREREREpEUMsoiIiIiIiLSIQRYREREREZEWMcgiIiIiIiLSIgZZREREREREWsQgi4iIiIiISIsYZBER/ZdcLkdYWFh3V4M6qPlz6+xz7O7nv3LlSkyfPr3byu8uDx48QL9+/XDr1q1uq8PcuXMRFRXVbeUT0f8/DLKI6LUyf/58SCSSFseNGzfwww8/YOPGjd1av5f9Rb+7A4sXoflzVNdGdWnd/fzz8/Ph4uLSbeU39dtvv0EikWDy5MkvvKzNmzdj2rRpGDx4MAAgKysLAQEBsLS0hEQiQXJyssZ7Q0JC4OHhofYz3fT4+eefW63D2rVrsXnzZlRXV2uxZUT0OmOQRUSvnYkTJ6KiokLlGDJkCExNTWFkZNTd1WuXp0+fdncVVLxK9ensc+zu53/58uVXJsiKj49HYGAg0tPTcffu3RdWzqNHjxAfH4+PPvpITKutrYWzszN2797d6r0NDQ1ITU3Ftm3bVD7Lffr0gUKhUEnz9vZuNS9HR0dYW1vj22+/1Uq7iIgYZBHRa0cmk8HCwkLl0NXVVTvtbOnSpYiMjISpqSksLCzw5ZdfquSlVCqxdetWDBkyBPr6+nB2dsbx48dbLf/48eNwcnKCvr4++vTpAx8fH9TW1mL+/PnIzMxETEyM+Bf451Oo5HI5lixZgrCwMJiZmWHChAkYPHgwdu3apZK3i4uLSh2VSiV27NgBGxsbyGQyDBo0CJs3bwYAjeW1J1919dF2fzQtZ8mSJTAxMYGZmRkUCgUEQdCYX9PnqK6NmtrdmedfU1ODoKAgGBgYoH///oiOju7U6OCdO3dQWVkJZ2dnMa2wsBCTJk2CsbExLCwssGLFCpVgNicnB56entDX14eLiwuysrIgkUhQWFjYobKbe/jwIb777juEhYVh/PjxOHDgQJfya81PP/0EmUyG0aNHi2n+/v7YtGkTZsyY0eq92dnZ0NPTw7hx48TPcUNDAx48eIB33nmnxee7LQEBAThy5EiX20REBDDIIiJqVWJiIgwMDJCTk4MdO3Zgw4YNOHXqlPj61q1bcfDgQezduxdFRUVYvnw5PvjgA2RmZqrNr6KiAoGBgViwYAFKSkqQkZGBmTNnQhAExMTEwMPDA6GhoeJf4AcOHKhSF6lUinPnzmHv3r3tqv+aNWuwbds2KBQKFBcX49ChQzA3NweANstrT980r482+6NpOT169MCFCxcQExODnTt34ptvvmlXHdW1sSPtbuv5h4eH49y5c0hJScGpU6dw9uxZ5ObmtrcLRfn5+TAxMcGQIUMAAHl5eRgzZgzc3NyQm5uLI0eO4PDhw9i+fTuAxgDM29sbcrkceXl5UCgUmD17NmQyGUaMGNHh8ps6evQoLCws4O7ujqCgIOzfv7/VoLYrzp49i1GjRnXq3pSUFAQEBEAikYhpeXl5AAA3N7cO5+fu7o4LFy6grq6uU/UhImqqR3dXgIjoZUtNTYWhoaF47u/vj2PHjqm9duTIkVi/fj0AwNbWFnFxcUhPT4evry/q6uqwZcsWnD59Gh4eHgCAoUOH4tdff8W+ffvg5eXVIr+KigrU19dj5syZePPNNwEATk5O4utSqRS9evWChYVFi3ttbW2xY8eOdrezpqYGMTExiIuLQ3BwMADA2toanp6eAAATE5NWy2tL8/q8iP4AgIEDByI6OhoSiQTDhw9HQUEBoqOjERoa2mYdNbWxve1u7fnX1NQgMTERhw4dEqejJSQkwNLSss16NZefn68yihUaGooPP/wQmzZtAgDY2NggJCQEqampUCgUWLp0KaZOnSq+PmLECCQmJuLOnTvo0aPxv/YZM2YgIyMD3t7eKqOJqampWLFiBZRKJVatWoWFCxeq1CU+Ph5BQUEAgOnTp2Px4sXIzMyEXC4Xr1m0aBEuXryIWbNm4Ysvvuhwe5+7fft2p/oLAE6cOIHo6GiVtNzcXAwcOBB9+vRpcb2m/njO0tIST58+xV9//SW+F4mIOotBFhG9dsaPH489e/aI5wYGBhqvHTlypMp5//79ce/ePQDAjRs38OjRI/j6+qpc8/TpU7i6uqrNz9nZGd7e3nBycsKECRPg5+eHWbNm4Y033miz3h39i39JSQnq6uraXI/SWc3r86L6Y/To0SqjFR4eHoiKikJDQ0O7poF1RWvP/+bNm3j27Bnc3d3F101MTDB8+PAOl9M0yLp69Sp+//33FuuDpFIp6urqcPv2bZw5c6bFtECZTKYSqC1btgwLFixAYmKimFZfX4/w8HCcOXMGJiYmGDVqFGbMmCEGJdeuXUN2drY4RdDQ0BDTpk1DfHy8GGRduXIFZWVl4qhRVzx+/Bg9e/bs8H0lJSW4e/dui/d2bm6uxlEsdf3RlL6+PoDGdWJERF3F6YJE9NoxMDCAjY2NePTv31/jtXp6eirnEokESqUSQOPaFQBIS0tDfn6+eBQXF2tch6Srq4tTp07h5MmTsLe3R2xsLIYPH47S0tJ21bspHR2dFtO4nj17Jv77+ZfGjmorX031edn98TK09vy1qenOgkVFRdDT08OwYcNUrikuLoaTkxPy8/MhlUrh4OCg8npJSYlKkCWXy1ts5HHhwgU4ODjAysoKhoaG8Pf3V9l5Lz4+Hm+99RZsbW3FtKCgIHz//feorq5GcXEx/P39UVhYiDFjxgAAvv76a7i5ucHR0RFz5szRmKaOmZkZqqqqOtBTjVJSUuDr69siQGstyFLXH039888/AIC+fft2uD5ERM0xyCIi6iR7e3vIZDKUlZWpBG02Njatrm2SSCQYO3Ys/vOf/yAvLw9SqRRJSUkAGkcrGhoa2lV+3759UVFRIZ7/+++/KsGJra0t9PX1kZ6erjEPdeW1la8mL6I/gMYNHpo6f/48bG1t2z2Kpa6NHelnTYYOHQo9PT1cvHhRTKuursYff/zRoXxqampw8+ZNMcgyMjJCQ0ODSmBbWlqKpKQkBAUFQVdXF/X19Xjy5In4enp6OoqKilSCLHXu3r0LKysr8dzKygrl5eUAGke5Dh48iPfff1/lHj8/P/Tq1QuHDx+Gvb09AgMDsWvXLmRnZ6Oqqgq7d+/GxYsXUVhYiH379qlN08TV1RXFxcXt7qvnTpw4gWnTpqmkVVZW4s8//+zUeiygcZ3bgAEDYGZm1qn7iYia4nRBIqJOMjIywsqVK7F8+XIolUp4enqiuroa586dg7GxsbgOqqmcnBykp6fDz88P/fr1Q05ODu7fvw87OzsAwODBg5GTk4Nbt27B0NAQpqam0NFR//ewd999FwcOHEBAQAB69+6NdevWqQQePXv2xKpVqxAZGQmpVIqxY8fi/v37KCoqErfMVldeW/m+zP4AgLKyMoSHh2Px4sXIzc1FbGxsh344Vl0b1aV1lJGREYKDgxEREQFTU1P069cP69evh46Ojsr0xrZcvnwZurq64sjU22+/jd69e2P16tX4/PPPcevWLSxZsgRz584Vf35AT08PERERWL58OYqKisTdDNsKslqTmpqKv//+G46Oji2mIo4bNw7x8fH4+OOPUVBQIK7j6tGjB6qqqhAZGYkFCxbAwcEBNTU1LdI0mTBhAtasWYOqqipxiujDhw9x48YN8ZrS0lLk5+fD1NQUgwYNwr1793Dp0iWkpKSo5PV8w5HOBllnz56Fn59fp+4lImqOI1lERF2wceNGKBQKbN26FXZ2dpg4cSLS0tLEXeKaMzY2RlZWFiZNmoRhw4Zh7dq1iIqKgr+/PwBg5cqV0NXVhb29Pfr27YuysjKNZa9ZswZeXl6YMmUKJk+ejOnTp8Pa2lrlGoVCgRUrVmDdunWws7PDnDlzxDVFmsprT74vqz8AYN68eXj8+DHc3d3x2WefYdmyZVi0aFG76qOpjR3p59bs3LkTHh4emDJlCnx8fDB27FjY2dmpTGM7cOBAq0FXfn4+RowYAZlMBqBxXVdycjKysrLg4OCA0NBQzJs3DwkJCQAa14Xt378fJ06cwMiRI5GQkIDg4GDY2Ni0GSxaWlqKI1cAUF5eLm48ER8fDwDw9fWFk5OTypGUlIRLly7hypUruH79ujid0MjICIWFhXBxccF7772H5ORktWmaODk5wc3NDUePHhXTLl26BFdXV3EdX3h4OFxdXbFu3ToAwI8//gh3d/cWI055eXkwNzfv1EYaT548QXJycrs2UyEiag+J8KL2ZSUiIuoiuVwOFxeXFr/b9aqqra2FlZUVoqKixNHC9evXIzMzExkZGS+kTKVSCblcDk9PT2zZskXltYyMDMTFxYlr4urr62FnZ4eMjAxx44vs7Gy1u/GpU1lZCT8/P3HUqGnA9emnn8LLywtubm4t0lpbl5WWloaIiAgUFhZqHLVtaurUqfD09ERkZGS76txU8/54bs+ePUhKSlJZn0ZE1BWcLkhERNRJeXl5uHr1Ktzd3VFdXY0NGzYAgMp6oZMnTyIuLk5rZWZlZeH+/ftwdXVFZWUlvvrqK9y+fbvFiJGPjw8uX76M2tpaDBgwAMeOHRN3Zhw/fjyUSiUiIyPbHWABQEFBARwdHcXzTZs24fz58+jVqxfGjBmD2bNnIyQkpEVaayZPnozr16+jvLy8Xb/T5unpicDAwHbX+TlN/QE0bnASGxvb4TyJiDThSBYREb2yXvWRrLy8PCxcuBDXrl2DVCrFqFGjsHPnzha/9aVNx44dw+rVq1FeXg5zc3P4+Phgy5Yt4o9MExFR92OQRUREREREpEXc+IKIiIiIiEiLGGQRERERERFpEYMsIiIiIiIiLWKQRUREREREpEUMsoiIiIiIiLSIQRYREREREZEWMcgiIiIiIiLSIgZZREREREREWsQgi4iIiIiISIsYZBEREREREWkRgywiIiIiIiIt+j93TJHp4BzRFwAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10, 4))\n", "plt.plot(fss_set, mu_data0[0], label=\"$\\mu$: parallel\", color='b', linestyle='solid')\n", "plt.plot(fss_set, mu_data0[1], label=\"$\\mu$: orthogonal\", color='b', linestyle='dashed')\n", "plt.plot(fss_set, g2_data0[0], label=\"$1 - g^{(2)}$: parallel\", color='r', linestyle='solid')\n", "plt.plot(fss_set, g2_data0[1], label=\"$1 - g^{(2)}$: orthogonal\", color='r', linestyle='dashed')\n", "plt.xlabel(\"Fine structure splitting, $log_{10}\\\\Delta_{fss}$ ($1/T_1$)\")\n", "plt.ylabel(\"Figure of Merit\")\n", "plt.legend()\n", "plt.ylim([0, 1.1])\n", "plt.xlim([-1, 2])\n", "plt.show()" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:18:01.227494Z", "start_time": "2024-02-09T09:18:01.135462Z" } } }, { "cell_type": "markdown", "source": [ "In the above plot, we can see the average photon number $\\mu$ (in blue) and a lower bound on the single-photon purity $1 - g^{(2)}$ (in red) as a function of fine structure splitting (in log scale) for two different cases: (1) excitation and collection in the diagonal D polarisation (the parallel configuration, solid curves), (2) excitation in the D polarisation and collection in the anti-diagonal A polarisation (the orthogonal configuration, dashed curves). When the FSS is much smaller than the emitter linewidth, we only see light when collecting parallel to the excitation polarisation because there is not enough time for the FSS phase rotation to occur before spontaneous emission. As we increase the FSS, this phase rotation becomes faster, decreasing the period of the beating to be on the order of the spontaneous emission time. At the point where it is fast compared to the lifetime, we see both parallel and orthogonal collection configurations have roughly equal average photon numbers. In other words, the FSS phase rotation is so fast that it no longer plays a significant role. However, if we continue to increase the FSS, eventually we separate $|x\\rangle$ and $|y\\rangle$ so far apart that they are no longer resonant with the excitation pulse, which is tuned to be half-way between the two states. Thus, both parallel and orthogonal collection efficiencies decrease dramatically along with the single-photon purity." ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "## Biexciton" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Another interesting quantum dot state is the biexciton state. This state occurs when a neutral quantum dot captures two excitons. In that case, the two excitons occupy both the $|x\\rangle$ and $|y\\rangle$ states, which behaves like a single biexciton particle, usually denoted XX. Here, we will denote the biexciton quantum state as $|b\\rangle$. Similar to adding electrons to orbitals of an atom, the energy required to create a second exciton captured by the quantum dot is not necessarily the same as the energy required to create the first exciton captured by the quantum dot. This is due to a binding energy, i.e. the energy due to the attractive or repulsive force between two exciton particles. In essence, this means that the transition frequency from biexciton state to the exciton state is not the same as the transition frequency from the exciton state to the ground state.\n", "\n", "One very interesting consequence of the binding energy is that the biexciton system does not behave like an ideal three-level ladder system. On the one hand, we are able to target just the exciton state without populating the biexciton state, provided that the spectral shape of our pulse is narrow enough. On the other hand, if we detune our excitation pulse such that it matches exactly half the energy required to excite the quantum dot ground state $|g\\rangle$ to the biexciton state $|b\\rangle$, it is possible to cause the quantum dot to directly absorb two photons, bypassing the intermediate exciton state and populating just the biexciton state. This is known as two-photon excitation (TPE).\n", "\n", "Let's explore the features of the biexciton system using ZPGenerator." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 27, "outputs": [], "source": [ "from zpgenerator import *\n", "import numpy as np\n", "import matplotlib.pyplot as plt" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:18:01.230411Z", "start_time": "2024-02-09T09:18:01.228420Z" } } }, { "cell_type": "markdown", "source": [ "The biexciton catalogue source gives us access to new parameters related to the four-level biexciton system. For more details on the model underlying the biexciton() source type, please see [Sources](sources.ipynb)." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 28, "outputs": [ { "data": { "text/plain": "{'resonance': 0,\n 'fss': 0,\n 'binding': 100,\n 'decay': 1.0,\n 'theta_c': 0,\n 'phi_c': 0,\n 'decay_b': 2,\n 'theta_bc': 0,\n 'phi_bc': 0,\n 'dephasing': 0,\n 'dephasing_fss': 0,\n 'width': 0.1,\n 'area': 3.141592653589793,\n 'detuning': 0,\n 'phase': 0,\n 'delay': 0,\n 'theta': 0,\n 'phi': 0,\n 'efficiency': 1}" }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Source.biexciton().default_parameters" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:18:01.251553Z", "start_time": "2024-02-09T09:18:01.244159Z" } } }, { "cell_type": "markdown", "source": [ "In addition to the parameters added by the exciton, we also now have biexciton parameters like the binding energy 'binding', and the biexction-to-exciton transition polarisation (via 'theta_bc' and 'phi_bc') and rate 'decay_b'. The binding energy is the additional energy supplied due to the attractive nature of two excitons, thus reducing the amount of energy required to go from the exciton to the biexciton state.\n", "\n", "The biexciton source is peculiar because it does not behave in a realistic way when using dirac pulses. This is because we now have multiple transitions at different resonant frequencies, and a dirac pulse in time will excite all frequencies equally and simultaneously. This can cause unexpected behaviour if we are not aware of it. So, let's switch right away to a more realistic Gaussian pulse shape." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 29, "outputs": [], "source": [ "source = Source.biexciton(pulse=Pulse.gaussian(parameters={'width': 0.1}))" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:18:01.289339Z", "start_time": "2024-02-09T09:18:01.258046Z" } } }, { "cell_type": "markdown", "source": [ "Note that the default exciton 'resonance' is 0 with respect to the global reference. We can see this reflected in the average photon number collected in mode 0, which is nearly 1 while the other transitions emit roughly zero light." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 30, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.028360012982632\n", "0.00064960756611665\n", "0.0006496017403545551\n", "0.0006496075654505162\n" ] } ], "source": [ "for i in range(4):\n", " print(source.mu(i, parameters={'binding': 100}))" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:18:01.534930Z", "start_time": "2024-02-09T09:18:01.266949Z" } } }, { "cell_type": "markdown", "source": [ "When the collection angles and phases 'theta_c', 'theta_bc', 'phi_b', and 'phi_bc' are all zero, the modes represent the transitions 0: $|x\\rangle\\rightarrow|g\\rangle$, 1: $|y\\rangle\\rightarrow|g\\rangle$, 2: $|b\\rangle\\rightarrow|x\\rangle$, and 3: $|b\\rangle\\rightarrow|y\\rangle$ corresponding to polarisations H (X), V (X), H (XX), and V (XX).\n", "\n", "Let's see if we can accomplish TPE by sweeping our laser detuning and seeing how the brightness of mode 0 responds. This technique of sweeping the excitation frequency and monitoring the intensity of the response is known as photoluminescence excitation (PLE). Commonly, this is done for multiple sweeps while increasing the excitation power to get a detailed picture of the system." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 31, "outputs": [], "source": [ "detunings = np.linspace(-80, 40, 40) # sweep from -80 to +40 in units of exciton linewidth\n", "areas = np.linspace(1, 10, 40) # pulse area going from pi-pulse up to a 10pi pulse\n", "mu_set = [[source.mu(0, parameters={'detuning': x, 'area': np.pi * y}) for x in detunings] for y in areas]" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:19:44.289203Z", "start_time": "2024-02-09T09:18:01.537785Z" } } }, { "cell_type": "markdown", "source": [ "Once our data is generated, we can plot the map:" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 32, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhwAAAG6CAYAAABDU58SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9f+xu2VUXjr/WPud5v+8wtCRVmDLQSgUFQgg/FBqQKCSVhpBGEiO/DBYaRFSiZRTSUQYoP6ySWIuKNEahSgUlUTAGAhEMEkIDQqgJH6PY2K8gsUWiMGVm7n2/n7PX94/1Y6+1zz7P89y5P2Zu77Nn3vec55y1f56913rttddem5iZcQ7ncA7ncA7ncA7ncA9DeaELcA7ncA7ncA7ncA4f/OEMOM7hHM7hHM7hHM7hnocz4DiHcziHcziHcziHex7OgOMczuEczuEczuEc7nk4A45zOIdzOIdzOIdzuOfhDDjO4RzO4RzO4RzO4Z6HM+A4h3M4h3M4h3M4h3sezoDjHM7hHM7hHM7hHO55OAOOcziHcziHcziHc7jn4Qw4zuEczuEczuEczuGehxcF4PjZn/1ZvO51r8Pjjz8OIsKP/uiPpvfMjG/+5m/GR37kR+KRRx7Ba17zGvz3//7fX5jCnsM5nMM5nMM5nMNthxcF4HjmmWfwKZ/yKfie7/me4fvv+q7vwt//+38fb3/72/ELv/ALePTRR/Ha174WN2/evM8lPYdzOIdzOIdzOIfnE+jFdngbEeFHfuRH8EVf9EUARLvx+OOP46/9tb+Gv/7X/zoA4Hd/93fx2GOP4R3veAe+9Eu/9AUs7TmcwzmcwzmcwzmcEuYXugDHwnvf+168733vw2te8xp/9mEf9mF49atfjXe9612bgOPWrVu4deuW/6614v/+3/+L3/f7fh+I6J6X+xzO4RzO4Rwe3MDM+MAHPoDHH38cpdy7xYCbN2/i6urqjtO5uLjAjRs37kKJ7l140QOO973vfQCAxx57LD1/7LHH/N0ovOUtb8Gb3/zme1q2cziHcziHc/jgDr/xG7+Bj/7oj74nad+8eROv+gMfivf91nLHab385S/He9/73hc16HjRA47nG5588kk88cQT/vt3f/d38cpXvhKf+wf+AuZy0QhX2g7yZ6w/x3QAFPUyoNYwNKYvBSBLT2kiXXpHLd+i5aCQHgFMBBTS5/ArSJ9FOkufAC6Z3q+gLq9YvlYNL2OqM1qesRUjXZdOSpAZZHTMnj51C31Uu3hbyVZNJ6QNRruyXiu3PGxVkUO+3P7I0oPEIb2P6YIBVM0PnMu4SpNBoJav1yv/ptAeBwOzfmv5lh5jEJVDv0Eh+fbeH1pf5Ll4P5R+08XT/lNnABN5/+ICoGg++rsWpZuNhtv7qeXBBeDLCpoZpTCYKjABKCx0hYGJgcKYdgtu7BbMZQGVilKAqVRMVDEVlvtScTld40N215hoATGDCgkNKiZiTFRRiLGjazw6X4PAWJhQUUAgkHYYqTqDwJipohJhqRNu1hkVBZUJFYTKBGYZwwsX7LngqhbcrDssdcLCBQsTlipxlkq4tczY8wSuBVf7CbUWcCXUSuAKvRZcVwIvE1AJ2ANYCFQJqNrHKsk42QO0n+RDLkCpMn6EJtwvQFnsOctzfee0dl0YxASqnMcRd78XG3Pc4sexqOMgjb8axl8cO5o+GYMJ49SJOtpENxwroSw9WRdv2d/Ez/5/342XvOQl2+ndYbi6usL7fmvB//zlj8FLX/L8tShPf6DiD/yR/x+urq7OgONOwstf/nIAwPvf/3585Ed+pD9///vfj0/91E/djHd5eYnLy8vV87lcYC7heWToLtTbMxf+8RkpU48gwH6TPqBAS/G30ZGnyzGNQh5f4ppA7wBGyWAiAY4gPDLA2HrGqS51AF7AIV7fNiU/ZNqQk/EhrxlGo4vP16AhE7ZnVBkogclZfHs/YpIW3575bzhNAxwhvci0LH6JZWxxEl0EKpG2ByAbYKN/wvZv+H4jSgcTm32mgQ0QgSdqALVoPAesCjAmAk1yRQFq4RXgqAUoE4TTzAIweAKYWICLAY0C1AsFGzOjTFVAR2EFHXDAMe32mGfCbibsSsFcFhSqKKU40JgmwuVU8cgEXE6EmQomqgF0kAIOwkVZcIMW7CYoXGNUrlgEcuh/jALGjipAwAJCZWDPC56rxfCm/OkguGbCXkHHIwvwXC3Y10kABxfsq1xp2cnzWjBXUtAxBdBB2C+EupQGOBx0FAEZBjYWAHsCLaSCXZ7RQij6m6p2GQUcDgwWAR3F3vuVQUsAIksAAnE8sHwjQgc0El175uPKxg8iaLBxR+3ZYBzF59SPnzZAGs0q3iCOloMmvb8PS/Af+hLCh77k+edThzO6F1940QOOV73qVXj5y1+On/7pn3aA8fTTT+MXfuEX8Bf/4l+8s8SPdSTq2baLhhGpdlgR4MwASsmCRYGK92v7kQQxdLTKIPUZaJ9zEFTCIsnLK0mwjitqzzB+5slpKNwEQqxWEpSh+FKH8Fzrug6cwYQn3oWqbaJ1JJeEse49g4kAogMPViZlnp5GAhLhGphdY3CN3puDveWRKpZuNR1PvG8AjWD9wOq00Tcrxv2vNUP8EPqMaDMOhzIxADZtnAHSYvdBixI0FAI4oUBDgEcExg4wDIiYNJpiOgzeCYM3OhQAEzBNpukgBRvXmGdGKQt204K5VMxlwY4WlCKakalU3JiucGNeMNOCy7LHTKL9mLHINynARIxLusaNaY+JFuxKdU0GwGAm7CFjeELFTNW75cIFlQp2TNhhwU1WTYd+Qi4FVBmFGVQn0MQgYjyHHYgnEfxFNBR7qkCRb7SAcDED+z1j4QlEBXtSWubWZwnSJlwBLqKJUVDIBXk8AMJLagOb9s4mBwzJwycMEB5ADJ+UOM+YACzSY5yF9X3Ob1vfNr606o1emJjAgNMmvmmF7ACExzXSmM7W+EPTJibmfP/CwhXLgBXeTvwHIbwoAMfv/d7v4T3veY//fu9734t3v/vdeNnLXoZXvvKVeOMb34jv+I7vwB/6Q38Ir3rVq/DUU0/h8ccf950szzscYe65ryrDPRRUwonwD0IkvIMPN2Foq7HQJ9fT5ZfhJ7sqd/g+Ckot43johehV6Aq18T8QlZk30LAqLayYw+iedHmCWkqRqa1mLflZ1HCk+wQ2QpwROBkyOwozJAUbowZMOCiy1wP9JzG7A2RH30eQCge58fu0P/L7qMFwEBHokrajiAYkApL0ZxoL02ikpZb+voJ3AGbVjkwc/qosn0wMlIp5t2BSzUcpFXOp2BUDHfI30YIbu2sBGaVip4BjoppAB8Ci2ZgWXWJZRHuBBsKJWJZIQA42LCykSyIg7KaCXd3jJs9gLqhEouWwJi1AqQKGCiqeWy6wL9JAXCpmrqAq2kxS4EEzACbsGSASQEGmjVRAoUgIrKDDJyr23Qw8GJ0+KKkPBACi304qyBKvH9c2hAqBFgDgo/M2JlKNyHavtUFjoGQLlw8nK/3zMJYk75jA4TJ6Ie5zqGDpM3cQ/0EILwrA8Uu/9Ev4vM/7PP9tthevf/3r8Y53vAPf+I3fiGeeeQZf8zVfg9/5nd/B53zO5+AnfuIn7s5a1UjNP3oXBQe3wdFgfydWAmJu/d2J8/gYFMvSXtF1M/LVmDRG06eXBiW1ohwMFIu8SZ8EGh8Y1iMksiWwDwGT8CzP4nL8BCLSOnEodx/qVoH6R02XENeOV6BotHQ0Sm6rPIN81xoLum3NRp831E7DgUgUXPpXCWKvYaAhgIuomRiBjQgyDMxwYWDmtGTCk/7p8gzrsspu3mOeFWxMFaUsmKcFk2o4ZhLA8Ui5wmVZHIjsaO+Ao/0xLnCFi8INhNAeuzKYJbJqPcy2SNuromABYUHBwhWFChiMSrPagLAsL7D0PSoTqAovmGgBg8ClAgzsucpvQNagFPhcESkAkbfEDLYZvS/367QkAsXa7l0lpn8FAYTYZw4AxdmYqz2Q+6sNqtW7DS4WaJKtV5ogtB8U4qxsw1KefBoPG44/Xpf2xeUd4oM2vCgAx+d+7ufikDsQIsK3fdu34du+7dvubsa9FmIUXBLYIBvRUkdrcQdp6zSBYAsctIrocEbzI9eubEtshtKNtCGSpQ9gYhamVA6o2lnpVAAdFlxNXbtVbVhNjzIIzRddnj2QCYK7F/K9bQb1tJzjR1DCoFzIQNsATDY6s7ZPcUbXA8FU13SkgZxmq4EjXZQgcaaq31Q0EiSz386+x/4kLb2fOnuPnpaagSg7iFj/ubHoDuAZ2SjU/ia7Vuwu9thNAizKBJRSUaaqz6qCjQWPzrdwo+yxI9VulIpd2eNy2ou9BgRc3KArXJY9CIxCUNCx4ILyToGJBMjsmWR5A605F9VkLFzUboOw4wnPVWCigoqqSycEKmqQSVXqRcAzSzEYgVlegghYSMFNEduTm1xU8yGAgyqSu0auCthcnYGmAQnAg6s+Liz2HRbfuoV9QwaoIC2jOjAxeutW1PiSa1BjH4SUwbRutDUQQsI2/uL4WpMPxmkMEcAQbUwiIn13fQFCRcWdLIrcWez7F14UgOMFC3Hdrmfg3uMDp96cmuqAIqXzQbolpvtRmR+5YE6DPDwYppgH4Wp4O9iAq1C5cjb4tJmFkdtva59V9mFgmyZnBE6iNsBiWdtwpjMaF7wbdDRgEmSzMv/TGSZavbY0DW5931DEegLncW1lmMezpRTHGnuLqDV4XPbaoNTvEiTBoFta2TiAjbiAZsVy4aSx4q4mm/k6oFDDUBRSo2KstBd1AnimBiyIhxoOLgDvBFSw2mrAjEN1OUW0IxXzxYIysfwVxqxgo0wV89S0GI/OV7gx7XFBYs8xq03GrqiGQ8HGI+UKl9RsOggVhYAJCy6ChmMmWWqxsDBhr6ADgGg2IDtTmGRXyw4VMzGe4x0qF4ETRWw4SqkgmsRYkhaAbuHZ5RJgwqIfg+w76A6ZAsYOC+o1gTCJiUZpnaQCYncBGaNiT0Vif2XjVVmCuZFgYy5M6Rs76DZ2GJZtElvjQE8CpnjZYHURzWB7DLQ+L7uCOD7s43ADL9EWJQWrRARBh8DESeP03oaFGcsdaFnuJO79DA834LAwGi09XBfC9S9CmI1TftHF4ghsItBIswllHKbnjNKfU2K+e6WVN6TrpQqGop00IxjoiEI5rPlzw02so5e77NatYyCmCe4+kJbf8JH/jsGic1OdOgaMQCFmk4xFe1AyBilgpF0oOT2TvQZkAijhrkyhBY7VncM3TNHCbWujBhwpEVFi6G5jS9Z1KEVqO51EgsiSht1Twy4GRJSmTkhbafPVwAkp2MggxA1LdWkEBagzi73G1AAGTxyWVABMAJWKi4sF88Rit6G2G1ORZ2VasJvERuPR+QqX0x4XtMdFWbCjPXYKPC7KHhdFNBwfUm7hUoHETEszBGXdGquAY8aCabUvG1h4jz0mAGLQWbVhFxTsUbBwwTRVzHXBc6zGodpfiHV3CRa3lSFc4ZkKLLUBPdkBVMDEqFQxFcJuXlAX8t0eqJJU1ETQhGbAXVV4UugbAUSK3QfLltrwPX3uYVdLn9sjMySNQpwKBHS0RzAgbuMj8pTcmTnzpZi25xvH1ZqvxvJZ3sPg5aBMNyLnjefncEfhDDgOBu3gBu0BnxnY2xXsJ8rPglxYjcAoSRm+wEq2Pq7vHDikAbs2PjVjK/ZMG8Dx5RFAGFcU9hU+k01rqKElWnUyCxi22sLOvQ7SmbAf0UVZzN3v/j0QwEQEHY02/mZA/Q10DGcAZCLQOBaGyyrdvQOjI0HAw6HWQ+iHPfwbQ0G/jYDEkIYBD0j/cUBiSyFB82GaDiZGnShsdQ1gg7rfSgO7RpsOTZNNwzFXzPMeZa6gUkEOOKru9pAllItpj0enW7gsAiwcYNCCnS6t7Ogaj5QFj5QrXDjYyIBjpgrwgrmw++fYaD3VdBRU2oMj0NDrAtl+O/GCZ5ZLiV0UBJRFPqyqiHha8CG4wl79ochqyYSiXkAmMMSUkMBYsCyyi0UMO6nxDO0wZNuNK1T9IcAj22zod5wArrq0CnI3Qj4nsvFe2nhhhuheCD4RMF6TNB21tZrvZPGJjIF1u7bdKzbhEbYl34AjwN8KkZelLxbRDTe6E8bp/Q5no9GHOfhSC06QmCbF+3fIQKRj+tyNBdhANUOvEuKQggqENDtjsJRFvK9hdhGt21f0yhII67qEKnKcjmy0DVnb+IMxoYGdPh8vUww1vCZsMwruwEKkNZBiACaClIQiA72qqnuHRG44HMCMpzIAMM+LHxyzL9KgcBRml7EVQ/l7dhpn4Jba1QHCCDikZyRajbD1NQGM+HtmQJdRxHcHi1GlazV0+WHeYzfrlldasCucjELnIkslj8xXotlQoHGpmo0IOC5owY1yhQ+dbmFWJ18zlrBbJQCPsuBSfWyMdmRa2JGYBCxccK3oiUjtK4hhKgEixkK3IB46dqhUUCHakEIGKAhzIVzQHkxF3WuI3x7ZlWJWHrrsMxEWriAWJsFUHC9GDQZPEJuqHqSj05ZNAOu4iiuYrAQ+ydDv7bvVjM76vmplSW1FNszWGvhQ4LPajRL5UocJjo+CSNcij+KtxumI4D6HCsZyBhwfhMEEjQvb7kPZOnaKgBhB41ObLWAwKOy5zSpCaslPhUbkRAAE5cSquEStTC4MCQ5KyNciO2RfSdWk7IzKqlNMbDGair2bKAhde8CxHl1ILZinH+FFAAdYf4r4YrUbxfLmjg4xTc6AJgAMSnn36fR0fSFpDSxuSwtyCFlthxGYkM8c+qKBB3sOtOoRNbBR7DvTAIRQ8hTadqBQ2zpbEJZQmsMvuK0Hms3GLKCCivyhMEiXUXiC3jOgTr+miVEmYC6M2QxDpxru97icF1xMFTuqarOxx053p8hySsVF2eORsseFeSAFYyIW8GHaDX12QWJ/Ye3MPn5WX0GblcFcZQmEi8dRVxZYGChFnG3NtWJPFXueUMAoxOKES78fFdEwzBCHY+L7g5tCQqQ6mAiF9Lsw1BiSxt1J6WysNA1H+HM+BlneWkIfo66/KegkQJdPDOk0+zVmTssybF5Lo45D45D2oTzuaM27Vl9hC34EWypDQ6lB+gZKWeQQEdg53NXw8AEOC6N+e6otR2+KTfCdJNTF6/v0ig46FDkICo2fVOWq5UhjCbI335hjWprsymgMAXVNR0GaU3uxaoaeP8i47Pfhr9vQhfOIMXbjf8UBrCwjzFLDw9F71S6tdq2s6PSfRKdADt23VvSW2yGgxC6Q/WtMrAdJMf2IKoFVv/OdLF1x4p+XYgg2Aq0Sm4Ehq+o9gYrwx0pr2o46UQIfTgPOWpHBEgoVBcUKPsQRGGOaK6iwuyYvhVGoNu+hunRyY7p2w9CZavcnW113ZY8b5Ro71WRM0OWSdBW/GBf6O2z+AOjArFHHagEwM2NBRWXdvsoNrFh/JpKdMHtacG2OLlQrECwdAG3+iSqWADrUbMO1CT7WC9xXTupWNvGwfwrasmvqPN2t9SEOvwebH0ST0WwvCGjbzrs2ZB38ZMWqg+2sytOaY8IWJ9I4T038iTsC+2k+cyi8HozT9DMxxnV97mF4WJZUynGSD+Jw7Bs5LzjlY9Kw727RRSvqLfom/G1ADgIjpZd/ZyHa0wFoDnnCn/kOgLo2Zn3m78JfWcVl8Tsw+IPuBBEXyvrH/Z+lJfTiAhmrMnq9dL2a+jLE9EJ72Od0A7tVO3EDG0zr/Nzug739MlJs7R0uLd6hYGUaBQcU3IoTZJUXk9pDK77NduP2Vd8SSxQAwlqzMVxKUbDhoIJC2gY+DGx0hqQOMkzTQQyaK+ZddU+hAjTivWgodmXB5ST+MgxgNIdeei4KRNtxA9e600T/0Bx8maZjQsWlghQDIA2IMGa9SrHlntKftPQOrDte5EsQGQg1GrkX7YrsbTGwYe+jJ5VCpHYkjMo27VAQYX0zfn8zNNc0R90xWUPHvhlBCDU87CZplk/shwDicQ3gsVNEMjoL3OrRFy2l12WZgoO0OChHdAZe8ngdpdfHeyGC7VK5k7/bCT/7sz+L173udXj88cdBRPjRH/3Ro3F+5md+Bp/+6Z+Oy8tLfNzHfRze8Y533HY9H0LA0UmtXl2++gvvTgjZEHGUFqdOTugFJKc0qLsOhW4EEzFdT79Px4TlgTS9XG0SukWfDnw68Ed+CNQROob4L+gEfg92bLmDRt8stE0CYqP2ie0UGfpWX/HyMAycWFu1NCJeXTP7YRAOPf7LKQ61EOkjuxChYPRpAKMx9wZCaJxmCAY2RiDEZ9IOSnT3yfCjtbRJl0oK9X8COogYVIC57GU76xBstL8d7XGDrhNdTxM9i+pGHST72O5aArjIfwIUQDJGGM1T6fpPnouWkALYiM3B7arf0nNOnYraClrk4NaJwaqNkvZugJADXfsGjMG9ddkIQMI9a99ihMjatwz0erzSe+DoWqdLh5D7q/f/bgn7lMC3S72JdD64wjPPPINP+ZRPwfd8z/ecRP/e974XX/iFX4jP+7zPw7vf/W688Y1vxFd/9VfjJ3/yJ28r34d3ScXDoR4WevdB471Gd8hoTxOCMRI6FEFJmcMPGtCb6sPKOBpb+n64tGnvOtpIMqjp4XDq+L6d+MNnGz4w+jr2dKv3jS5pkvr3dr8V/1BZgNS2zzcwcHia4DtNADtVeNRIjPBcXZVn7UcAEg4iBiDDgEbQeFS12eiNTXsHYGVursop/EUtx1QYF2WPS90G24DGkv/Kggva40YJoARyKqycctJ2oAjYaJqMQk2TkdoZMl6CT7vwySWO7EBl3S5KtjGkXa2JSPqgrVDIssK4o8urgfM7IH9L2kiCBj+OgV0ENtfRxbonPmEnww7iRFpzOrZKI1Erazs4pgaZbNLeJl1syLswTm832MaiO4l/O+ELvuAL8AVf8AUn07/97W/Hq171Kvzdv/t3AQCf+ImfiJ/7uZ/D3/t7fw+vfe1rT07nIQccB9EBvNdFdd8QeNiA0ZNhTbp3WcV5DFm0jfzdO98A0fdRTJwao1rVq+EcmyCJ/42wE6cfX140lgO2VoXoH3iEUWKD0bsF4Fa0G3R1A2wgMK2YXpjcbeZrYCOAjlQaxhjkjBhUX4+7wMAS2Aj9qU9c6Gxm2PrDUBuhyyjeZyOQMABBaI6/TJp2Wg5P0/xr6G+/RvUBATSJ11DSZZVCA8BRGBdqIDoVRgngYvKzU2RJRMDGtSy32O6TqN1QYDGrZmNSw03ZICPGjrGbx2UL22kaZ+Dy1/p6gRzwZsfUyyFlbPN8AMBSJc6OKva1QvaphLk+iWZDVh4JEwELddoVn4DAd5iYDc5YlNuyovCmSOddKPZfRu4DvMGm4kQHXRoxh2jjNVIgEBBtrQ5060YXfnp1RixG622+Q4Z0Bvzs3X0GGhYW3NkuFYv79NNPp+dbp6bfbnjXu96F17zmNenZa1/7WrzxjW+8rXQeviWV1Kl6KE9r2n6GMFi2MDq/j0sBRhcYRYsT0/XUdJBHIU9JG+3lsHXKtoDrIAGapzG+lT2HvoPS+9KE2m7Y0dRg6DJIpyLulxAYzS4DLb1mpxFpN+w3ah0vmaCj21iWacs6Wt8a8m2tK+0Wl164Y+omR4Zl6foQDzDSEGCtH91O8K4Y84WpyxVc2I6TyUVSABoNTETjTuEAzUeL0aa/aCAa7EEaehDvo81JGCWNR7+9FvMCMrBRVCtA4mejLadUXEzXuJjiOSgKGkzDAdnmeoFrPFKuVaththp6j8UByA6yVXYmsc+YTbNBGNhwBLxEht/CMo8jU/Y+IwafBh7skxiIaNtdAThYih3PZJ8tmcDtWJb0PXMXU9HemExma5E3wSrT4sYh5KmlwRLzsQ7UfvvyCmdStvJQ/B3IIrsL46UvSyqG1o9De9njRMfeWhkseXFCYUJdWgPc/7Dwnf8BwCte8Qp82Id9mP+95S1vuSvle9/73ofHHnssPXvsscfw9NNP47nnnjs5nYdcw4EOofcABKFXxzjs4KT1V+3axIMICWrk13E0mEMuKCtwB106UtySy/IO3kO5e83NE6lXizgU2B41YdPesKdpD/30Y9v3NwwBJKXZRD+KI5gaPO9DYqAbyyN9Sgc0DIwI3jomze1LZWa1zsjeOcM91TDt1KD9LH0yUjA6aCru30eNBaI9ANoWVpOo9izmQ3I2SvTVkZZZSls6wYyw6wThT38XBkoFzVXPQzHBXRV4iHCeJhGwF/M1LqbFbTkMcEylosA0FwsuyzVu9KfB6rVAjUQNnBCLRgNtCWVSwGAAAzBPvxnPWn8QVzmERYGwesRwo9KixqhV0RwzUKuCAgPekOukSz728WrVMR24hX2eKR6iYn23E+C2e8Qj+m10v6XgU3e4ELItSezz0beHsLZuCSXysILm+MvqGJgART9C3lmV1neeaJ9l66+hrl4gyLhwptUcIuYh0TEwA98Mb98PxvAbv/EbeOlLX+q/74Z2426GM+AYBQcUlLmN92gVywF4uG3FAG80OgMRUfCHCGqjMVpH7QoIIDjOyaKv/VbJmizFR0mbBI6CLHGeXvCOBd5mBqfSHqSzNuPDhEFrs0VnQMOrnQBNoNN3xq5X7wb3dzPEs1AOXVkLwbaMMsBzbNoPYlSdsjMCDw9XJqBaeh3Y4LAs4rR6Foq5QG92Gxx2rbA6/RKQ4dbIapFsjq6Aqv40agAabRfKpHYdRGKzsbMdKHp+q1wVbCigmVi1IwoIzIizpKu0Vuw+fdewJq/MfmCb0dgavG3EMq3cnnWzF2eaCtt9IqCo8iylYbjCMt6bAzBbMhUlXvjQRudjdqP/c3hXIF6BXU2BVT9vfaltWXWwE/gCA83xV1cH8jYJtG4vZa2VspOn1OVD4QNFnhwwDKWXIbGuCQ6xmhci3C0bjpe+9KUJcNyt8PKXvxzvf//707P3v//9eOlLX4pHHnnk5HQeXsDhPbxD3G4Vjb6nh1GgAt80DRzS6YU/A6QnJzU6Ewrrex9TFNJ0wWNpdr4YFBGYy/JcVnKc40xlpHpd1XHcaBzoTj3+/OQJxSYdB9BDq1f5d+BECRBmMkoNwoN0Am1o7RVDTnRAtszdqg4faOMuPYtyCHyQ5Cs1krQjfVpO6W0xkt0GKThAc+Bl78IaQzQqNYdeVfNugIQDLcv5KKGLWbp5Ew5hKgCo4JonzLx4RUV2NUFLICyYcEuFlmgWJiywLaxyP2HGFQjXzJhYHHwV1XQsaFtebUZetRW7UewyfWHgFk/Y84Q9EyoTFirYs7g537P8XXPB79UbuOYZ11Xqc1Vn+c0zruqEa55xa5nw7HKJPc/iGp0LFp6waDrpWZ3BI8S3+ijkBqzWCcj/bZ8UalOy6or6nSg9inwKqd9H+U7xn6SN7AdgGM8JubSEDJCswMYoPWCYl+0iWo3T/mGfEI/zuFdBvNA+fxhU7yDuKeGzPuuz8OM//uPp2b//9/8en/VZn3Vb6TyEgMNYx+ADjYRAJD2kKehkfHrVqQtT7saEdUBxT9ch+SbkOQiZrpxKFwcN2bOVvF6DBt4UiP2R8R0gCs+SsPTod0A3AgTrgneAgIayn1ZpqneLKF30SoF+lXlkYkmzcqCQJ4INAE1rrJXybx+eM9nhXAE4IL83eSRWkU2Au9zSbbPJ7qKXZVg/k6UYPaujmEFiLp+DFf9tCZh+ADAjGdd8KOmCCQsvaJtKrb9Ku1YVR9fYYaq23EJ+PPzCerCa7xBhVCbsUOVoEzSPn0SMwqTASfpDUUEYwcY1Jj85Vg5tIyy16OmxAhKuuOC5usN1nXDN7U9ASmkAZBG6pTZgUfW4+4UJlYvUgQuul4LK2p/1XBM5IdZAmACxusSPFDCC/rmdk9ppmRaPpIGASA+4Lx5X+Tg/MqYV04+CXvvUwMi6d5QnS8Md6GcbUxEYENIEcQsz9KC/Y9RsZRgyz41nH2Th937v9/Ce97zHf7/3ve/Fu9/9brzsZS/DK1/5Sjz55JP4zd/8Tfzzf/7PAQBf+7Vfi3/4D/8hvvEbvxFveMMb8B/+w3/AD//wD+PHfuzHbivfhxBwWAideCtE1G2dOGpAOro4FjeTJhNvwQFYBA5eNtN2BO+iZINVE7K4BiY0qqzadKfJAq7GNHN8H3hdYSVfjkvG3dv+7vBMwOmOzPxXdD2iWxG3ko29Dw4+wYiO+7y1bXn0AS1V6xP2vUfcL9PJo400j/K21kda6Q9pmLRvUDh2Pubj3UV7gdL5BNpS0aisYIFId630fjj6NHVHBAfNiGM0MqHeymr+NvogoMP8KNqx5Ao2dEdIBXBFM4ounSzMKCgoxNijoLi9hcwiKxfdqaLFJqCwgJUGOBR0qE3Engl7yDH0C0MBx6QaDdV0YMIVF9zkHRYHGrMCjyKAo4om5LoWPMc7ByGmzdgr0GBNkxVsMJe2jMKkyykNDTGT2FAYKIl/sU9Aunbhdd/pl3JN8dDTyeSobetvoCKCiCDUY08dLPVkjWscm6uc+xKPecpq2cXGcy7jOp0O3NzHYH4R7yT+7YRf+qVfwud93uf57yeeeAIA8PrXvx7veMc78L//9//Gr//6r/v7V73qVfixH/sxfP3Xfz2++7u/Gx/90R+Nf/JP/sltbYkFHmrAoeHQjDNx90DXxwl0dHAGa2gg0B3p127wdYyOG92hLWAEiDvkfra8JvVTZA/RWbXueRjmEWZxqxnKVhobdH5Ph+lC3qfZbtBp7XNsQhWEI9sNde/9r71rBqQhfXvn2hE0Q0Lq0gN8wgwwKlFzVU5bf6rt8KWb9o7ciNQE+9IwvLdTlpQLinpS1JNTVeDGfVMAYc8zrpjVhmPSbBgLyTiq+ts0HbM2evMmalqTBoiqFmfPAlkYwH4FOAQoLDzhJs9YeBJQwVHDUVzjcatOuOmaDZK/SrrbgPxvX4HrxeoLrzcGV6ijvBXY6P4oHOqWQv+M26dLXdMBtnUSTl0rvmlXBSW8pgMMjrDL/W2jzghoBoe/OVkDItEId0g7iPNChAV3tqRyu3E/93M/N+0O6sPIi+jnfu7n4ld+5Vdut2gpPHyAY9Q5t0Ji6B3YiB9LEf+9BMVpN0rKtysnbzxP8rM78wX5bJAorA7SpTgnVP6YUDWygRo2FCund2o4YES6pjs1vVPoTiPbbhxaUUW7i6Yx0Gt8pyAiTYY7POVCtdh7CltjAz3MHweGAKZf/hFfHG2GO0Z3tjulRc1Jazw2PwoFME0M8l9l3Y7LQKUCsf5g7Fk0HGYgymo8eu0tLpoPAScZbDAEBFQuvnxTIeBDNC9NM3HFBVc8uS3GHvL72jUYk2s2rqqAkgVFl03sj9p9LViWCVwLuMZlk9CK+mG5Zu1X3Hni7UrelM0Y2kBFx8r6Pttj2Qby06fMfzEE+lEvj0uWp+4gGdlmjMNtjmflc1KPFw6AfLCGhw9wAK0PjgDFkI4O0ylxv0wyliHameMSzZCQ9X9D/4P0GDCDR6PjQNfPwFu1Qxn0iScbQM1Bui7Nk20Tjo3hADYOpnYonZVsaw1HW3SatxmdUng0Sp9sOnYsRE57kG6rH7T4vkRG+T4mbrGr0elTBxlRckRQgvZs9FeLyHsHLQHAeBHjMkosjKfT3GwDNXQXMwzMjWRjqRSW491ZNBOVCZXInWwxyEHINaYgwBhEDXDI8eqMPQCgYM+yVbZo1+0BxzUX7NWpCaHtSjHAYWDjFk+4WQVoMIoDkWs1Et2rduOqTniuzliqaET2XGSJpSpwqWIPsq8FV3VSew4tk2l1TLOhmoq0jAJsajh40WWUAAhWIIDRvIJGIBGC0QpYMb60Fv5Ct15uGfVu1jSO0VmpfUn60PizNIkOrzd4Zaz8LwzIuN8ajhcqPJyAAxjI9w2B6QydDtKt19MHwsP6cqGDZBEQkak2tsqngsgMscgMT10YNboIKnirLpEZHaJDoLOom2XkviibdH2aw9DRrcXtiC4ykkEO7rk0znTWYXgq5rCMp5El+kOgQ4U2UQO2fpqwCfQ4P+y62KgriuGnfDMRqJw1G+EvakpieQz8cDiUzYAJIM+YMr3Za5QSFN7Dz8PqcEsKsOeKiYVpxSUVAx2LeBXDFQiEvRqCTlhIfWUw+7SAiHWpJoKOBjiuK2GPWWxEFFWJzw3CnuEajpt1xi3euWZir5WVnSpqu1En3KozbtZZlmJsCaZG7YZoOK5rwV41G2bL0f+JlzUCq4EoOwps8tOABjFkGaVv256GobtW9FkHIDy6xWnQw+c9MQ+haw/N2+ewd5sGK3SETejNzehzlW9Hl+ZLm3QIqDkcOXGfgwHpO4n/IISHEHAEyXtsRn6ErnXTLeM9btmZ8N7SVNgjCjtV7B1FwrZLxcQp9eko1/EtrIMy5jRibUZ1PE7nb5gPkWQ6hOrdxhIFdQ1I4eVmegFHGEMhY3C8potpO1M7VMbb4VEHtUGhXqEL2APuPyLpfNDemfA3oECty8VtsH6+SdzFMgLSRhvBhhUq2XGw+91gazQTPJY+AKIatsIaQUHFokLfOnEDG02e6k6QWrGbmr1F21Iof4SCK0wiQAu70aiDDYcq0K2sFbsC0RRANBsLZtegmIGq9S2316gTrnjnu1Mi6GAuugV2wi2ecavaLpXe7oMkv0rYL6LdWFSz4btVqmg07A96pYQK4fdkHw7wnScOKtLwDDwhOD1d9cQAaJhZT4hucUlfR+Fvmg3jfWu7Mh9UKZ3twDFKo6e+Tjg4TinmyF2CCLzhaHnO4fmEhxBwhHDSMkAPEKJ4i+kgwGmkOBx/Gyw32hCXfeRqmgj39i4ADblYRLQR36cBHUgNIXlVmkYkV3lEl+p8KHi2x4csRUZyJM02UzkAeraYTWRS/oxX74e/j6R52+GUpSeEz7fJ/QYPU9oGF+FX8ZWh/cO0GX1SBF0aodUZKH15HIhMaAAi0LB/M5F45lFUpaLmxw4sgHYUvIN0IyWA2fxeqECmAoK6dtZqiYFpwTUB4AVxQy2Z4y8TiMRYIAaaEyHYVjTNSbLhUBBwzQo21F7DfGXsg7biqgrYuFrmBjSqajhqBB1i2yFgY1KwYdtg7R7gKn+ylWbDQNSbmkFLYEDxfegZXIFSO7rYafxb81qwh8SSpoEblLGzXNiWc+KkIJQE0O3VQduQQuRpzgsb3VaaqzxGaScgFHns/QvnJZUP5hB7Z+yTkbv1mohDdDHNY3THymXX/njF1QwhBOpoLUusxtGaHnGIUc5rWMbbqMspZFtMbCvNoyS2Xe94Wob9juXhVRn1h0R4atucSIeW39FimoDv3rerCoAoxEOFIujgFV14Hv8MKIPN5/d2u1cGV8KyAKVIE1RWvKy7oZgJy1JwE2KsybwX1+nM4mKdIdoWlr9rLpjAco6KnhArJ8JO4uIcFQUzPqB+OC7oSr256zbc0DLMjD2L03NxIw5dThFzU1taqSA8u8xYeFaavCwSNR3P7HfqsItQqWkv3GZD75+92oG5oFbRZlSOV3m+1ILlmmR5pFJwWzr42wNY5FtQfM7t3jyCBoVS+7B1fB8x4rBD9B3PtqJy+O1xCSsNw0bfaePvRLow/tv4HvEEDsDF0m10h3Zx3O1gflyef/wHIzycgMM6mvU1Cs97PxsuEakbcWoLrr18q2uyUnon9qQDoOmKAxuLA41FcvwFMxaz0UVt0ABKy16NLSHnZRzMKP3eyh7S2MIUTEByp35g3FLf1sMCDnIaZT5kigPhbrYdPfMcpheIbIY1qjWPMh+2zvrxFvZY9U9NIRp36nvuCZ2m0XL8Hekp+IFR2uRF91DnhvQdZoCqGIyKAk86sSxTMMTJBgN1wn5PmKcFhIJKFcQFtSpiKQyqjGueZVaMvWhFEDz7kqTPKFiIsSwFj/A1lqKHttGCiUiWNmjCrNW8iR0uSM5dkWqaozjx1wEDFUx6SBuCZkM0EVfVtBiT2ozIQfUZcEy4uYhn0coFtRbf7WLeSBcFHVfLhKVOYNbdKBXhXv1x1IK6EGgpDWwwOvCh94vcF7PpMFAxul/IbTciUPCuZfdLiKfttQIqkT7wtdZNgx1X4FGrHTKRbvTb8+rBR6QLs6uVo7BufEYvw9HI5HYmBXchmN+VO4n/IISHFHAAScJ4hzvC+Q/QUaRDk0sr2WKov1BIduCEx4t4iI4D6MlAADSw2Yi7Z5xujbe6qiS6XpzyqI449iBVIdBtCfIBorPCdKBoHcyaPRB2ExtLbwVAUkahjD3o8PbvC3HiDKnHMINmkCYwaNhAZAIf7q48Jy4yYfChLOOwe2RItwU6VnQi/Liwzw45djZn5iJE5YTY5mOiahpVO9xSJ9xkAJOmoWd11LAtVvxsiAC/MV1hR4SFCIUrmKCny7bC38SMS9pj8r2hwDXbMfFNi1GZHJhUCNi4VZsRqQEO8/7JRL6scnOR7bH72ryF1moeRMMulmXCvk6o5tjL7TSaEWGthLoAYvlKSbshIA9wdVRF87NhXkQNnDBlLciCbQ1HiE/LqjvBdmhFx7Kk4DJ1Dx0rqdd2u1HsXWNKbRIV6TRBLWvkCc6UkTopmffSOE55TdflnenO4W6HhxRwBABBuTMPwzG026Hiw2KGGi1UYGylZ3nbYI1o3GenIzorSyTIdTkqCrUMx+jMhOSuD8/ETLYyP0Lism6whW4gRGN3GKWTM46RDhfzYDiK1iybDlACGVxw60vdfhthvsNdJnEc6MOo1SUl0XbmGvj8sJzSP0k8bcEOGsuqdU2AC2oFqq6rMBNKlTItVmYC9qXg5jID2MsyTBE/GwxxeV6IUbhiIcJ+X/BIucIEARsTgEILlu6j3sIOF2UP89PhrRbAhmk1ClUAhJuqrWDAAYfZWiwOOgpu7sXHRgUFwFHSMsnCBVeLbI+tuozErGDDrnpfFwIvxcGc/UVg4c9MExFdlnu7s4OO6NLc01jRI58mFsaLGYTKeGG3KYk0tkul4XDO6YduOOrd20OKW74HgxnfK1fcJO8Kcx+XUWI423B8sAZbADYGywhgYtAxnSlzplsFHTq3pYqz4+U5Z92pDnqZtj12OC1RrMYODeiUGYxkalqG2a5yU6EeCcNyb1Ts9K1pazqKNxvJRNl7LL0xWaA7ispOTNLpA2CIoCIBBuq0G9n5k6XVzs+JiQQ8Z3KCSOwjgJXDrwgwfOdLTI0bXW5yAxtBGHXgozKB1DCj6tgsLF5BCVVBwITrqkC5FnCpYjwJAQTFrkS4uez0Xo1PqZ2lYoKNwNjX3lmIlJOVyjQuzHAHXW1pxQxJS9NEMKltRvOfcV2L3zcDUML1Qg42ZLkkbH8NoKMuAGpRcBHsNxwQNNBBdoaKC39S7Qf86lqL7g8IAAVSaQq0AhQ404dOS+kmD4a40mht33rHeOB4Mt5XQgdr2Yays5cxEaCP26XXF/cFAhtA03w9//h3sTD3MDx8gAPoRsuGVAduCzg4sj+kFYgcOWhEhojCZpWErELsixQHyaG62HNsvNsq61ZIk/ztjcEpitqgHE3zNrbInvT+ttI7gFIS6Wn79ZlOaxvvi85tt+EQJ+C7nhsmgT/CiwEtMHXPOrLUhIEfjtIzegaHJh+3J+u/VU5RQzEfEKRLK0SgIkJW7AvFxWktVQS1gqOJ1DU5iZOpm1RwqUfby3M9ph4NdLCCgYuyhCFugEO32iqwuLXMsrRCTfvhgEP9ZCyVcHOZ1GaWHIgkwKHajev95P1s0fdLHWg49gouAGkDprakouABDGAv78ltNiiBDNdmLHofDULjH9C0IzX37U1fFwtnjciAzgGMt/J63PQ9+HjYAAyrZ52vjgPJJ+/Gp7GAc3ge4SEEHAERuL4YQ4brXNMMSTcFf/CdcYjuiDDp6dg1IMhpJjodxJFxHko/CvUDRqRjzU5PhGAgqvlukwIjum5gx+23B1vpZBDRZjgH07zN9CJu3CQlYH3kWk+EgQ+MsfTfNPoMv1inkhxshGx5ol9SqXZTrF45PaePf1rmRKfCpikPZQywrv/bbpb+j7kAlVGXKsfXC5pyGw4BG0WMN2nCggWXkCWS2WhJQAVzcYPqq1pxWfYKNAxwSMGZxe8FUPBcZexoUT98evIqICCCCbfqDIbYXuywKBiKgEM0FLLcIssqRZux6lbXqOG4vp5ck2F2RWKjIX47mKGaDQKWsl4WceNQ/b0oOFBVjCyZsIMSSnTI6aF9B7f1qLym62gRaTEIPX3lBAA22WzQoEjLbIzHYDsCQLZY96TGL7n1v81zVwymG9t+gYBGVaD6/OM/GAjpIQQcvAILcqEgEEOIgsDu3XAwpJCWHtL0X+PofdJCRFDS5sFsDLefyKrwN+Yp/1MbdJ4eh/Q4/NuBIAcTtH7k2ohY507mJHzR1Ss2RwqdYM2VdpYUGQn10bgvCNafNT6MGIcDMzs2Rvv3HShZY0lpPP/kPKDswFsCAancWS/iXcDmiAGUxqKKNr17FsoVZQgRxFkXZAdIwxxjwJM+VfUCNaATozqo4A5k2L0IRy6y+6KiYgIAPVqeiLBXsFGIUQmyvMIFF9Oi9acV2BDHYROu64SLsmAKGg45Vl5PVVHVzrNgXNCCQgY4AtgIthzPgjFDbBIMcOyr0bWTXCsDk36t6yrGoLUSrvYTYMsmSmugY/HTYAl1j3wQmy1tgFbbYWUZRdvTQIZrOuw5Uvv7GLA/72BtvCV24x2GnM7LgzaW2pJMcAjWG2tDtFBNK9LeeSwyQBE1IV0aIV8e0XXg2V22ue3JAbrQp4eA6h6Fsw3Hiyx84AMfwFNPPYUf+ZEfwW/91m/h0z7t0/Dd3/3d+IzP+IzbTIm6awhRkKVnAWAMwYbdRcDSJcQ9XXdvAj7RhTJ3oMMBxHDKoP8ovG+G2oOycXvWY6VVepHuYODjdAEYbWoXtDlTzgFgDIuJIPwjTfxmidEeKuQ4/vA1sAITm+n0RrtHBL3ZVBiQazimQ1P6Z9qMdA3gJKXZFwEGHhpoMVBkciIqv0x7YSDZ291sShhib2E+OpgBLrBdLO63rhYsYKCw+60QT6PqEIrYQUGthItJBAcLTNEmYG0iBkHOLrkoe8ya5mJgAyLwLTwHluUVBRtXi/jjqEonNh0iu2dUNxS96sBGAx2EguoakOtFwUY1Z122/VWE5SKWsLKMwsV9k8TdJw7UxE+7g42kjagC8CgAEwq7UXyZJQAQSXOs2XA25PHZAYyBEb/G3suNLqGYnvV5J4KPL2ezYO9b/Xju7UAybEiDPt+Tjf3TONg53P3wwACOr/7qr8av/uqv4gd+4Afw+OOP453vfCde85rX4L/8l/+Cj/qoj7qNlHqJFUbAaBnhgBBxA1HjwqMBFUCCP094QzlupNvCLi6fDxG039xnOCZTvjAo46qsQRgdka3txIMN0ijxB/grtx+OCvyWcc+AtsqXsz6W5t0M3m8OZW6COAKFYWhzPdYlvb6Hq2g3KsStr4klx2wcTYRERniowrUNSYgxwEHtznvLq0jfYICKiAtiAGF77FIKyiRnrYg/DLHRMNBBRFgqiyAnchpEwKHXK0woJEsccg5Nrqz9fo5lrrzUtuVWU0xLLQzxzrksU6NTsGGGoUI7oy6Q804g2gtpE71yu7Jte2V1vB63sir4ICYBBguyFiMCBQMpFcDC4kE0AozRckkAGxGI9Gnb0oiNaPuuBkribpgGNLo+gXDPrGAldKyexn8G9+e9AWliH6v9Wdj6ecq4v5+g486NRh8MiPRAAI7nnnsO//pf/2v823/7b/HH//gfBwB867d+K/7dv/t3+N7v/V58x3d8x+0lOBCkcm+CIDJag9W0+u2OiMK/K4nJENeKKa++y+tgjumtyhXLa26ClZa6vP2lltFkxyY+aTNkju+7a29r4E7IutHLgB9Qd2hNNOXFcQsdmrZHaXyFxZhUv3smlGE124kAytMbpLEV+m+/RTbSXmykZ/jSNRNjQv+XI1MO5W63pDNOTt+oBd2ZZH2sAjSFJPWm9RP9trp0oj6ufFYr9YUaGEq+PLUyW+E8bYLMyqvQmR8wUu1Hu04AQZYWpgqaJFOmfF3qhZ9KW6himhQidIDDNApWYF8l7OXWYo62oPnImGDOgKNWiI2Faj0YZtQqgAGaH1eA9sXBgZ+fVgMNkwCIfTP69C7qdhhNaEt67RukXSRBe0HXtAIPIzosCKCEVzQ98Oh3rPj70H/aMk3qtd196PIkfaI9DwlyH29AN0ozBc5jP1F3naC7P7719u4FO7PnTuI/COGBABz7/R7LsuDGjRvp+SOPPIKf+7mfG8a5desWbt265b+ffvrp8NZGNnWCiHLn2/qGHUMfYghLtmf+h4S+DTB/R42WW3puSEpd3uGa1vFX9WiVZJ05Gn1ugjYgbfY8tEHo80h2L9vynCn4xyBTjg7ak8M+GNKy2Ow54TZjLl2OpAXt0zvGT1QAr314rIV6BDBb3YY7WooP5UX6zrERKM3z2F+5tiIAFwrt5cqzvlSWfIU41grtHb2MJmM6Axuhme0sHjc8pJCQeR2t3BqFIMJ1yuVgEkFnB88RMbgWLEvFNImzL7HlYBF4QU4xCupSMelWF9uR0nB67I+mDQlirMJ3iEi9pVCmuYlgw+l8qSX0BXuuSx4RhBQO30B3nFAVoBOddyWDyH7ba2UHJiV8h6S52FMDB7WBkx48NH8c3N6x9fXQagFgRCCxYjnc0tKPoqDKxnS0beL8xDuZtj2FsjCF8Uxop86277cGBomphzJtIAtD7lHTjMZDz+HuhQcCcLzkJS/BZ33WZ+Hbv/3b8Ymf+Il47LHH8EM/9EN417vehY/7uI8bxnnLW96CN7/5zRspDjrSnfStQdwh2NjKJ0keCsy/MbMhcEh8swmJw3QhIRqTtvsmtFI5urJEWS6ajfH214QhMNKOSEJRQNFAuIOhKvg4Qzmw8JAqxfn3oUJuJWhAaWRQfEIRclr5xr9zX+UIPvXafGwME+x5f6bi8IypnQgbIkcbZLchiHFNSBlQqEEcUQMbVAI6IMoJ6Im1cqBbqKMB0DphqaLBsCIQyfII1QBQMaFSwTTJXM+clKUP2iSeY+dq/ivAAXAAbG7LVVNX7ZRWM+ZUrQfMhqNID3SvoKDOIVabKDAA0uWWYkAtgoKI/xYk49CsaTBBr2BlgacXtRUr0LE0wBL/GvDR0emghNK4icsn7kyMnVvkThRDjcAlknAmZ/i3jXRuw2VxmAZgo8t3tfwcgj+mRvcCLU3UOzxL5bxL5S6HH/iBH8Ab3vAGfNRHfRSmacKnf/qn48u+7Mvwy7/8y0P6J598Ek888YT/fvrpp/GKV7xCf0UmZIxuAzU4Ux4Ivg26k5DxofQ6upbeAXqdaYrAf/51iWOQwBtCLUcQ4BDoNopALeFxkjZmSmBwvdYpJdgYxDA9q0ysd3y+FeeE0M60OYH2RKqDthodGNjuO63CrhWhQZVXXD+Ii4zjGngw4WjLIQj82X+TCEnS5YzSI53wd02yHZa4ufpn5P5DAKqetUICNqT6jFI41ZghQjzgdBBVpMqG5ZWMxLjZVSBepWK1FgcZGXAYANFZfyUFK1gBDhf4ALhSE/r9ThKmBibqenkkAoqiHynvWMHq3jUiAzASgQ7FsvYeSQ0sJDoBGqPR4E8MnOQv0VG23rm1hbXfkRJ3lWym1xn5dwnmOC+gHcTZhuNFFj72Yz8W//E//kc888wzePrpp/GRH/mR+JIv+RL8wT/4B4f0l5eXuLy83EgtdPtkKNqTxQeRaXUfl4A4zaeOjjfobjscWyoIyzIrujjz3dA+ZHogebK054MmYXQ0G6yln2WvQuP9DmKaxmYwoLhltxLWXTucvB7b0W0yydsZ4HdRNcshvcRr2do3Go1msOHCA6H4GsfBQ/gGUZLHHQO2xNKnGQvEldy3RlySyYlqvInaNltLR41DTZAzF1miAVwbUrkzEmSAUcSNu7dYGTY/L6p5CYAp7lyx9qlL2DIMM2zVQkZwUkPhw+4S7/QRAFQyRaC8X1p6ka7UsOzG8O2yCXww2nknA0AS6UzDkJ71f1r5NRjhDmzkdyO6lB63T+5LL/0SDDofG/pyaK/RaTcbEozphWeJDtt0Kc79E+IV5eyH48UYHn30UTz66KP4f//v/+Enf/In8V3f9V3PIxX9OGHtcChWksGojZYt4RG49UHtRUjHF8kH2Qcmvumh0zi+MkC3ghgtQZh9ACmd1XlUTEan2RjQDUFJQFwj+b85G4mE7AAiL7Vv0zmT65MVAwxf811ZuPfB2ucURnNo5tTRHfSwyoEO23Rt+5/ulNCngUCbl9MDPthnLQ1Oa+epMfW3qcKrGpsmc5kkNDT6gjFa0yUVtkTtvPmCgGKEjn0NQhJZJkbxk2MVeGjbRMBApWaFW1efRZdHiKoYr+pzjuAAutxStQ+pVodB7lbdu1MFsCg4MLsVVtuMCCQiXQR2S7g3wLBov46GzSONhB1DH+IPNRcKauIY6JdnWh5m39T1705Qr2wxRiGNzQwoYO2wAhvH92U5cNkmap20X57ZoHM7lHO4Z+GBARw/+ZM/CWbGx3/8x+M973kPvuEbvgGf8AmfgK/6qq96nimaoA+gYyT407TrUGek7nqIdMDRu8DpdQAnPZ29dy4WhGqXjS0DRFXxqAri9yCAhPg+/F5rQEw6dXQx8cgIRpWOu2BGDCqkKMm1/frrT8QN3ykdHaAzGXgwnMiQ2vfjw98PWh4XrmMQ2n/nZmI7yFO/gcu0LQBMKqx9lt7ABLRIQ9uPRems2EHwEok9CAHA3nauhFAAsIGr4vEwBY2Dtoc76LKyV8ZSqoAOas1R1Qiz1biACoN0HcHV/RxtNrwwKJM0cNRwONjwhhWw4zYcBjgCHZvgLGq0amUyUJG2qXJbbooajmogQrfIRoHdA4OldZ04pKinq2Ec2TurV/yrLAfohXfeNWM8BzTkYC+WMcUPdOZ2K4WUtiPkXO9E667vcBD0c+i8jow36BDITp1w3OWwsPiAuZP4D0J4YADH7/7u7+LJJ5/E//pf/wsve9nL8Kf/9J/Gd37nd2K32z2P1HouupKO6+ejeEef57fbuD1IF97QUkSAlIoamGKaOsEZraWXUwy/iBLAMIPtCEBaHGrPPOsg3QiBuWBcF81MLkEFG/mR1oWVWTSGxu19DxIYIYHDdA2fBbpBSI+PMSIV7EOqZlTgZWtgY0AXcrc2zDylfffVc2u7QCn2FF2R0DU3DHRQSzcImoiBeIFwD1Pxx+wdv5EKU/bMWGfzUYMmSxYkXk/lyBTYUsWqPYiwFBaTj6KAkvtGhNqR1GbSxGr42WkxAGDZM0pxhyKo+wEdQ9yoFzQNRwdKpB9r7/fGlTbgCpTYVkygPeePEDUg2u6kwCY+M2NOdM9HQIKWBjYiOFxpNhZuNiWRNpTXBH6fV1peC3wsLaN1oMTq1pZVqI1zbtHAlnfqze3jEdxYOea9ohvFXmk8Q1sBfY+6p2G5Q6PRZcx1XnThgQEcX/zFX4wv/uIvvkupJdap1wg6OAgGiqMJ2QYjduxtOt9E1htDJYPIDmjEWWlc2uGgTvfRSU2qEJxZZidd23XmmH4SmBmUeJqHbDtIBMDBJRujs+JbGqGI/XIKR4ZDcMMyWwrwUvsnCW0S66Lfh9MOh+0gZTys4nXaU42ALeP4OYZRXWwjHpDXegA5KPBg1W7zQHvsM/BVZv0Q8F1CTfj1zQpABOkENyQlyL1ryOzZQv6tPQ3r2hTKbB41zStp2gUUbipjIciSyghseCjYK+jgDbBh9wtoky4K1yWOddNYhDYSYUrpG2GhISBYCVx3Y95oAN1SG8tSsQkOnA3ouSjx/QokMNrOkSBoY1pOX48AF0+387cxwAc2pvLDLDBb3oc8iaKxXm387RFooyKk0fGceB/NS87h7oUHBnDc/RCAQfwNdI66OjoKPZECXeSmPZ0h11UH566z94IgAIHwm6gx8MYhLIP2e7W6ujEaCQCXQDvgy/bbDgXzrAN/9vQLfDvhpiy1NG1LZM10HG8Ivt1WmB/a7NseR4Fk7cSD9CwUQjm0thvCKWBD8jtgazNKcMXsuGuwPq2t74y2HFA57AxJcEPfi/ElTHVeAl0NXbqWZmKhvjHS0pUua/hhZQXAFMAGte9EBSJ0SZe/pjBMKN6TOK0i62uhqulKTWhaHbb6dp3y0OwBmt3XqW3rDc2XhpcCA1nK6DROK1pKxpyJLgGPQNfRrpZBDGgEutFSibkzNwCQBnQEC6YpAeBagfDegYfmncrX0XhZ/Dl3aXFX5jZO18ajMd1od8Jrmr6ckS7SIOTRvxv1hz6dexzs9OHnH//BgEcPH+CwjrwlRZxD0OB5/H2qGLL0DiWG1TbLre7jh1RpMoe6mTPYwG/IIsbnti1YLyI0gkSwfIiaB9ER0IjpGd2B2rRdFZoHcwIJmZE1hsg6sxVByy0xY7C2vZHVT4DNoII0yX40AjNafYSuL2zan0h6A/i6qnPKwpLv2/CYFiI+73etpLrlCHHNvbpxYMiXRZgWbVeuJvxz3Ujb18DgpNoJtiUR60cFYvNB8PbhytADW0PfQhPaVpYlgI7B4PDyLBiDDhWUCXj2PN2ElTnV0mdGl5fr0M4wMbpQtjTzX9ZxLTiLsfLV8GyLjpEcdUWqJOjjia9AGxcU0oHly5mur4PRL5zq7L0zpqdj1DUcSdAH3sbpZf6W9o67+JGuBxU9HQC37Yh5efwB8BgEiga79yGcl1Q+2ENg1B6S/q8JuDHdoYQ30neSIBCUboVnBnmtfD9EuWKAwUrQ+z+ACJuoaDdDxGijGK+Wmqi5qTH1ICRcHCdQ0jP2NTIa7g4mQjpNUoECF2ozLG8dZYJeeGN0ofQUjc+auOzEc2u7NBvckPCrb8rD5zS4G9U5MWerVrSpCdlyl8hoB4p/Q7YmTMr9tKpXmFErCShwxh+0Z5amnGLmBqACGkLWYRkFDLHD0OUUAxtJMEN2ejSvomjfKdEFMBF2k8Drlls4aURMQHftjSW4GQ90QAYItFhTUxL4/j5c/fMRcr6RlfTywAFETg/oaO290mQtAgCuuYzd1enicfIOXFoni/YWaYmmBj7oZQpn4AC+u2NlcB3AQOQnI/uQZvVFiS4bmqqJcxynThHojDlRAJFpfK+Fs+ftg+T+gY2HKTy8gAMYdKyuI0ZYHjvuZnq38d7yPtavDxoixquUMamNY9pxFkzhmTlc8j+KfEBCIV8q6Hmh8zqy9Lq4sayc8+fBewEJxgA5AIqeVu06nEkGY71YwELi7bLDF6tgwrs3Sj0YjhJYwtuUXVk4xBnn1ARAZwLUyYUujY06i4MuCsIzArcu9BoH+9OtoA08AJjD8Ip/WhYDEzxJno5PIx060IGWzzBY+YDVEl2s8xSrF+hWGgmGb82lmtOIACEK2gRyBul5/JjGFuAI6fvyUQQUsIrI2Le8me2fcVkjiIgz/h6kUOUGZsAbZQw2ID3IAa/o8kDgQd25q1/fbgHloIubAnv2B7fDh1cU0r3fQc7be/4gpx4neVGEhxBwWA82qRdAx6qvGRfV+96IMwaKUTbSGwEBGREDWkokB4Pzj8Dh+77b1zOAiJwHp7yTgehAcAAd2Oje9cXcFBbWLn7lTaDlngihGoywfLBqRuYGOrQ+fISpnDbsb48xRcbooKLrD0ljMTCi4/hOzm7PZeX+lp1mNbmL/dUBWyDZqN5w2zB7bi0s5A5j+75jzwgA74GSgDfnD2B0UaMS3q3Csv0qlznQacekyPCjkDvlGQaCrRemdr8FOLq4SfCiAY9V2nFpjA/R2fO2DDMU7GmpZV2nUTk333c0m9tzh3U276SxERp9a1sDPasBcBsAgtdx7qcNxx07/nr+ce9neAgBB3CqSJFgMPlAnFOTCxxd1LWOFE5Lo9fIpHgd014lSP7GQEmUPy1mBhu80oAonQkPTXq11t5lL3QH3HcH4Uu6jOIMhZAgfDtJtmkutprQFa6R8FD+pwZ36nEK3dY7pP6Ql9l60viOsEkYwsEq9Ty8xz8d7zbNgu0iSZqLmJAgIzmJtvjPMVDlzhP/1tXAxjGeaksF06jz5d9UdSzF7j4CBuYBlbrnz4cOEBuQ8GJzSaXqCI2TkSCMqae1jzcCEh432jR1f56WCvktQBHrcspOLwZcu4FBj+UxXXo3oFs920pz9H5Vxo4rRU3nOdzV8JACDutMFEb6IUBBrRMe2oWQZqcmkCJHa+Qp21GSo7xWv5V2tTQzSNB2CJS2GM592ayaAHjSH9QYsxkCGj0DwyUZKVOoSyy/Nc0Ikbjw1baOjHRVJS19PBhsGNosqSlGukS50ZlQ3cYSB9DNKgTmPqKP32/wPD9q56I0JDEGM+wx4H0xxR8VxbcfDmw4IN/TtmfKd88ZGihhqGZjj2SjYeV2/MXBLCOACatWAhsDulVwQ0kCFh7aMBmdCBi1bqHwjXoBV8Pni+2egAQnOm8wBDoX0JZ3AG4jYOJ14cxy+n7JzUDUvt2KjhudPYgeUFd07Ek3cLOqC6+BSt+GvlOsA0yhPVo9BnkbUZ9PMEqVbLlr/Jz/wRDTu5149yDc+VkqZw3HizM4Rxu86JGtcxrk571FnyfZIQjlws4vNL1GGtLplzeGwKYDIWyCPQColnFjkhBB4JP8CC4crJDHbNsg2YWEg4m0awVJsyHPuNGFknnR3EX0IHB7TyT2KG5/ES39dBnFGA4XW2Nn5O/bvimDdDsoN8HkkoC9XSg2MaemaX1gC2xs2QTFR3Eni4Mv1t8RoORMElt0Bm/1y8VoRpgGtSxf7vDSuiJiB2NtFopjZSWIkShDwWYTdfKIc7MSEij1YsfyAr5dliIoGthhMNCOtrcQd4Roig6KYgIVTXOAAK7CrvVM1+UbQIcMOx7bgBhd0Mr1Bqe+1TSlF/INXScuJ7kdRO891MqTCowObESAwZmuZu1C4fDdO3pqjCfHD9UXhhDp2C/51NeWSBp/HD1+Zr5m/8Z8qKdLvDXnFz3apGVbH0+n+d25m6GCUO8g1zuJez/Dwwc4gMzxVlbMW/QD4NELge5RfN7koEsZ+MBQitvp5hk3URBCaIPNihwBQSg7e0oUHzsjbtcMHBIzNyBi5QnTIh/jvXQJ7RDXa4cgayJluI27usMkTxBu3NfSDjOhKGzD0kpTQ8dvaxVk55krZr4VTrFsH9mmdJ+gPZQ0Iw5BIOUIOkIR+m8mZLz+FoOdOCLgGJjI+XQxuWEJe+KNsRv+SMlpuSur2/JVbkjP2E6iBTaNPgkA73M5RtooAtp5Lup3JBl+xmaI5750Hjw9vdRUPC5jXw7vX7mMW8sGEZR4VmjyUoYX5/S6q4EE77OBNm0PjsCnA072bbO9Bbc02ImGy1AZzHDXnhy0Jx3wiM/Cz/X4W9+vxukWOYCV6/LB2D5htN/VcNZwPMwhmdfbM70m6bshJFfJRcAS0nCQE6cvJ6QXfwyYvF1ZuQ9TODGTwl9Ij4nFuNIcexlI8atqHCDCyHFNSMvsEFg52UqFn6pGLY7ebC5jlMhIj7WPMkLI4V8OOixXwxMmrPyeu+8SUrzLM57hctmqX3RlTKgkA4V4YBtzRxqikn4/8m+0xg5NkLNvz3W6cN+UgUJnthhpM5e2dalaRi9TKFx3G7/TVkh0o7puxDmaXhTMfVOfkmZPqxqMHhxQT98DggGdgcYVGOp+E8N3qVCfVihfWdFppQ1s9OVzzUvX4D3wseXNSDeqJ4clzj6N7pr98/BhulXeBz7gcBw2+vsNOh6G8PACjsyz8++oUx8a/WlHHXLFdTclO6TKx0HX0cP0qZN1g+QlbivhQKLbI/Wd0YSsggmnC9JjsvseOKAZjpYBHQLosOdAM9yLlRnIWG+HusFIgrCUrbBQ9a9k1Px25DMnmOEz3Kyv0XampliNDIq7jkEIu2COaTm2bHy6EB0K9fw7pxe+c+iGDVJ5ivCGVy2BALSm1ZB+FXZimHwpQNR1AdodC4X4lP1gWPcxj6/U6KizxfDvEYYL+xQcuX9wh5VWtkkh1G7byla7D+TjiPJU4CLvrEEPCTNt1+hQqy9XzDuWJTKBSJe+Oa8Ail0LQt92abwGOmk3CzDePspdXBtHwx09nOnSEk9OO3+D7bp4Gqv2NhQGBXUHGrgVad3HRmU08vtoz3Hnjr/OGo4HJMQRtwEgem5/SKgkAZvp+llGlndthk82uFbr+C3NiMPTmqQX2eJSLnN4LNoPyoZ4Oqs1b6OsgKUWuR+CC2rPDWxwNNoL9gCpPjaD1nw5eEj0+pE5AJKnBBGSqAYiIla0NlORPEF8MyjAYC1gOrky4b4NJtYK034n4RRAygGA1cjzt7Wf7XwYeD3S7hSkDqL/h5NjTQ5WgAqlYiY6zU+yo+ZVEwAzuZ2GZWXLMRQNLIG2Uccfsy6LhCPYdfiUUBjFjkMB3/f4FR3Q/EgkmcdrOl7TtZdrurXICo6jIm1nN9POSlqnmca8tUH4vSpaFIg9KOFOCEY+YVWt2uBDARzKyGZMbb+DNI5RLM8OdKwEek8X8knjBrx2tAbtSLF9dDxwTxc5QQAl0aHhyhYv1gcBFPV0YWJB8fd9CJVJTj2+g/gPQjgDjs0p1Ma7AQM8Obn+vY3vYZwB2BgFDp5Cg/D281YsqQ4gCEgIDr2G7+VaXROyfpfilia8UvEDmPK6xPyM0ajHS595RSZUW1wBHZS9J+ob45vOtwycuEDj/A07rOAz3UM7XwJTPDbLPdofPLnOX8ZWkrEdidakJn9qs5uQemVBxZEO1No+Nki8WyCnuVLLI2nOYl2Y3W6CEfBsFPJQ4GhMPwG1Lj37XiYAI3KJdHZjQAit/n0RHPMFunWzxw9tfWNERe3DxUHXd41jYCOWYQA2Ukj5KLix3SfH6Ky9GV2Hsmury8CKq8U5RhcrrXkNuVoPctDAy5ogvPc6dWFl75GY0XZ6W0DlHO5aOAMOn14OX6JJVW7M5pBQOFHI2Bq5QunDpHYzQtyR9xpDPIjM266FHkREQWxlcw3IyMNkAB5OF0HIoJyre/sdBX/YcZJsLgIpAcBEqIt6qYwZGniA6jIKgRfVaVCn6rW2CLPck5jPMbBh4VTQkfrDdlqmccAG2IiAQM4sobZbpC8+Ah2CVqJL0xV86skzCcVO6EPpooZkTaA/K9TYtwsbZV29GtEN8tts0iOfbwhDNuME0HEsrw2wYWR0Al1O94D9k6XndDyuA8drdCS2Uf+UnjGB/n0AFJ1NyWZdjtlLWZI2jocYJ4zdThu1meyIL9zHUO9wSeXs+OvFGkbCBhig6Y75U3hNg0Fr7xOH7WducO59L7p2Wx4RidN4hc1b21UAQ7y2e4tXHXRoXAMWHdiohG0/CrF8GD9fEZmgMGYRcZ/WggH305G0yokByU1awTg06yQkJsajSGEWeAKOOFDPwBBjcVYdQ+tg38xRgr3rJH6caJpmacSUU6Y9XSZOw6DSIB/OhIy2ZaXv/+E6ss32F93PNY7eEO4Dm6utqh+wF+wIN573ZTyJsEuOu2dBYI89Z3ZXwB1weTrc9SO7D3Qx72Ee/XLiliZk1V+6RjQQsZVPl17fghuspCsf5zJv0oXybNGlOPcPgNz5abFnwPHiDQn9jhk/bGpn00V7dtA4LSCJQ9MqhhsObostTkKDtxwZBYFEVrVISwDIdiZo+UsTYK7JiKmRgg232WggY63ZQDhuPACUrv872IizwNis/l5pzCjUntuWQQNtlXW5hHyWbK+abNZ1XaOLjCYBSKu02XkcABMOSkLfORY2ZKO80+8XZ2wDYjLDTK1Ts/MI1dF8mumC0oE6INbkMlfxnZE8nQZNC4d44iKFm1+Nvl5BeHLltZMuWv/073tgXGW6ELvLm7WdPL2NscheFyRj2BUAiTdHsIRjqQOyN9blkEaiARDrxePkAAQnXht91thbELzWV7gHHF3eQ6daERx42uFdT9uVa5st8vG2CXlzrNOBNNuAOEY3uD+Hux4eTsABBOaKgNIHQ2OAQ4ajhrqXG3Rpq6jlO+B0HMsIYHMHBKuwMs3EcERHzUar14rXBI0GGYgIhqLuaTT+LiE957q5HKkufsBGnzdam2lCHI/uNgnBIvRcMVV0ZlnNsBFd+3Zl4gBE+oa0T0O0bcPBa38pR2RRK8sWIYXlDOO43Uw9A4wAOmLCfdMaLjKakJ5tnzQgIlmu+xhp3p4zoXnyHIGOGC8cuuZtEK+hyiiHJH6kwzpfE3z+fXN6CZcwp6EvW1epzy7VOYK4VeDx40N00TSpp7FSpOoFkHBU4Pd0wGoZhbfKHG2iYhkHQKLtdgqGyH1d+mWUrTQDKDnaNlZnAAdBfz+xOYQjgrHoC2XHsYCwnNaTNuM/COHhBRzWA9MaZQ/PD33EDea4lZz9HMH9bnCswAYCXVi7t/SoBzspg4ACKD8y2e4aibBrhZEBxGp3ClHwSJpBCUL5h3UOdWvMTwW+fRZAjk1PNKHZKHoalcK6MyEiFyxxdwaVpuVgdxjh6K5pEaIgbjluSp0kEEZdJn4wgmtIWvc41BcpxNOfzOm3QYqV4NVZvoOJMJvnQIfYFOqPxb9KVRuZrg6soINihoNqcw1xN5i509lWlmN03g8DnddZs1vgoCPItTFmYK0Lb9P59zXj2gNCLHaDJHD79EYxD4CI3qFX/z5dLZ+O1rQCbOnFxgnxrdytLtTlzW18BNARn6X0Qr5elvSgtUEEPYFTtILFzh7pVsABq7Ci68vwAmk4zksqD3NYGZJGFmL3kWsfS45DJx8kFX7G5Leu7s6cYiej7tpSNbfe7Yh5ctAAdFfdThntNiTZ9pwLrTQf8SqTxs7x14iDMwBiVGUYQfa3+wliXFidHIjpGn9QcGIOjXwWyxugo3Lb1unFi1JEXpoWYfWVezuDrlibgYepbdL2IHOLzOk2BCEB4AWgIt+lBLpkb0vQHS7S4cgj58RE+LO4GT9wNrZHLRgzcwp0FU0KjqxcY3raYVbAKY6pRQAUKTiJdemqIwCKrK+0F0m2Edq5KRvgJRQ15TMEHkHYt769Bht023RCuwYtHaBh5GXGWL5B3jmteA0Gl10Ze1pvh0g36rOeHOdyjMpqP3tbkVhuJXI6nMMLER5ewJE4AXIHdoO3CBRsBIZZVRmgytHMrETHX8pMfQpBgYNFO4wtZGKCgAKQGQwfe6zHmHN6Fu61HFyKCO3S4qXtriTveDoMNhx09Cd2Wv59cymDZ926mmaZUSASQKz2GuZ+mgUkUW2fygQQ63kYKOrHo5rPDoUfBSiusQi2Gw7K2rvSG49ufBo/gXRdydwM2gf8m3hfzExdzhWh1qUUhbkxraEyhnwvs30xvxrd7F/aWcGXCuHRZyGwWgJ3B8at6ADeY5XemK61TXQCFtvG+34yeN5Ij9mX88yO1QECBUJon6UAEihkazSBrtZGh44OaGMk+o05WNiKDFBWQlHLZ+eZdMLev7/tOKrRN03oiqEvkU4WyNA8d/W2JL0BGl0EZkP+uKpzfpC844zah6SwNtIOp21AMdAdAjOtE22mu/0d+t/HPu7dCwvubFlkuXtFuafh4QUch0IaaEGIUMeBOP8chs6wT8DEOl70qeCYZsDwkt8MH7JpXtblbWW3qlF3VbrA5PMSCflvd/xl1R+ADd/JMlq774oYloH1zBT2CS7Ze9YECilT0YeBiWfMRgCpQWnEB+TiM/wOp8XwgJvZev9K5bpua4r95FAI3y3yxj5EZ26tCFZRtKs9dnmhzrdWNkq5WxMD1ZZZ4ova2lOi89oQ2coYmPyWDYjQhd7m5dlAMH1cWj/2PhvA0BBoAE2zR3JfbUmNuvQMbAPAHD75qM/aX/AbczDYgYUb58O423AHjcjfuBf6rqXL3cBo40mrosWLaDzQpc6XUuoq3SNm7jLt6XpJ3zeiZdfFHdrw9IAkpMcdcUSRG2BhvS14A5VsGu3cm3BeUnkYQt/B45gb9beo5ejDiH5AR4AYJAYtysiBE1l+tKZrw0IybUKUHCSkvKnNeBD+2vIIZb4TC2HOnnQZJTF4Lws5jwQh7FoZpGnxekGiQo3TbhR5QURNbV8sv36rHXv9YWBiYllG8G8Td6qYeBbbDRRSL42tQMPlCbOLWEmBU8HG4FEHILb6AxsTjAy/0OqTyesm3O0bUZdgUSHYg5KA1VoZbaZsROj7ogleThqMoT0EAStvq8h0rgjk3Fe8jw38woTPLP3RzgWKp8YWQlRECR2AwmutiiFT+0mhMhGwMNBm7BqxbxzHtYGubxztV6Y5SaZdKwGvNlQcJhtkY6LnEus+Gx2jtTDih13ndLQWx1GoYKKTm3y6bA9eAl0CE9zKntQTgY4O0+Wlky1UGMFJzPv+gQ3gfHjbwxF6VL3VJxPdgY54iuzx8clrYDCklc7PQ7pWJhdIUVftdiimvaAAFhgoRQwzO8ZtAISNcauBqPLVBFjkys2IVNPbUok7v0KekICVqeqsEer8y22/er5WrHDwpYxeSDLgLr7N2+joM/aakpbhBnMki7PVYTbCSop376yuSRBRjsLWHwZpxuQ5fCsAdtpuL7cincvXAUhwmdGthQw/s4LH2N6rfLUu1q97A9Z4DTJpDTJC2UHabbSc0ag5pat9rIENLdrIJEp3P62Oul99P1Yw0QOz7j7S9UH7Myb4Dq3NQAZKKPvXGHyQNHTiMttG8L496lvcKqM98QCd3Ua34xi3i9EdW8bgAd0w/1DG3v4EB+K+QEajD0t4+AAHIwOIlSqv64wrug7JD8MhNE/+2gWIovFEHVSgmzk5I41TIXLBEOc4SVoC4FKS4Le//je7ZoOckWewgbbLZWUbkkMCDv2L/rnl5SBuwCgL3INoqp43XdytYnLlwLcj5O4wRE3cXY+FDboROGWAgoRexfRupRUljBlkEngHDE6tywyalg/QYYsuBjvyfZRn/N5D0M+JtIGFbNsxKqP3m5FnXOR+6+BDO9DI1w1PejNy2d8Vggh5YhC7SvwmVil7XzgPUYZMBAy7GNiL1bUomudBB2/JNoi8n/cVaFmcLnR9yIW6UnzZE4+ug/TkB+e0twpgg2U0Fk4FEC8w0GAQ6iEUeEL8ByE8fIADwEGtQiYcC4ZjYWOmMZD7+rwHPY3m8DBogkeEPnlRV+BFr04XmHhmzO13r7FYbX+1ZwFspAPeupJ6vFE1+ooW5KVias99zVtV3Nyql8GOcmT25ZbgF2BUPjbxvNXq7I3r6eAAOZBndxtJAoZDj3Syvi8e6mcYyx+KN1rpkchJySZ5lftqaodQJKbQgUN3i2OAV99qXRXHVMGI2V/0fRFoJxvH5yXHY5j9SjuoEAB6rTTHfIYNk4lXVeCN+9rqS/Gbxna0Pr05E9A8Gaq9oo02jFu9dQlxCEqQvw1vVDXSVU5YZrP3ruwmVkXMN8dk/9aOmQFd3z8P5//ChfOSygdzWM2qBgJfXsiFAkejrYGNRru1BthLO58eUEcDmE+Mw+KKNJkmJmXtPoOINi516mSZu/48M2kmyMyOwhbZwV/24RHARAcsEuPuBRA6OgS62ooYBRObFCKSbZnQEyiDkCGIACE9rh0aRao7BhUU8x6G9pItjdCMuTKcYnjaG/Um+8f62Bad0doujY2yNgHPbfkJAV5EQeEAICLijTSN7sCOlPyAXBg7ARvA0ntsp+d9B/BdSd4IsT8CwDQAG4N+KQBZLFVqjB94tvf7oUHLRsV7QR0FYgRKBeLhlVufzKAOMqIJqJW7pZVYADs9mdp23VWxhB9R7IAj9mTfJGpyR90g1enIGLBxashqA1w15hW2r2917NHyyHD82aW9HGCxRnhw3J/D3QoPJ+AYGn1yAxMHabfojqSvUZtdxTrvxtAlQfLtFzmPFt2MHluepAij7WKRdMVVuQKUZAgXuHZkyD24APuOlTabRNoi6/FDIRPY6J+PmjDUl20tO7ZpgfrQ0Poy3BBQdwB7+cxVuMvRosamS2wDdkZnmZub8ZXs35iphR2F+g0zkX3XUH0vY3qWEgzbBgEE08CWrlk/bglBS7vW1l4p1a7bWkXCw+F3MnBk4Dou3wVwADD6g+akP4Rj2ym0WbccMQS6DXalgkbNWr5S7ptTeBf6fEzO+3bss4eEUdf+q50rBig0HeujlSFgwo2l0OSnXU1rGQUsbOSHZG0JptsJY155k6ynmF77MtGQ1AEE99ULYyDUsQEtyg8HnXOVdz9etJAr0LECG1oZdAasG1uMks+RmNCKH3fX+xDOx9N/MIfYwXtNx5AecVx2DzqaTSnSpTF4v+ozJilHtJagM5MgMNEEgaUrXjuN+TeBbTNWBxPFUon5Bg5ljHsDbPQ7WeLsctUOQGLMzgi1+GCIi/XFqhIYhC6t+HVqnyaLVATBKPdcWA+8Yn+dmh0Q9JJ2rbT2zgyNvbwHDd6CMOuLl/sWUh7DkzRO6bN99px3YcRPG/P1bZnqgn7V9SJP96J1djRQQOeYhMO2ZqlLM0MJX8vOX+G4fLIaFPA+HvpibyBq10pyWrAdMLiy4bDxY+/RnnubAOtzYVYNifSJEuiIvCE+U1BFS3vvn547ms6ItIPI7VPEJcdUASsrtzHjCWQOYuWP3T19Bdsp4ugFUhovXz9ucmjFiXTcEbB37bFhag9GYsG37xmDcXofgcVWWO7wtNg7iXs/w8MJOI4FE9ZplPVIQgeB20eckN4IaBwCKjI6miRWNB99cVDkjKsr62xNHY95PCszBaaroEOftx0qlqQ9E1X+FoMXJt8VYyQzNPgu2NgGsQYMARNsx9DD8Q9T97sAqKImL6xOwkZpKvAQBm8qXNV++LwqHHjnwiOk12GOULTbD4OuFR+nd6sXyBLhgH2S+8qIYDJJmShwaqbr8nbgoG0ZwWJK17p+1X5jJD0AC0CGi9C6fQVlQGH91OiOOaJbJnZAGs8cSssuEJoh2EB+lrY1HQpLiMrZdTqA5u0ztH3pwIb/GfvQz7JFZ9tp4+5yr0I0TLd6hqU/A87+2TlU0cdAaJQo5DvwcjAQ2tlHx6mT8Wx7OLh3DcjhMni+W/z4HO5ZOAOOVQ+jxrRN4PfC3IDGyCK98xYJYO2RNHJcTyK6ekqEjb4bHGnrYxL6SlsIZN4YkWmSAWghWf/utxHG7bFF6HhCphvNGgu8Z6WxP+AubBoVVmZqzDPGYYhjMNa09+0ALputrew1CDJz7DQhXKBLVeYcjNqW2UFR3fXCChCtv7Ovkx9heNFJ2EHKuBSR2iTHSnwzqh5W7d2sfTiC5RXVaXSreMMG1E+qwMB3clCIE+55IrfFcMAbnHd5X5sIPMMNPYeAowBLIWDXPi6jBjuQRl8nBs1o39kGTF8nYrD5pmEGFsJ6sUsBjKbFDNDeXzRhHgW3IvxlkX5swKG5IAdoAlAFuNSFUYK7f6Nlf6AeeCu7LRRrHpGO9Jl7OaUALLzPc+Mp+ptNsxGX1Dj6BEEDIoOQbLNS544DCp02YiuxPo0YZf2cWqRtELMR916Fh2VJ5YHQwyzLgqeeegqvetWr8Mgjj+BjP/Zj8e3f/u3gu9Eh4gxhKBH9n0ZIfcReSmroQQmwHoQh75wK69xbvW9GDhVAxoofWlwS8eKrmz6jt+GmImVoA2AzocDxCM0JmOXdyTUCfHus16UHMRHw9FqS6MMj/I7xABE2tZDOdO1qzUgh/XguTBCIOmVq9ibmTTUIosg4/S+0lS3Eh0YQVXj4uCNm19kqpORDczut9YHwNd0bKwt4Kjp7bvEDGEp/5PfEAFUGMXfpiXaop/MtiuF7xw+fnofM7aA5a78EHPrdTRO1PlCAqoDC/qpdZwUbU6CbgDrpswngGVh2AF8w6iQ0dQfUHQn9jHa9YNCOgUn/ZgYuGNhV8Mzgnf1V1AsG7yQe7wC+ZNRZ6fyvShoTC/CelW5q5fQyebkZddL4E7cly9UfoxaW+k2yZMTarpVk6YhJtrxXbdM6Ba2j9XtFF22cBk/DqasYJ2j8yDth7AM+YkKHSx0mjBUO4ysnknt6T7dpG8fbdMaD3YYp9M9Qdn8Zn50ItO9GqCh3/PcghAdCw/F3/s7fwfd+7/fin/2zf4ZP+qRPwi/90i/hq77qq/BhH/Zh+Ct/5a/cWeKH+tTw3aEIfOQ9xp14za0BprYKEwRjH58hsxmRDCUYygXhGQSDMA1lSMb0O6EaVdkA0hJKFDKrWaUxxb4+Jf9cYTurAuCaijixSvQm881BWAGwsMt/bmQqPeHeNH1ZxAic53ReRRXgDY+w97hWOE6vUvC17hOY5oG2WVFQT5D7HUHLp42Vk+jy79tkg868l3ozRZ8VmpVlmTziFrRt2N1fNkCmZosRbTLUD4YBUZ4bHZtH25LTQhEhjiCk+35edWDxVNtSSm8oCjSnWsRykGDfngxgBuoyAGIG/uwTFZazbPScGk9IDUddY6n+ZUqlFpfh6ySu0YC0da2iqaCErkMcNZb2M2Kgmoj+EwaX6fZNU50CqwHMgyi6BunaJv0+TuheREe0K21H6HQbgfpxOqYK4zk8O4e7Hh4IwPHzP//z+FN/6k/hC7/wCwEAH/MxH4Mf+qEfwi/+4i/eeeLeXwcdLPbluF3sUGfsBcwxuq28qV18TI2SDWnYjoCxV9JGb/Yao/MxYHv1oXzQHH/FovfRAtjw35Tfj+q2FXx5BNhkZm4Iu+f8WaJAU5RBCjrIM2+JSjS13yAgeoFc+9Agk7zYZIqrch71rpHKsqrzKPIRJtuSOUIXBWNuliFdWsIbJe19tp1QPBoL/bJetMNIxsi6lOJebmdqu0wGgIN1C2ud4e71I4jxvqF0PFV9zu05Al1oRwpgZAU4AGBi1Nqdruv9JPxmVmd14bmm4zJPl0CWPSdtU8rTAIECPDcCNVf1FsyI1Oxnavhww66h9jgRELVX7ZmNL5Zxc9A517rVNhOW0jGG/TECh9VsbCNXA/3HwpF07nVYmLDcwbLIncS9n+GBAByf/dmfjX/8j/8xfu3Xfg1/+A//Yfzn//yf8XM/93N461vfuhnn1q1buHXrlv9++umn5Yb70Ru5LtKA2mTWw9msXe/ih7ekyuDZOHMgzi7Dew5XBqW1b1PJrnkkJY1FWu4I16gpSUsgXfAZ7ygkcAefXa3wILVnxm/yg5g/t8lLbCrqjRebgyBjTsdlcMcUDxGfupNkpb0apRXqfSy9QeSRsMzGx4Oc49BwRs+DulPusxv9JYENoqChoO6aQYnZD0Ug0QOOSgyaqdEQHKREwMEUNBuyjpQBuIELYnlM+XlqJmuKSuv2jRqOLRCitMQNbNQKlEm7Ts3NDUbTAhJAukWZAd2NhgY+7Fto33ZN4lZdKHzGFZHRtMLY+HO/NN0YdjqE33GsWGEjXf/8kLbD4oWxO6QbxOnJ4qF3q7j3ODwsNhwPBOB405vehKeffhqf8AmfgGmasCwLvvM7vxN/9s/+2c04b3nLW/DmN795/NIHl4+W9biKTNXXHnmb00eB6WmP6Lh7v9VRWt7u8GiQj9RAH/bb+vxPGZL5Tpg0HZuBBlqfLBWSNeg4G+qBhDJv6vJdLakgPOvbadQKZujZWiJjKjTGbPXy2Xefqm/ZbHSpPoHHEERI0cKbX0VEMzfBe2RaZHkfZV6H+lX3k1b5HkDAqc8OBKql19HRiI6EbuQC3ASfgErSfpD7lvUvl7klaCzMtqO36yCoZoMbOOmXVEjtFWbdCWOgogcclu7MOgaClIuaPKtzEQ1IVTDQQEhodut3BeBaQUtomwQ0AsiYIJo5e6bdg8y400AHWV+0RmvpMkF3rLTvZiDEjZdjUZjFGBccPPW2yjZBz1oe8u9JiUDeAdEPCGPVBRPYMA+nA4FP1qAhvUPLlFZGa7RD4Yg9VXtnxT1RG3IPAt/habF89jR698IP//AP41/8i3+BH/zBH8QnfdIn4d3vfjfe+MY34vHHH8frX//6YZwnn3wSTzzxhP9++umn8YpXvKIREJDgdg86eo67mg50THcFWDbASW+keQjEqC0GpzwzCDDfGkMh4HkY46eWl/OwPj3ourukawJiZbwZZ5ojoBGKU2PRCobNl6oNuD8BTypUnWtYRjE1OulWwVjGyiEee/2S/CVuGhDrCuqDY6UmNoHrPwND3uBTgg24b5IBYZfARp8omtDxVRXOtyvj5ZyeFGHQF02W+DChfNpxVwWeSo7cgQ7XWLhXUPGL4n0nLKm4geik4ETdkaMDHExA3ck72SpreVFeTlFjS0yKIEpoCMvbSj5xACDSR0rf5gY27HtMstvFd64kwBGQrrafg47Ql7lClm9sZxUBWKSDU8jX3rNu82IFJ2WBLy35JzD/Jm7PgXz6b6iQPyrsp9auQ447PIyO240tTbr9RwAjEbT7K7d9iul4Zi2B0ftI108Uh2Ci1SV6IDiHexMeCFj0Dd/wDXjTm96EL/3SL8Unf/In4yu+4ivw9V//9XjLW96yGefy8hIvfelL018KxggANI7bvU83PCDgwfMTwipKE0iN31N71wOhSKjuNXs5H629m/oaSEdsq8BM6us4M+xBhN7485XBKTIYoWAdHxl/UHEnsJJaI7wL2TM4OxfTMifAY3GSBoeE2U6GY4Jjoa59yR5G99nAQMq3NXvTthxa6zi5p6iAItYvyO0P+pefo+1uGf6xSDKnXafn+dWqz6FgIxvPZu0OpSKjkPe6Vbt6X6QANiwJCmBE+qvs4iDfiRJ3sdQi211r0R0YFxAtiO1cmWwHiu74mIE6M5YLRt3JbhDZIaLXnewssV0m9bKCdwzMFdDnuKioF1XTq2KzobtXbLeL7GhB2LkSdrlcsJZPrzsGX0i56iTlrEXLOzHqzF6PutN4E9oOrYlQbVeP/c2EZSJvQwfUyiPc+LvAn7VxxPZ19Xu2bxLZY4BN7cuueETPsLq7IwPBx59nFtIbjS8OcXxCRa1vAwlstDqxx3fcGcq1PZLvflhAd/z3fML3fM/34GM+5mNw48YNvPrVrz5qF/m2t70NH//xH49HHnkEr3jFK/D1X//1uHnz5sn5PRAajmeffRal82UxTRNqPXR+8x2EXg0d5Uy6ZxwTMpmuJekhpMuG2MuIoMvDVNvcighkwQ00x0ztwLYwIEPxfK7eZxPSFKdfQNza2OfLXRx0zejBPie3yVxkZm22o1cVgq7ZsHdWf9N0gH33bpwCJUZZdI08FGeVJ6uL86jFiFOqDnuyNeQJoYctqxBfHkuSVViM6GK/9JlkyD326fRb6OwUUqYcLc0Y/ftSS8r6RwdQuTCq+digBoT9dxGnbabZiMsn/RbRWsRvRp25owm/SQHvBMB3oxhgDVcTuASg1KTZsHZhQJYYtHMzGWxtHZvDIOCJwIu2EUiNObUxWa+6e4ZQZHdIgRSYoaiYfcdYLQCuGAUEIkraB1cGMKRNANd0EFPzT8PcfNFQdK0OFFAbawjpGR0hCeN+rAr41n4TusowaOIH6exldBDWjbme3JdPrVG2sj80TjeG+L0Ole/MDqM+j8L+q3/1r/DEE0/g7W9/O1796lfjbW97G1772tfiv/23/4aP+IiPWNH/4A/+IN70pjfh+77v+/DZn/3Z+LVf+zV85Vd+JYjooD1lDA8E4Hjd616H7/zO78QrX/lKfNInfRJ+5Vd+BW9961vxhje84d5kmOwlgnSD/raPayAoWU4P7p0OjenYCAr3tlWtqbYPdMBelnQPRXAqc6Lw1JI19TQBVBgoJW99DX9EgdkHsOE0/Q4Aux4os5edWlPZzhRneLG5zC5gYS9TJtQ84wL7ggb0oj2O1ato4ks8P6W5fjcju5IW7Q16jOZ6p4163/p3lwJVE/B9cQblofBhDhUjLKclAOEAQ5Mwp3Gk9wFA+NUAxBQ81Mb+5EsohGUHYA7PpjHg4B0DF4xCDKZmu0Ed3TRVXFzuUYjFv1shBxnNrwwDpeKRiz0IwHUlMApAwWU7mrO5XZE9sPtasF9s324AH0lgFSx7Ql2sQlAEoVfVsKASeAF4r9tmFXT4uFCgUBcSu469oaAwRhjebrXoNtl9K4wPAS0jTxBD5aKOxFhAEzHaslmsiz1HW/LofPOGeRV7+Xzcxd+IYyh1vNw5E9DhkF4mk1fWKbnlNxinLfog//DohbLnuF/hrW99K/78n//z+Kqv+ioAwNvf/nb82I/9GL7v+74Pb3rTm1b0P//zP48/9sf+GL78y78cgOwW/bIv+zL8wi/8wsl5PhCA4x/8g3+Ap556Cn/pL/0l/NZv/RYef/xx/IW/8Bfwzd/8zfevED1jXmk1AiemA3TKFNbRsuLaSPtcOObTpxks2/JukbXAzAOwdzoW47aYfZm5exf5aS7zoCKhjD5Do5wt9bRQ4GHW9kHIZvxhAgXioyMCLZb3UWOLIkw8NVNIbzi162vYP99gVo2J9e/XX3octujIZ6VbIGK1RXfU0AAS2KVtet8yHcCGG4oGcLoE1X805uztNZaJ1KCT0/ZXlG7pYJKlC5oZKAo6YG7Og4ZjYkzzHvNcUYhRCmNhKxf7mKHCuJyvMU0yum6AcV1LAlikUno3LSqHxfPtfirYL9II5snT6CuTGANSwVJqAB3UVHoMiR+WPPhaFC0gtMPY7B+f/zBwLeMh2n1Y33e2o6cps4IcKmg7X4r28Yp2ZhHQxhcMKwTOZLYgW+MgdZatPswHXvPg3hFK6+ArsogU1lH9B3dAZ5QdoG2wMZDuQah3aDRqcX03pobLy0tcXl6u6K+urvDLv/zLePLJJ/1ZKQWvec1r8K53vWuYx2d/9mfjne98J37xF38Rn/mZn4n/8T/+B378x38cX/EVX3FyOR8IwPGSl7wEb3vb2/C2t73t7iZ8SocydH40HjdaPkSHbHQ3MtRzXm8z7sbM41jyexOkKijW3kOzFHJ1NpBmpWMJr1peExB234OOIPyTA6W+nF3y8bf5yxhNZFIo1PxaOcpozr/SX4Goqx1E8KqqsHbodqeM6HKt+/sYWYBR/gzdFC+F3oHCVjg86yIjiW2t5Vml3vdXT2CdKPf3hdoyndsIwPuHazYKya6M0dIItW3X0Xuo0TdfGrUJ4wliDxFABYqABni5gDJVTPOiV0ahilIYF8RYKlzTQYVxMe8xTfKeIAL2EoylFlSbNxPjoixJ+VmZcDER9hNhX23LjAk0wr6Kb5xaKuZSsEwVyz5rOqoZXGpf9oMUr9WDrHZCZmqTjdC/67X2+6pjKLhFjx+NTNsXvzNJvcxAmyY0F+fWPWxpUR8yCFS4aUrsGQzYd51pOAa6/qbqmWysOQDxgI+rxoBW3DD8jJMIHpK134EPj3j+PQ4VhHrS+N+ODyBvjADwLd/yLfjWb/3WFf1v//ZvY1kWPPbYY+n5Y489hv/6X//rMI8v//Ivx2//9m/jcz7nc8DM2O/3+Nqv/Vr8jb/xN04u5wMBOO5ZOLRDBAjMl5MAPkhsnXwr3TgAjtp/+IkWw4w53tjAKdDtbL3o7MoINIHRAQEzLnXzPwMRo7qMJHTPK1bCb10dXy7fkvJdFdJul0MLmCr4bC24IFjMJ4AlIJAXSXSs7m2F4fDvcMbGxqANBEQmOU6zoagDWXv6OEw3mAiOskzwdRNhtYcGNppGAwFkIGk4xKiRAsggrJZGItgoGXA00KG7T3YA79C0GLNoKUhBR1FBWCbGNFeUiVFKlXtiEMnvnS6vYGJcTHtMhUFU5QrAllJoZixMqFywK/t0JJJoOEgm+0zY1wX7WrRbivgtlVBZvIvWUjGxajr2xeODSXcKyb1rXxR0sPIItfldf9AdgGtpb6phMhDHSxy7tcl4o2vb7hlEhFogbu+tXLELhMmUHfd+cKyo5tY1e3Gp2dNj5xmtp1nBuvSMgURAMco+znAOAf2IpDEmeZDCb/zGb6QNEiPtxvMNP/MzP4O/9bf+Fv7RP/pHePWrX433vOc9+Kt/9a/i27/92/HUU0+dlMbDDTiAw6AjjYCIgPteacg+jHKbAqzQ9AkCZSWbgnQMNgj2vE1STQ1olup2jwETKqEc1KUbhmfQVmQjv1Bci9fbgAyqdQcgvksILqPtnJiUt4Ofto218d1uth8ZUuKF68K6etl3ctjMjNezOU97cD8KtzOr6sHS6J21TaBJ/FX74goEhu8c368MkKm7QvqiGH6GHRGEsR0GhfNPBqAkGYHODWBwYTUEZQcf5g+mlIp5V0GFUaYqgGNqYINIlmBmqphKFc0GMSaS+z7MCh9kuKhXTchySUVxh00FosWoqomwfll1SaXWgsqMgoJrVhU4K7aYVHC6d11rOwErMrY4AQ7/xDrJgNJRWKoxWnPtHycEURsYWZIA8dafelFN4ZmBDgTj6tgvKXS4xtK6CsRUDXScIvRPta94PnQ8eHaPw93yNDrckTkIv//3/35M04T3v//96fn73/9+vPzlLx/Geeqpp/AVX/EV+Oqv/moAwCd/8ifjmWeewdd8zdfgb/7Nv7na2DEKDzfgOMbgT/3+EZTkITkmPDY7PZpOSy36Tjjoi8OGuwkIfzyOI0KDgzAZlLJjWlbyIS0abVckf+81LpD1ZIrMrcVJmC1yw3GuSneA0PgdmyxlZcrckQXumW420j3yekh7pM+5lvgQ3UlpbfTFLk5/KNZqS2sHWCpBdmhMATxsAI4lajb0r8YlFQMbF7JdldR+A2bHoTYcYvTMoHnBbrdgAoNK0HBM+lu1HHNZcDntUSBpynKLaDikKu16Ufa65bBoE0iLCOBQLYe29zVP2NfJn4t2hFEro9bavEmWGdcL+S4RW1KRPx1zFWAUYK9jqx7uRnYarYOSADjax+Q8eDTPNmGxpRMCzOmXjcHUXWyxN2LbQ1rB1azrwPsDj7vJwGZ+q/F5KO9GeRpPuTfhbtlwnBouLi7wR/7IH8FP//RP44u+6IskjVrx0z/90/i6r/u6YZyt3aKAyqETwsMNONL2vgF3joz7JLpt4ZwIj+1A8blAsNkYYA/WtFi5BiHMeFY5h/NTfOoRpzuB1rUaMoNhDjtduquBjgiPNo1G+zRWNQ7BjNNGQRmwyQH/LKs+L99MqsJZ00Oh2t1nMUdGvUMjc3rlAiLtFx0NuMa8t3lx96KfJqZXcdsfVt8tBUMlmxq8UOn43rc7tGRsBwmK/SYHfmbb4062JmpLItae5v3TbIcIWGb42ShxK2uy4SiEuqvATn1QEKtWA+5vw0BM2S2YdmKHUWjBpEssNFXMkyyZFAMb8x5zWTChiu1oERuPqOEoVLErYiAKlqUV2ZS6BhzStwoueMGt/Yw9T6L1MMBBLD5DKmFBAcoeIMb1spO8VAVh9lqsbUzEqFTB12Ycg7BlN3YpQgWDrsNZLmGsObspxfQQvvxCCgajq3SzLzND6ghwnXVYdynUll8QCK0rBYgiD23sxK5IPg6svw0df4Xfvl19NK5iPF/COSQQZSkp2no9DOGJJ57A61//evzRP/pH8Zmf+Zl429vehmeeecZ3rfy5P/fn8FEf9VHu7+p1r3sd3vrWt+LTPu3TfEnlqaeewute9zoHHsfCww04LMTlihEo7ulW4QAQof53BzYCjQ1mc8KTjCBHiCMK8FgFHrzbAkNBCMQlk1U8uweCwSlc8EQAEmXmULOBAEq6aiURrozQXriJQ22EVqy0Jh3bTA1RSQVjniXBQVrb2tfSo+QkDQo2YttJBAcCqyW3jf4SZ2CDzwqsl2aGZOYg4QTw2v8SYErrF740SJ5v+762TKclTM+hmo1mPNrvLhEjUqDues1GcPA1cQMsuypHu9vySdB8YIIcAV8YNO8x7RYHGA4gimgu5lk1G9NewAZVTFQxUxXtBqsmRIV5oYod7X35hLST2K4T2YFSbIcoGAULRIMxl4pbdcJ1nTBVQuUJlRYsXLBMpTmdKQD2jKv9DqRIzpajZHeVlmVmLAo6Yq/wr0RWBn2nO1dMw7FiZ/b9OPRz5TnE7Vs68Fi6foMGQuI4FdsQCgiAV/aj8njkPpxTglYO6sdRF8+BkA/TQ+OvoRCbyPV0fXqHRtXdDhV3eJbK8yjtl3zJl+D//J//g2/+5m/G+973Pnzqp34qfuInfsINSX/91389aTS+6Zu+CUSEb/qmb8Jv/uZv4sM//MPdZcWp4Qw4YjgkKI7IkEa0IUmBAEp6lKFP/Z5yMkbXl2FDmyEkau2u6TathSUTBicHOsKKSTnzsq1iyhQplTncxzR6oLEuaJi1rMPKVrfXZlD35+XtNQ+WUJ452TKKIRpLm5ybc0szFiT9JhH+o3XgeO/XkVZj/agprg+Evs+Oul+43/ouKcS2nNRGyIGn9QHtX757hFyTYcaj6V7BQt1Rc0leBlcDGxccwIb+FW5ajamizox5XjCrZkOWUapcS1XQsWCaRVtxsctgowcd08QKNhbHYtFugwDZ4QJyFbbsLiiyfIKChSt2vOBWnXBrmVFZdruQEKtSTHyH7HRrbr2awTQ1jYMKb9b2LiAsYHCtyJar7ZtEH/X1Wk+ZtbNZHECguUSfkI4CkG5M8lBdoEsDMHiPgSA2O6iw7bzryH0XtCxY28JtnyJBHEKeZ2AQGxqIlleYJKSdKS3iYYPwVTHuS2Dc2S6Vo3xiI3zd133d5hLKz/zMz6Tf8zzjW77lW/At3/Itzysv4Aw4xuHY7pURXVyeAZqwiiNtBEKSYKRuS2n3buWEbA1a1mn3BE2UtXfhfiTA4291jiWamJydp9RnG4UdjSIM3o1LF2oAwwjyzhgrxFtlCdOwvvY+w6yAeY+0ZZJ+lc3Wz/uirYoaC3qXuNUhnxpD4pOMToUutuEoKSaIoy4ApgVD6Wa/2j7uglyFGg/+agH4AmJ7kTQa+VonBi4qSF17U4H65WDRZkySBk0LLi6vcTGL7cVUKmY1Ao33u7Lg0fkWdpMYkq4AR5HrhIob5QpzYd2qmsEG7PcEoFZUIlxjh8oCNhY1IF246HbZgh1dYV93uFVmLDyhUEGhgoXlWkrBVCoqM/YLi2HpUkQLQWJgWrVjTSDwRQFfyfeI+9ei8LfxJ0elUDvbzcCGAQxbvnIWo/wl4XRNPWoJE+9Yh4bRu8EXo+g4lSwDXcfuIm8Y4Jl1vzWxe5eMPe8n6DifFvuwhJWFP2XGvTmzJZwkDGJ6kct73HbfBpUOHS9Hd/VLZ7oV1Ov23HZwsK9HUCtDKGNUtW6PNPLijjQVcfYcqxxpUuA2SbPfPR7xRIxpAupBFMmAkhnKXNXwrUAOvYqZWaLaxtIUgdEO6u0Mu0umD1LEEXftKtRL+gPM8YRs9R2tlWd917H7sETGfV+MS4udV1BQ2AobwAarB9G2s4TyUokto1zANRZcqi+9RMBRCwM3GGUndhUIu1EMcJib8vnyGjd2C3Zlj4kWTEW8is6l7T6ZS8Wj80186HwtmgxFjlNhzLQk4HFjusKHlL1/kr1uoNY9J9p8jAlihFqpYF+v8WzdYcHk22cX2BW4oAnXzLhcFjy37HCNCTMK9lwwYcLMjGsw6iy+PJbKuL5m1GVS31pVbAuoyCYUZuACwGLQotlsJE1g9P5qn9aWcmK/qQBNTZOChZpjL/NEXCHLLQY2GaAlgjCCcRspUh7kZkxo48y1G0Trg9x6pAGz/Tg+rja9gg6fd+kN2ARwIM1zeN7h4QMczHlaHMPBGWLsiZSnn95/g3TyKTIyjXdyY/Qq7EoJOZjwF2Mm9/oQ049JcwWX0uY8YdnDaAnd4Icd3NYEUAIT3VhbOxOzNFs1SauVwIdVsYtuk6AtoRrLsfoqEWyMIjsdCbMM5ReHkckcV9Oxl9Qq1fv3MMOyIVMMhYj9IUp/63d9Aw+0E9Q9G/VMb8NhX0QDUlr2jESULCIqWy4J21YRlkncP4TOTnkuKxsNP5PEll0K3DgUtgV2IjUAlbygWgvetcPLuLAYcSrIYF1SwVSxu9hjmhZZJpkqdqVioj1oYsym7ZgqPnS+hUema1xOe8y0KOiQ8kWw8ch0hRu0x65UbULx07HnKeAzARtzqXLuBQrmQphpwXN1hz1Nru2oJLsGrsyfh3pDfXbZ4RqzL2tQlaWVqUyyXEIAZnGrAUxu7lGdR7Ce/Mri/j3uOrHxXvM2eNsmm5SdAVeCgsO8ArA5v9Mubl55ozewaLPhhwEor2o6Fw4MwTsk8tbxbhJAgccx4Iahg8lC6sfcjiTwio14fNjKnoPl6YzS7UjuV7jfu1ReqPDwAY4YTlZDA7mD3yb96Hl8HcuQbjsb7yj0w2SAdYBFV7xr+1fyeAI02kx1VEJzaJQMSZGvHK8ceMsgQecp2G6+VfQR2NCyJ+VPHYlSScD5iHpQ7O1Afa5IrAdiKcPknsnpz1UFtmZWGjkumW1VnhzyrJ4Nw+rbtuc5odDXes2GLZOgTUx9F1NEn2hxfXdKMA5N9hem3VDh5Se+zmjLWMHoU3ankBzANrNwI3uvaU+TGILyREBRsDFXlGnBblowTwvmsuCiVEy0iJHoVPHofAs3pj0uyh6XRWw37I9QVYnD+JByC5elYsKCHdXQXAzma+x1jVMAi7R6BbBAtBkzFcy04GbdYY/Jwcaikp6qAA6qYpj6LDMIM0plXBNQS8Gsu1S85SfGNTPAkwoSnXhoO/tAmrX3crBDirjS/mwDwZL7SBzbvuzifdbGWRDesW+pk7yAFdJ7BwCmaTSm4kQRfFuIu7AGPdwfBW5yTAsR10hHpDpOqQa6FyCcl1QelmAd8hjwOAROIuA+tHU2ggWclu9aRtGKQGgUdJQCW6PP5F0BtpaEgoxK2pKIFqglkWwdjjQhRVBybHwMeFxMx17wEn4PK8Ndu2/QQFw2Y9GfPIgT8+22zG6GyMSO8UacNqfatO3ov9HGd7Zva4aJCWzE70MBlNoyivrYSAKt5N/mg6PusNaA9H9TFW+ZugvFr4X1XuwmyrSoZkMMQw1w7Ir8zXo/04IPnW+JVqMsuCh73AiAYwqg40bZ46IsmIgxYwkaDmk7QlNyTaENmRRwqM3GQoQZFc/x7GBj4aJLEQp2iVHKBMIVwMAtmsWGgysmtQlpbViAqYqPDzFIkm9ZWI9F0E/EWjBmcC0NXHeAw7fKM9oOr54m9hs9W4gsk35sWz9W0LE5t+7ozPB2Nbi936rGZLQlNtICgfkM6FKc00CEHdbYF+8c7m44Aw4Lo0556hKLEHfX0Xw+SmjkQYwuWp+0gZN0L5zANRsuXCQRl5kmUJSxsAoa13Qg/8Hv1wIo/cWWuF2AfeKgTgDF2obg50UYc02rF/4ns5oIUCJoQGg29wNwkHmF+CfOhJohm/4TFCdr4gNp0uaP9WO9pmUwexazc2FDvivBvnnyo2F/ptXwZRfKmo34p9qKqAFZAQ7VbJhPDS5tOSVuj8W04HK3l10kU3XQkQBHEXuOD52ew+VUcaHPBXBci2GoeRilBY/QNWYKRqRYcDH4+IUWLCgJhDAEcOxRFHgUlLKInw0CFmbswbqtmxwg2C6VUipmMJgruMpWWgbJDlQFB+yaDcCccZGr6Khd0c4wYdOCdOPAtXKc3/XAxCrnfIAAYsqTCYaPK1NgaOkw1IQoHenDfmnVx0WM5vyxY4ZpF1gEB1aewfg5VWOR6EazjXsb7tZZKi/2cAYcALa1EiYd6DBd/46xBhWj6ya48EQBKk7aB9cYxO2qjA2Po83MjFOCa1phNuSnScbirgsxqEtPqOV0DNBnaczQqhyKFWVAz6iofzYqXFi8jptM++IaKHCnQ6PAEM1GUNNu5q/fpTXNCczr0GwszOzMKdkq84hxaW2lkoWLvK8qeRj5HQxsGlANoALdNfpw8WWUidV4ESuHXrJLRc9GUfsN6HZX3wLru1EqdheL2Gwo4BDQsWCn9htzqbigPV66u4kb04IL2jsQuSx73JgUcECMRR+lKzmITfuDaD0WXJTc9jNE+7Ew4dpBh4SFFXCQehSFLLs8Wy+xh+xC0a0iaMBBmvXR6Qq/B9Fe1EKYuMp3cLAhu193E6Gigli1b0xN26G7Skjb2E5wdd81Ue1g/WLKcny1pKK/5UTZcIJy1yUN4JhmzPt2CbSs8MzGiLXDkJE1OilfBBM55/TwlOUUR9ojMNLoKMW5/+G8pPKwhGMqtx5gbIKOLe4//ulRDoEYfe6l65M0KanLKAfz0gy5p8Mgf0MGoYijuqxaTRlmn3eUjUl1O4jf20gMSSMKosFz/82BljfSi1O6MMOKDxLo4fRgs6l9b2mDOkPQcbKmxDIKqKIHHRToDvKf5s3SXI9DhQf8vqVX3WgTwYh07TCuzmGLrIGKAVCpM4ufDTuGvkC1GmhGo5O4Kp/tJNeJUcqCWQFGXFK5KNd46XxTbDZIbDYu6Bq7UpOGY6aKR+mWgBSqmKFGpAzMtIhfDA077JtfNBKGfiWbU0XDQQUTy7bVhUXTMTFjppt4tl7oLhcRZIW1+xk4q4RHcQVW0DGRLKmYgWcloBBhmhg7XsCT5OHGm1HDYd/atrgq6EiHDweg6cfTD9mO2IpYoZkBLA2MAFoHtYcScMLgpfWrlYEnecqqGNk4b4hDz7bljTj2GOGHZXeAd6d1xwNjjON0gHMdzuGuh4cPcNgulai1OEYPdAJ9Bfm3IrvQSRI3DqQwMNPwGIKQXsiIS+UWqyW8mgET2uwIQRByN7sd1IcIqGEAb9lhECAHRU25LtSP/Q1sdAyjM0GO2Q6RreyJKVrCOtN35qMMO86i4tbaMHEUl81LACyeaCypMSv2FvVEdRZoZBR2jLTPd0Lfi/Y4KXvKz0K2HlYNGxpJ28y21I7U8bKMgmbbYX9u/EmumTCg4YBTl17WSy2sJ74GEBIce9lfmRfs5qWd+mp/ZZEtrwo4LqZrvGS6iUs1EL2gPS7KtYIO+Xuk7DHTHo+Wa+x8CaVdbX/YRRE1wYzm+CuGGwxcqZpgjwk7UFpameyvVDzDOzfOBaSOXEnHWwXTgg9R0HHNBYyCfZXdLFNhVDAKV0wTYUeLuFavJO1j/do0CkU//qy/F8rfvvum2Z7DaFVLGsaDG6i6Dw64U7K2A0rLUQ00aHo1n7WSd6304wqZD1r96oCuD1HTGAGIaZj7oGUk+7ECLc2Xyf3EHWcNx8McTt29Eo0IgCw9bdAYnTP6jTkxtwG/OWtflaljLIHGhD8XBSXxfRBYymtkmLEKkEHxCPBttcM9rnF8m0fFWK5Yldgc9jvOZLYG+9bZKqkoqrZ1FDVISMvKKt9S4fzKjUFzmwN1NTlwv/3KjvU+WpdT+qAnrX0xxQn3vmxiy2/U7HocSMrvql26luY91Ha1JHsg6BkhM6F2h7CtHH+ZP42d2GiYVqNdm4aDdosso5gjr2lBmRZdSmH1sbHgxnyFD51utt0otMdluQ73e+zoCh8yXeORcoWd2mxEsDGr068CxgTZ+tqDDf90BNzga1ypUehC6lODJuzNmRfL38QLPuDgX8FGIdSqfkkqcKFLHNe1oBKhTOKwroBlmaXIKbSFCRfzgv1CWMwmxPq4G1HomJzUI+lS2rPw56Cy6Hc2LUwCKGxdxkGHCeF+dTlOKNwAOdKhO5fI3sOWeDEepj5/CnTbnV/LF+2l7D2vaGnwLN3z+tW9DmfA8cEeRvYZFobH7I4EV1mnNbr3o+B9FA0Bjc8sbme7rmoU+nSMqdihRE1awLkEg3zww+Z50Ypdq5a1k+2QOHdM6EykAQ0n36pyGNQbIjLf92AuPk9xdIqkjHO9DRbKeM1BWLdW7cyvccEA4daYcnB/MFBI74iGw2xFjk7yAAcEUHAQCh5AJnQXE4Lzro3rXJomw/xlFGrPdIZdzf14tL/Qe3fsNUEcVs0QT512DorvSmn35WLB5U6NQCfRcuwm2epqSyjzVPHo7gofurvCBS24oAWXJPYal0XuL/T6IeUaL5muHEzM+jeBMYMxM/sulcvCK6y7koMEFK7Yg3AF00SoZoIZ7qMEwKwHwC0LgWhygSh/TdBPhd2IdK/GFw1sKhiELLlQBAAJJHT3dqovh2f9XwGo2Hjm5h1dB7TPmcI3Z9X6UUIeGlG3wJIzAoPCMtbaVllSsD+S7NZ3lWcRuuWVWKlAF/QWUbM4GqBe5JjcKOn7CjkejvDwAo6tcKqg78WLM/mN5wGxY7gMEru3DfhwXLTS93Pj5prb3YNlGmUObN4DE2eK+SEPzq6mccOgCc2kuEEGG2kMc/fQslFssNJuIP+2A9yMF/ZfyPmt0XN4lhILlbElFatPeC1X9rRGoU973Ws2xBYHV+rh2SFbocRrNwoToZE4awr90d7HGS86kFHa79USCkRLFgFNtaWQ0v7ijpSqV9NuyBZRhh8nH0Chg0O31WCUApTCmPSskyn8XagWw5x5TaQnxKq2YtKdKDu6xgUtCjZYsZCAg3RFxUwyhqyta2rRrrGh5eW4Izg1GJawNlUIKLV2fQJO5wtyBBQdEOZWHaYV0HHt/aBAlzdi0Uz4htDR6VyjGZlq+1MB6pJtTT24liEMLONPKd0M3NnJrS3bQF+x2cQfran69opMJIKV7tnGI6NNWY92vlhdNgfc3Q9nDcfDELbAwYruyIPbASk+qALn3xh9zdjQBAm1pUlLSm/YB3lTlaf0LGIvubbKHjrwSOauZn7xYQcuEuiI+GuQsM8+GK5F8Qj2R1hrLgbnnXjmsRXZtB7aehwJmwYjMdgOjEg5RrOz1Brt3j1sbSCvXg9tzzD6Gb7LqsLWbyJ+VOO/ACJW/SNUzO0uyP5sC3XbCVUpGINS+zNB6NegAeHw3GfquqQiJ77K+SlUDHAoICAOIKLiYrrGjak/hG1xDYbTQTQctmQyOcCAeu0WsEEKNnofeAXr+W3+nSEGa9+pAPY2BkOEQsDMFVehM+2rHPgWQymMqcq2Wu9+DNS6hgJUkP3QOKahNd0KnKzIAnBt/KelFzQe+r0jwBhpA8z2uvV6cxW/zheAON+y7LfGlTOT/Hj7N3UPw/jbAhj3GWwABnKff54b86IXXXi4AcfJtho43P96I9SRtsOkaAId/iKHoE5NYjCSmhzTwekrOAWuvuwyh3OUZEQ5qKvROIfp32kVVPBzhW+hjVtpU5WszF2JYtr92QrmdqCvxSrd2oo3Bh2N87m2lULzRzBUQ1kcyXXpK7AzhrsGThFUDADGVhlP6o9CczhF8u8DQKVpD0LRwIfScqG1dsNBQrDhmMhBRPoL4IMVbPQaEFPRs4IOVgNRmsQ5FtnpraQnvir4mKjicrrGjUl3qgRHXnYImwCUiguIsegU00LWahDETmJHAi4IHHxKZHx7qK2licz5FavQGI1pgIhgp6Tsa/FY6etqxxSHrxVLneQwuY1uQcFgczygNRjoOFAZUjr5gEcIrT8dBN7our/BmW4niI/J4HxrOGziYA0Re9rV8NsoXFj2Tnm/AOGs4fhgDaNdKiM7Dguxb1P4kTr4CcKiHycJPATE4APFoIaBl410KY4vE0YjFGGSMaZH6VGfT8Qlw+pEPmdXDgSDNIfV4O6+Z4zK9V3jEXlVzTtxc/oNrvVpejq9VDmZ54RZkgO0NRPNDJkPp39i/3Ebn14jEkGCBbPZUCGRllEAf2fOv5pWI7i1R9sMzGbHMTBItL9KSN5IkwYkdee2jEIl/5XSzvggYuymvbovb5qM6K7cwMSM5j1UtCPy14xC230h0mqYBsxHURiq+YO1arROQwRQZSzpDeXuFT79nsdgo8+n1riN3QBZE7Kti4XGJegyCQ/aW+5GsGQ1EaDAG2IEjtTs8yaffIR0jDdQcIPu8VJlm7DfnDSswokDdTT+RkbbLyDYeJjCwwc4gMOMPdHdZrpHZ6h3F4U2cRr8KpwSCWhccCMOGzEDR8GzctWhU6+WWLPZoHXclE5X1K38fLveJq/gQNdxxBg0DWb4TFUer4VNrE+AeRtltS24XUbPJzRJIBos2spZRTnBAYSBy1Yqo9FnEwUA0QMJFWLBAJTNb0b0MKo0lSBbXzv/G72mA4VBO9mFMgIb8e9yFhAxq+ty8aOxtL+yYEcLHqEr3Ch7FFtagZwQ67tQFIDMuhOlDKq8avauT49wNDMEbPBhzROz+O84BDUszUW3fAzLRbkL0gmGxXlmcKDPGl84wKvSW+vSwUg00ZiAtzE2SHnsn2azEi39rUlCaJyTxl//6A6G6fMNZw3HB3Polz22BG+C/YSDU35Lq0+/T5CN7rgUN6Msn1SsBAccELSsJe/xkkr7xbx+7poEr6IcaJbrhjwYNW/nUzYBGwxil/db/ExBS7ymPDnTxttxa5L7A2izm0HcCDbCdI1ZjXa7SRJZe+iDwxCTxGDyTmdQJvh8DyK2+xiAZpjsBWmTYN8ay+BJdyfZriXCyi6jRp8Z9q2pow1gQwAM+zJNr+EgqqBdRZmkmIUYVAx4yFKKXBfcmK5wMS2Yihl3ykFrUbsxo+IGXQsoIbXPYNZj6JumQzQbzWZjhYWC4K76veTZoa2ZLBu7iDCBsdTwfULjMwh7FDAXEDEmWgS99akRy9ZXmJ1JlW3tMXdufRaIu5MOAwXTejDQ+U2N0biBTBokSciHsJGceJuAv/OP9tCVcpyfS45ty6zxpjGEavHaMOU1QHAQdOr44yYH7jPQsPCwAI7Der0P1rBlLNoDgRUuCEI3hq3OHJ9bOn0eHQmFX9QzhSTR9ZGq1j0rtS3o/UZEfCE8RAdhtwbb4xAv05HlJre3YPSlbiCDY3pd/SsyyAiRg6yS0zc7MJJAWfyrPPx8q0eBwVn9/VcHcqj/YPDWbaUM36KRUa7/bYYxP2mNTbCuRQFsrHqQxlIQMOl27UK+UyU3NlSTgaatiMLN7zW9GXr0fAMoYqFpvjcYmCqwiztV5M92aDTNRsWNeY/dZHYajKkIWIm2GxNV9b2xpGeFKoijhqNiB/EmGpdaCG2kxb4ef1u1+65pp8b6lnKQak3MQlOkNjP81Fn7IOIzrXMsw4S6lPDVZMlnWqHtMGEwUsckHULoN8cYiNRea8tnjYbCt28TCR9WGzwteqmVUnRlpgZSc99BdmXOoR/nmqAfj/24Wo0/0JCORsuRfZ3O4Z6Es4bDjZQoCNUBsDjUEU8x9GNq3nUiecQeNHrRPev4SWOE7SELR3Fy9y5oZNTRB4biCfZX4zyxDCMMYhimI41N4bkfwDD+Wz/LCGRQ9zvlwe5yyBkOI0SyOK7ulQrlViehT0y7q3iIu6pQv4RjdVlXezPkFHvGaAlS2wgTwUIEBBrJwIYcfxrGgaWnV9dOBJfmlmbUbsj2WG5H0FtfK105zEBUt73KThX2HStmn1AKYyoVj0zXmEsDDxMtagAqdLKcsseNcqVbX82/hjn0kiUUgmhEJrC4E6FsguLOUSl8f0rwE8SkhqbwA9aki5lwY7+yV5292+zRaSj0OREw0eJDa7ExQ4GKpJ2mWsEsnsJE89bK6KzMKucJoc1vetZiA3AE8mMooZsEVpkwtr73sd4Dfx/znMeAVjzyiI4DhzT1brQs6mn2L1azBeUlvE32AoWHRcPxcAKOY+Hk3Ss20rpr/84YedwWGVTySYhRP/SQ3ysjibK/0TemaQcnySsCVajXQAZVkhknCzMl1qUTInEdPgXsFZgDVwgzM+AU9WOx2GHiNsRQqQ0PXDnn3/8ZELFmlCbWeoG8RRLIsRvq68jOfx1rhfalroDkKC0K7o7BJUa2/lLHwhEfi13JGKtllEzms0vWs9bZhFYEptBtr6Q7USj/CaBgl9gMJBuOnt7iMKIfjgYwkP4AgngYBSBaCuLw1wAHw74B+Ue2dsjdhLBngGlCsfXB9XACM2OvKhxC1aUjQmX2dAxA3GTgmmdxa84Fe0y45oJrnrCHXrnguhJu1gn7WrBn6q4FSyVULmCuskVW/7iqAIrPFPRU3dbthYn3Vj0d5wCtwLpX20DgvmFwb4/BeKnchntcxWj4nRvo6IeCZezlIICr9u4ORAzAjNOtxtQ6C0q1DC/CNYGYns+/QOCDmdT49/nHfxDCwws4omaj/z205+h64ohupKZbqe/8n3Y/yg6DxyZZC2E0pi1RxzUUfHiwWYS02W5LQ2ZM4CA/g+RNMtUEuQIQmlqxYjCX4a0sGwXuAYbVogMXUS4ZPQVaAoCqWxzJ/GuE8xwMiCgtqWbjqDiPPGnY4Crmest3Y6z+42AiW7nrhdLP4e8S1drZHXk0CGXzQBm1EXolBQyi7ycHKRx3r0RQUSAcJKrz47ZafS50JCebgrJaPtW1yo4GJux5wr5W7KjC3HOxCmfblbFgxk1Wp3ZFerS8aYsSYpdTUBi4BcYl16TpKGyHrbaxUQHMdWn2Kmgy/ZoJt7jgmmfsuaAysFAPOApu8YzfWy5xzTOuq7y/qjOueNbrhCuecXOZcXN/A/s6ibt0LrIVthZULlhq+9svk2o5jGcBMEHlKicC9oS4TNS3so+lxY68RxvEHJaXAlhxELFhfE26lbZ1SYkwtJ3QdBzE14AxND8pzobfjmHf6dyae7YRHSGXO2m1sarTeefK3Q8PL+AAxoBhaKtwAFhYGAGYFdSnNj2IAogBd2DhswvzNOoifjjjlSUMTss1RI0neZoEsE9TpFxtUA+qEovdZZv4TTgKO47rVg800DLiHEbHg98BbPTgowciyQbE3plwY4NXmkEF3NeAWcbF5XQDCzU2gtCtl0Q2TpeMfcnrtsHATtGm0eqmMW5C6CG5nyjczDYaXh+5OjiBgAvftWLVsCjF0Bracgu15LwHGMgmtC2aBswgoqFal3UEWBU0tLBn0QTseEFlmfXbeXoMwgJCQcE1ZlAVu49CBXswCsvJrgVTMhlYwLhARXSSavUrkGPmK4CbmGQZI4CO6yrH1C8MXEMAxzUXcCXs9TyVa55ws064yTtc8SyAgydc16JX/eMZN5cJz9WdaDv0T4CGHHm/2H0l7JciwKJagSiNAbvnpd3HMSiaTKy1IalLpBHculjkBzY2HBXo7WirqXOucLeyL7NOxqlrypjlmBT6nTDt+QG6tMXoyDiNPNNR1v0JVfvencR/EMLDDTh6ldoh489DnW/0bos85ad0G2nLWGq2CDaT7QoHgEBVVeXMw+2xrukIAEHsSkIyejVfQvGcFk/R6CKu0jTb7pb1ZGFgzpCrYNfufgUu9J1fI10fzD7DCtoDqZh5xIJAs37v67HieRt9JiYaIw9nfNzeH0prVJgg8KOGw7QTpM9TnzBA6gK/gQ03FKQm01wqmcwo4+UWidv6KhMHI4nuT0HHBIK5iS3dRyQACxdc14I5am0gwpm5oEKcbe1pxk1mlAqxDSEGY/Z+YkXYA9gz44LiIW2kOhQBGxWyns4ACi8AAVeVsFfzzYWBPc+4RhFNDBcsFVgw4TmecbPusOcJV3XCVQ2Ao05yzxNuLRNuLjssrEsupsnQpRY5WRZYFsKyL3rim2ovawAelUS7UAm8UBoXSSNofALIhtf9mCMF2vrxfcyFwGgP1xAlU6bx4mXpBxG38afdYTVOGF0ce35o/HmlDvN2u/bGs/cxnG04HpZwu/Yax94dS29l70GHRmwbmlQ2aEh9BSijmNYGautyaYZb1QGS8WcyNwlEMTWPExPpS3qgngk09GCjp7P0gOY9sQMnLinDgvMQlDgzUvVyNBDdorctswfBhpEHZneMOW71HZMi8Zs5uMhk7FcFmFGzkQR+Toe3gEH4i8sqRyqt7s+xhQRhM1F2sOEVXfUR2WPS0E8FBQ0H6XsWIY/abDUUqsemKmAsED8XouFoC40RcDDrFQW1ym6Uql98r4Bjr4DjWjUxot3Y+XNbNvHlFgUeN+uEm8vsYGNRwFFrXEIRrUZdZHsQr9AdHDVyBchcnI/+rDmY7YjYUTP7pzGe4kqCjtZBDcn4M8XXVnJG15ZH+j7Rxqm7YO/BufaX9XJOD166x9TSPjw3oMPvz+GuhAdmW+zHfMzHQE74zH9/+S//5dtL6G6sy9l20rit1EKUwnb1P27XltiIUP4s/ThN8PgNEbC9oCyH8oQyLJ1wY7Jen5AvBenc4uRimhyJM6ohs7udP0u/yixs2DRdfrrvAtG/Y34GUNgea/UexbF0Cd01PIenc1o/6j1VHqQ1TUOoaszRCpB8YIA03rrm7jHUaEa/AVRdAsn2HuHPgm2NDUVa0RFEs2H2GwhlDX4gpHxqY2N0jGA8Z+KpAXmGLDXYkkO8VhawcA0x4oyGnPa3N6HPE27qUscVF/+7Fe7t75m6w3O8wy0Wu4tbPMsfJn92zROerTs8u1yozYbYbZjNhvwW2pvLDrcUbJhGI4KOfZU67WvBspjdCukfwr3+VSiICGCkuyc0LUj/SUNHbbcsD0a9qlmAodt2TpkHhC4CHzspds68nxQMh00AGyOe6vw40t0Ov+/47n204Vh91+fx9yCEB0bD8Z/+03/Csiz++1d/9VfxJ//kn8Sf+TN/5vYT27S3OCHeKVoOg/9xbmAzOOrjbGE+i6e7SDyupsmUQblqS3z3Sj9WWL1T6jKKvKdWRGsShtPZzCRlbWOZ2n0BwOrHaAVQwk9Po3QvQto901ndWxlcs0EqjDZAj58zkQsVvoy2G/sn8vS6JszlkwY43GvYm/ao4y86YAgcvxHF7x76k6IjsqUMoxtJGI1WAT8/pTUzY+XUiyDLdUUL0xuPpj+WZRQTAgmUUEJyxUAJWyW3Ki/LFXsWx12ibRCjSllSkWUV84mBCtwoi6doWZq3DPtq11wxF/ZtrMS2E0WWe26xbqhl+M6YCtn1sqjR6J4LnqsCSPbaKHvdvXKripZDgIRoNW7WHZZKDWhw/yeaDbPZ8LlAlT7P8ayfCtCiDV/Rdu3UBpItLpY0zEO/hMt7icPWGk49mnQws2il7NtxHlNyH8ZVavn+W0sniONvvXQZSs2NbnPQ+Htpw83xlzQpI8Z5f8J5SeVFFj78wz88/f7bf/tv42M/9mPxJ/7En3h+CfbA4fnYaQzTCTcrew0dKb3dyNAIFWZVl+Vll6SUob0zI1IKQiQUNoEHriwGgitwIgzWjTIqklNEG8t272na1ttUuFWxxZmBCaEIOGorm+fRARJSQVbS7wBMYjDGGxqoN26T/NivrZ0iY8uNk5n2xtIKt1rbYXojpseR/kAfY2B9aEy81xvBYNR2rdjvTvAzITilgNt6jMAJTw1gmCQQD465HDxxOkNl2HYMPZgttwV3BoEc/gVM0BeUWjARq0aDFGgYnJAlGuYduBJuaGcShQt7OvBvNqEsjJ1tt1W7jYWBK8xixKl51GrnmhngEA3Kc3WHq2D4udfZ5oLiO1L2XPDcssNVnZVGl0w4ajb0fq+ajVp0i6zZc2Rkxwo22IxBtQ37cUCmLdTmXBlj54+AtfYz9wWPa5OVxHgyaRtPnFZD1tC6fW3hJwTunfZFUOp5baENy1vHX8h/TBcyOZDkvQznbbEv4nB1dYV3vvOdeOKJJ3T71TrcunULt27d8t9PP/10JhgZ6p2CgreAyoD5N5CB/HJorNoMvvKstJs3GAig9naN+Mk1Ez7TV3qzzbAZBFcAc8ghCtkIZKoKpJ6poD2KoIMGdH2zxRerJRSENDhUufJQdZuZKblmwwFFAEgcaDmBHGqZmQDkkMGgPrGpcosEzsUJNqpB6omLMkZH/s9RetNsmAtzMeNsAIGpnXXitSPAAbGeLmuGoGsQQoH/K6iZbByEhvYrG/JTF+bkv/3LMndL9ux2Hba0wlzE7oHloLTKA7AB6xo7iUcCjsQ8J36lJtCuWRyFmbH0FSbRojioKb5kU5gdXDxbd7jmCDYUTLCU9ZbuRnlukSUVBxhGX6UO5pdjv8h7ZsnPhFDVZZVaFfUtBjZCPw6yMmk2bDcKrz+N3OuYNkNR/64h2JhSOuqJqOXvUXQ8kUMMDnyUV3lEtimkSrvGJW1shggUI4d+2aefQUw3Tl8otPEQhQcScPzoj/4ofud3fgdf+ZVfuUnzlre8BW9+85ufXwYREJxiAAq0kW6DlkInHhmVDq4u0F2CdWDDB1SL57IRIQ8dgG1HCnW0LTQ6QxahGtyKwQCosuIoWpUqNYfS90woAYx4Ex2FDUAHW2KmsYhq5fBb7tnVy8n5V0xTK8XQmW8PKoL6xr9iBDlWHgbCeb6t4t6w3b1/vhOAg0c3QR4bL98bfxWtRUvfluH8hNjIdmP/9i6sIAMsmyBGSyuWTwIv9pu7/hjaVD8YeQfRPu9N2ewUDIqZYafZahCAwoTrWlBQMFMRx1xEYKrNqBX2e0ZlRsXeVc6tBWJrTCDIOSzXXDqwQbp0Y/cAo+BmlS2vBiD2DoaapuO6zrhZZ1wts+4+acsortFgwrUaiC7LpFoN2WobNRy1koB5BRvQ3zAbDr2nSgIe9D5the3vGeAq2sJssM2NJvbGagTr/uvYUaMXGx8sYzEua7C2vz/rQUWXr9G3MdUxCb9rE4v2Ij+IQ/LFZCjKd7ikctZw3MPwT//pP8UXfMEX4PHHH9+kefLJJ/HEE0/476effhqveMUr1oSjDhe3no7sPZzuBJtb5kYX7wdCxwYtu4QfufIMAMeFsabnYEfvi0kIAFVmtTZgvYOybCXkWpqANXfGlrRV2byRWrJlQ64GoGHCcLN5anjdyai0vryQyqygrQjvLZu0FZCjNiQwUfXDYevVSX3s0ptzOdJMKjDYfrZFCH1kAMsIIFU/HWublV1HpA2NRgC4lAY+RvSaI5eSd6N0tP4Ndbkl5d3HiRGr2o8U9jaMcI+ZwAth0boLxlYhSgVcxcHXfpnwHAquacGN6Vq239psX42KbLZ/XQUGPDJdY1faCbF+9gpVEO/wu9cyji7oGrMu5SSNE4ClAnueYAf2lYIOdIimY2GSHSZ1altoEYBGbcDj2eud+NWouvQT7Tbc22jBrSs5gpd1u6sYgxqoCPfXBWUpzajaQEV/vxDKQgmYx62wfl8FwNkypT0f7fqioAlMY0knAhHExI0hYz0eNbCPkK7de6cnHS/aj1Ya6DQ6ZBqUxt+YvA2dMO7tpgdZ9ylYU95J/AchPHCA43/+z/+Jn/qpn8K/+Tf/5iDd5eUlLi8v1y9cQG9EPBUojpZifNa4QRc1Gv176lkgxN4gGqJ2w9cYhQAPVZ2TbZMNM28DHWwnoEpyvq6qQERmkDJB8vXWOM5tfFsVGM1Q1NKzkgYGstJcxjp4GVM107Y8WuDgoTFDVtAAZ4ioLSMKgCoy0Bjf1dEwpmZ1aTYd/YxpbbMRmO+qgoOOxu0U4NQ2fUxt1GZX0RzBxcZjMi+x1PAOkLUcVrKRZsWBBGl6SLtl1jPOVj42ew5rRwNzJcQzYWZaOSZU9XBpanPW/luZUapoVRYquImdFlH7r+LvhYG5CAAoqNjXCTemdoBbUcBh39Rg+03ssKM95mKmoRIqC9gAtx0vheSQt6jl2DPhVp2VZhJ/GaorMTfnS5Wtr7eWWba6crPFWBSwRLBxvZ/Ai+TNqqkgs9mIYGNPoH0AEQ4y0IENNLsNRtL+JWPSxe65E8LaLexaIVpD7y7hmyudg3BdboljZtS9sy2TwdIg7EfjKX4shPeJLjIdrIPStjJtEWJ7YJ7DHYUHDnB8//d/Pz7iIz4CX/iFX3hnCZk0jWEThPR0G797wbqVXgQoQ2NBScjVji48BkMkMHVTEbp2LQxc8tmkJWSpkSdoY5eqClY9UyXNOjSaP1/gKnUKxeh5RT/pXw1nY4RAXmJJM6v41wSYzbBcMDn/CYzIGkVtQLJjd8AM1QxscCxPLnpqq8Ssh4EH5QlpeuSWSgRuMXf/dN2zHH2jNOZyvC8dM1jnmg5UOlADwLVbWzze703IlVhdFVIh0boQqLAc/85ArezAiSpAVHSnyA7AtZzBAkmzUEHlRQAKifeMPRfcCKfGWt5yMmwLN7HDTHvs9LwW24JqYs8AhwFL0jbZM+HWMoNh23EVTJidBQQACdjYCUDpAId4S207Uq6v5T3rThMDHFHTgUrgfQnLJxlMNC0GK9ggcX5m38JAYBg7tsOLuud52ZBAiwELG2v69fzKPuYogP34zVvadj8YA6EzJSjS9y0g8MwOoGBA6+VICWAcUcufmNj9CxXRIf/zi/8ghAcKcNRa8f3f//14/etfj3m+C0U/tWNtGYyO0klGpBv0W+vx7aFfpf+HwdCTrXbCyABONt6GKQi6nqr4niHbGFUD4gJNB53YdtBwjCbhZwIm1nggrLn7nYIJ7pBPtK43hpjVvcJ83G1zoMm7V1R4dOmlewdKlmZfwDVISnUYTpZ6ZncoSAE2KSlkQ8e6bQCehCPedij174PL2mZnFMqzpsnCSZ4N/kCoe0IzJtUZui4jEbGcGVQJt65n0AzVPBRMhTExobLuLkFBIRZNR7lS+GRaijqo/g47WkBgXHNpOiAFDuxXeU4EBRuSsgCOSQ9YKw2kMFQDMrkxaNWlEjuMjRnhXBTd+rqUAeCAaDYWARBQOw4yLYgBCQMNe6BYPH1H4ergQjUgtkmoHytk39CMrkfjCm1ccVzitG+t7RknKm3sDAcKLIVk03GINC5ljphLSmM7v0R4J2sadxjOu1RehOGnfuqn8Ou//ut4wxvecAepGMfrAIK9WknK4bRwTdODF0ZG4Vu00Xg0ZS+Dwf1v+NgIdIFWsrJ0acXgRVtCgSs00GEcw546Hbfx2piyZk9d9Wrw+wAkLcVB8N0LJm2TFXDp6uPFdv8DcUbU1Kb+GaKtiFeiy1ykiaZjSzgcZmcxLppg5VCoQV1aOxxmCge1uF2fYfM8G5ZC2rXRRoDQnH95gVrfImo2GxT++ipRi2Y/+2K3iXNAL4ymNfIIwWmRrKvocp6p5qvM/Ei0BQxCKRW1MsSkp4GKCQxmxk3e6bH0Alpkt4vvc9EyM67R9lDAP6P1cgMbopVY2HaqSBn2VXah1FD+6ttcFYhwwfXSnHbVQLdUASpmq1GDLw3fYVYJ2AMUl1oWrJZKKIKNCAy0XgkEmHYvgIj0Xayb2fIlYuTQj2PfHtH5OA2AII3TfO37WLap4o43DspzKPRxY7n6uvRxTs3jHE4ODxTg+PzP/3yMT5q83XAiGrxdtVpaT7iNuKdoWo4kaa2SbC/6uJ3dg4tlDgkYEDGtxcLiq6PPKOQHalssh0WMcXpB1gtpFia78gMwYJSkDHrFDDtaCuu+o10wyc6jz3RUkf7xgZnYpp+OPhztLk0YbmshKF8j2OgzSFq2A+VIQGYz41UU13q78AlgwwWdzu4dEADkGg4C6WlutTKuaYfLeUHhojYaIsAFcIiGo1aA6QIXZY+ZWIw/FXBIueRqfi92ZQn24QLIG/AQYHFrmTCD5WxFjt5NBXxU3d56vZ9ktwfZsoloONiWVAxs7MntiwSEFNdwRO0GXxPM/jZqM9xmw54tyEsoG0svZudRguZipd1gCChJbtINDHbfsQMvTteHOP6O9RsOSyoJXKSHfteP5TUZZ7rNgdoztfuv7ajc+sXzjf8ghAcKcNy9EKS3c8cNTUbcPngMGPS2HMOsQxq+/DIibsaFptp17cVWNQDoiVhohqLhJbXqol8uYbtt69YugP1oT6zHKwmjqGYfYjthBmp8m21xrEZkGnFmxTnOYWYXZnSReQK+thzXiftb84hYlMk4SOiNUVztanQqxIa8SYXcATASq5/6zKg7kBoEJ5nfE2qJ7DsQXLNlzscsFrNuZy2h/22CJs2N7IThDsBwT60aNzudmOMbjW9CqhKWfUWZO8BRRPAuKN7tl+uC3bxgLgULVVRU13BUNeC05Y+LSUFHAhxwnxfMBCyMHS2YTMNngAOyVfW6zrCturLrhTPgYFKwMcMccxHkULim4RC6ZTFNRjsVmizPaMOxALwnFM23geVgQKrjlxagLDbOO+PoBDZkJ9oK+HXby+E2G9bl1uCkt/Ow84kDbvO27vtGY0UdCNfyR61p6Kmhb7XfpN3HD1kckbG5AmgGxJvB+PsLtKxyp1m/gKtBtxUePsDBwIpRu7TqZnDHjEU9zS3AErKKwCXGievnsYjojYgM8LTyG/OPgAKAnxwbtQS97wdjJlyRvY2aHUFshypAxMFEVzdjFAQVMqEdVwOBwowjng0eGKaULzXGJtiIjC3OZBgALYy0k8WZUFQZS5q951JjgikEsAGvfmShW5VGjqPffpOK0fqDN2XoD93Opfan77puA8qf02T9Fsjm0nap8EYabf3H+qL61IjgRW0BqNu1IkqpokAWQC1Y9gyaw/IHkx4RUnRHi5R3uS7YTQumItqGiRiLnTxH8D5/q864KAtm8yIK4FrBhhRfyvkcGDNVNTQV0bmvhOuqW1WVVrQpohGR3SlFXZBPDjbY+5fYjVyrhmNZDFQo2PAj5sWolffk4Iv3BtZU+DI56DAjUaqQHStdv472Gg7UA9gYLae4bYcdARC0JQIcOfFMTkbXSP/aUqhpDdcd3MYKh9+hL3Hr6aYeyz00p+l5M6/K0ed6mC7k8gJoNx6m8PABDiAIbqD5rsBYwFDXObe2FgpR+BHvNf7IB0e4z6CAuqveHxoLATSgNqHG8X0QyqgQVXFFkB0c8EvwpMABTMRa2iNq91wYdirlBkSTuEsrdDZGa+X0350qONUl/rZtfG6zwegbgWPa5jkxS1N9ppWK9ij9Eo7NjmtkpGggMDaC8+4R4O1+64xPpCiNaRKjRNYcxfJqdFuBinQZQsVyxvN7BsXU/uAu7/tvYcOKSb5zBB2VmqM5FzZA3cOBVqUiu1YUbDTQwVi4YDft3U+GVdC+tzXNrWXGTpdXbGcI0MBGu2dMJCex7Lko2FDRqEJf7FF27ihOzjzR7ayqTWzXGUWNsyt3YKMDHIv2WVTZrVI6oe/LhmxLHQTaD4CDpePpSb9NYKOO4kh9nM6+dQAMtiyZ81z/Tt+/G6c+Fq17RFBCLa++Nzb+Y3cDBmi8Z/WO8/1JdNvZ3MtwNhp9mMMpNhWRzgcNNQnZW1WOkPPWM0kAred3MwF9TQjyjwI9o4EOADRRUKjobJxsm6EeDrdIYlQhvjVUMMWr2XT4ORollMFolMEwhbJuNOVa0Ieq91ebvYXnPdMFMLSuX9EqXTJiXGUq9w0z5Pd5liaNm85pOcLTjoZeuptEHWBSDt98lU0HGCJo3M4P0t7WPe2bhnv/tHqeonf9ir5l5P01tG8p2KiDK0GMKQuAwnLeCqnPjiJX+133O1yh/bazWZrZinSWPeuWUjeytSGnItCGK+90W3RxPyQIgMNomQn1WnbGVDPM9eXLpuUAW51twaGBDDJ6BRO0MLjKMkp7Hv6qxllYBL8ZiMLSQwIpKwPTKPhrjtNACXu53EdNl6a3a+ouXY+LYzG+C4aYBiDY0uP4IQI9RzqjCTzVxm2ISt2zHnOs6PpJ3Au2pHIGHB/cIXLF/nfabWISi9a/D81UfapAOW6/tLIBbHwwrjQmWWBQmAn7dliSuGyzRIYIWGruzQULmRMwcn8IAHyba+Nq9pwwlcB8gW5ZpBWxKDc0/rulvs8CutU3aTq2AATys+jYyBhUi8eZOSNXrYUM7gi8tsOITDUwxgSwRpbwod5tF0kox6pA9rIDbtTfWx+z3UrYrCCF7xc/b1/8EpfWtv4qvH+VPcDMwNSARhpSdleBWiCch9H6j2o8WAECAeBSQTPko1UtzADIMjEq6dJNqhTAPCEdNFbCqcmhjL6sYY1hy0oONnR8VKCoZmNigIuOOe3oDjjUFsPBhX1Hb7sGLmgvy2W6itCARAQHC0BL8aW/1ZiIfducelVNz/py55+D9tylx57vKk1E4MLwrfSJrn11X74MBqc+WTDwEjtJCjbIQ9rh9/Dqu8s20nK+EdN29Jlp/ecwwXsSzkajD0M4ptrepOs6arT9iBx8ZROCQTzO6ft4aJ4lmy8+HV2uivREPWPJQhlMWkclmHtzU8YA5pODnSEwoAyBsotzMzy08hGajr60IjjDDLtWRAjyqn3TT2PUq2eBqYVnjAYuACTbjrgGzQjOiwBfg24gITB4fdZATWOWoXW6avRoxB5v9AlvPMtjQJ/iGFHrK+2VfmcjM8Bp8WKfcPASS83rNo9EQeBk2wx9R+09CoCF2nKN0dTszAkENYjkDDqqaN1KRGC1iEZtRkAt0g7smUsLMLGAFgrDLPZ9AK4OLO0WgCx5oC2NQJu8HW6nzxdSL6AIAlczVMBOBjZseSSkma66VEfqgjz3Qbjw8R0mAUSkbxDKaztTImAopkVRkODpL3EcaH62dTUEdvsmDuVb93nzx+FgX983zgTHfElbGJJqk4jIXwN/s/Ga2lP7Q0xIyxfHfesUI94d8oo8+hQt9zncVni4AcftLp3E331waUjxwSB06aw0Hh2l7hARgd0d3anZkTFwCoMTmcxuogAgorabRGVPk42qugWab4eYGNtY1b00NMBAXa0PLcPmgqIxQsu641GJdrVrJTJHr1BYlgmRjR5dyx2Y3Xg7hbxW5Y/p90AzBuoJ0X++8EAaucnR/juHvhT5dJemARAvVoXubApFid+KoAf3UbbZ6L8LAWVpj4g5nUjrmVufBYBJlhNA5mmUGw1I8qwMTLLG40LEAUhL2EEHtE79ePDysp8nY2DDB4B1cxPO5ptEwYbUC41W+1klHU8LxCeNtWvox+nbqVfQqEGIfZZticN2o3B+3+jCM3PoFZdCAkggloJSAue8KqNpMKgbV/348jZ1Q9LYN7qdYUCzl4qB23v5UseZA8OAUQceLITPmeiG45Pb9QU0GGW+s6xfoGLfdni4AQfQOtox3HEQnFjvPkZ3IL2teC4w4jyhpxPmJIx5fZ64jL+wGc1UogVpVmzq+JaTbqnsqurlsjG60pyMwwoojNKNAmzjd15uCUwxprViuGja+FUZTASHeD0hZ1oGrWaDw3AIbKzCsb5j77Uiju4sq1YuO+ek12y0qoQ+m9I7VI0mlL1a3l5wTQctUOGPtjwSE4qgowJkDiwiPnDspO9q0fsunRDFQQdbXHsfCAHYDNj8bXi7cKPLTsvCUlVfZ22PYgKjhrzM2Ljvg0ADJREgBFrXti0U4nT5cwAinaHpGnAggYjNMYLDdNb0XkfuwX54meI22411aD3EAdQmjfXrA+AktOXp4/SFAxuAAY4T5MaB+A9COAMO6phR7MSnqtSiIBsafdojgkvlmHRE11HiazL9AW4565S5FBtxXdkrE6JG/x4bSRtz6Tuy7WjpZaM+d6G+1XQHMJtfWWcmlJ+t6bipo62sPXNn5BnYgPm37cNxa25XoFhQzfuUsP5iB0LavRSeRWDB8VnOwQRr2+00dhLm8KrrD56cXRPjRltjti4c2xgdrQle6tqAAPsYLRq1PhP6DwV7DTFeDmW2dGD9HS4wOZ72HOsUy7ggH8YMQkLL1iX2LU9X8tmSI4frApT4jRhtaTK2aQcufDur0iUQsgVYVnRxO+oacPiY6jUWG8CEgiZiBSTi72A30QAAr3lpGldtqTeNNQaim/T4PGkhYnts0YWsacXk4jW+4vX9gyLFH6BwR4Dj+voa73vf+/Dss8/iwz/8w/Gyl73sbpXr/gTquWEX+rW8A1qIlJAJhT7tPupBaaTxi3LhiratNlKxgg4SdsfRSVdK2xhBAxsSl7qZfa6mpTcqZmTyRJwY/WqomjCwclFHyB0ddzMTRi5nN7OKO2RGTNFmjCP84OlZ2Zi3PwuM2SWLiXHgJig3Z1n2eKW5GGbanH+leHqLptlwEMKZpmXpCWi/QQdkughmcLxAll/MboPDPeC7W8CQ3U7DJZUAIiqBJ9YlDm59I9JZPzWtSQQdkHcmQFlRL01ruWf3vJdaMxh+shtznmEywIsZ8nHCItQDCTU4Jea0RBk1HAZKBIjFAYb1kkr09Gl5Gp31d2vrBV5Go1sBjl5bgZBON17I/HFwaOb428ZQXB7hdfqrcdW+VA5e9DD+Nj2TUk7vyJiiEYgY0A3Bxn0O510qG+EDH/gA3vnOd+Jf/st/iV/8xV/E1dUV7Bj1j/7oj8bnf/7n42u+5mvwGZ/xGfeivHc32Cza+fMITPSzJZMiAYxYfJeIlubG9DIyzA0QI9F7zhoHhjBWDglGBkumA+ZumFsZmdwpUxp3QbgAAdAU5wwhH8pYzNfsHcYgR+iwGeV3cfbnTWM/giYjzqxc1W1bgCMTTWvLHFsStmgaQUxT51KbbSUmytqenIofPzti+vo8Q4D/P3vvHmxbVpWHf2Ouvc+53Q0NhLdtB9oHIiIqKC3hUZWA6fggBktiKSiSFFGD2IGQUnyA8EPaSCQYH2lB0dI/IhZEY1WIGlEjVGFJgChIQEEFAoIo0kB333v2XnP8/phjjDnGXHOtvc+5597m2neeWmetvdaY78f45phjjtlxoVCkbnrgNBFId49Q668yXgDGwLUce6CDZVnNwhO9AdZ0c/1WLJaiKgsncuUlyXZ5JAB5dHUY8ipeSMEJlbUBtXwbAClFbylXvRByRWDbT8XblkFDbRPQclCrnkq4ZWcTpIIA3SbOKAydwAYmTMIBlGPjjSFTCU/L2gMTlVgIndd98oADYy17a3+arbBNlavOhgcRaAEHl501LRDAdMmExqZfaZ+GY96al4bOpyEAE47bxWt7sMHJpYmm46tVqP2rdSfja3dphf10oBQi+fgc3WRCeQeAjjZZJ/F/KbhjAY6Xvexl+KEf+iF89md/Np74xCfie7/3e/EZn/EZuOKKK/Cxj30M73jHO/CGN7wB//gf/2Ncf/31+PEf/3F87ud+7oVK++m5yoWm31oph3+nz7Il0UBG/egDr5E53hIQPlH0xY6gpxDKqJhGBzCoeJlCvmSDZ5RqAMhupqqrPQl+/wNk7VhNYUc6S68mb8TsUejBufHLmJh7DyuDmjZoPtvfcDTtexdG+43gB5dobnlS2s3AqIOxlnnATp0ByxcHSZvh9kND6Qfpalo+VHoNxxKpXLyGQBDzJA1+9ZukDHsz162zPlmOYRFgAI+J6nKaAwtMYpiWe72KKtiQdFg7HOD6RKcRjUOpaAFUnBvayo1Mj0TTAQERLR3AILe9lb3ehN3Fn9NLwVbK15eN0vkGkVEVRK0MI2Mjo2vbsQN+GpeAjSDh07T6dDu6GhaHcEltcPgtuCjvVC9FQTgY8VwUHRoNKLtObd987Ts61jJ142sPZHDzu3OPaZwLz9nzWAIYl5dRLqg7FuB485vfjN/7vd/DF3zBF3S/P/KRj8S/+Bf/AjfffDN+7ud+Dm94wxsuDcDRurmlkyW6JclHCM+xsYYBsP2Th56WvY/bZrQWUaX1A4PsRjGlQvhzNcouAR1wfZI0Cgt5LC+ZqFo5V2wRssv2cqkUC9hgN2BGMBWyKrMTY/JazD1GKAOjDephQGYbtBU0BLDill10sHSl2iSu0nJN6E7XmpmfpbOM+XWJptG4fNUlEa6DOblN1brdkElm2VJfzZJICV7pyjtOlSkywSzU6hkthrnlTvJcl7qoSggc2FD6JCCkWiVdKiMq1mwJoqTZbzeaj0wsdi96/UhuLHY81MjWDB2YDSBXQ1m+HrQKDCI4yYYPB6Ed+zbYAxwWprTdpJIfz9yDfw50LdioF0/T56R7+o4EvNR+WMtDw9Y+4PtVLbupP4amqUGmIf8dCUvnrnHXMm7oaxIq3aeRu7yk0nH/5b/8F3v+qZ/6KTzjGc/Aer2e0B0eHuLbv/3bzz91F8P1eESrdLaLbgmgMFfdCxbmoRy6caoj57B4vRfubK/KOC6dWBiSm7e7EV3+McTwl9vJILQELrM6Eh2ApEy2w3CZbHAhQR3G2zRtVh46EvbLRpld/doUMlc6jD4NHAbvOIOLg1qrmBYGaPnvt+9N0mLhsVC3I54kwAqpM1Nr8+0lHL5wJ89eZtUwVl+k5Gi5+eZeJDDUsFZOtU3UkZhq/eVSz5kAGqgCDUJpH9lJDsSuBSfYzm2ltfsIw+B69AlQAYfmg9kpuk43XLl8VQDRbDaJTi14eroekMhkyxNBX6Ol5Wo3o63lCBSo6Fd4v+ToXNxG5/23dIy6NOIS6P355ZZKxw2YcOGO7JZaOOaBY/ymSNow89A3OJaXB14GgtSfC6aVRJjn0L99v+pV4Nw40iSIfZ20482O3xfSNXV/Iv+XgDux0uiznvUs3P/+98djHvMY3Pve9w7f3vSmN+FRj3rUeSfuwjit2c4IRZhW/NxA1r73oCPsNmiYhE4njUmR86ud0x0EFsCJin3dORuA6dDU/JV107oTgWwgKgqgXMGHpUGjY9mq2BjvliLzOhZ5lPAaRmkzXpdqZYqhvNA9VLZmQ503SOQHKaLJoGjflHk4iYiXYpTBkaf17SPRGZ0jkNKNtD4s/60DROuW1UWyapjNAKfADg8kqbbkKo0qHNN2aaMaBlNCApAymakKDZdRm6VmIwHgkcsBfy7LuqxWlhi4brJiBF0MBUzkQVF2oMODjVwOM7NmO6Is47WF07HnkNv2pXQMheAl7gDGYn4mekE+SPZ0PKGztqhhjI7RW3ocncabHV3gp66eHcNv9S6Mco+2Hf3yBASUOyNYvPQKp5M0yoOVDVv7muP5Grf1I9+fG4nPBGC043NIu8/oDOjnpu8u6WtMkPsFducp4ViWCH76uBMDDmbGk5/8ZDAz7nOf++ALv/AL8bCHPQwPfOAD8YIXvAB/8zd/c5rpvACu06B6bU8Zsndt3S4tq/Q8hrWKDrdBHSTryDddDvEEtX80KlTWGeMM2ETs7W4aVlzEJskvSSRh4DXoJHT+YC7lNz6NOgAZ45kmsOOESRiIwPSe2QYhtaRo3+yq9cFu4G4H7QpQqp9WGW1yfkpM6TQvujtlDoCG0NxuIeqFVqUd5BSGW+Vc9m3R2gtCPbsmJfVcFfvU/D1csRtjKgeolt0gGq3b3WK6OLrrRP0L+LAZPgG8lbDkPbMTLPoiGgFOuZab6WxENwBgyjWQRgHZEgNEiQgjmtqWd6GWrI01wEDLEAA4d4DtNG4gW1/yVkOngKNWAPk8t0uEaOITwDAFCW7LqQJ4juBnwsgN6PfHyXjA21w/9l6inlR0bieXAxtzQ0Xb54IWlUsLhYqOfia6GwGAXBoM/FJz57Ut9s/+7M/w0Y9+FH/0R3+EP/zDP8Rb3vIW/PIv/zK+/Mu//LTSd4Hdnih2FkC47y3o6NI6bmLPc/Fr2tg6a9+5LtXryy1W4qKzwX4Xg0bXeNOtkiYA6fFUZdLKz9zgPJPcxdyY48LV6oA9Azxsx0odPIM+hvM/myalbQfSBpSozkMd9JsRsBO+MfAdTiUfs83BlVtcQoht2C+VMWSrssO20HFVqRhQq5ZmJkaDdfERoyhd6m+5TIVCLotHtqV6XZ8J6BDgYuodPcABgEYKJxBPc63eSrv20ooJHbsybOkaIGHFQAj2XkI9a3hQkNoqh8a79ripEqkLtwEB7ZLhnB9y9jx8u231KQqIp0Bj7bntV9oY/HJIAwxmJSBzflzeavhaB3OdVF0FIrPgxQGHam10mS4870rCBXDsivik/i8Fd16A48yZM3jEIx6BRzziEaeVngvuphXrlyPK7+g6HKDl0GFZxEU0EdnpiE41WB0RufndpmaJa7F7IJ1FeCTvbzLgcd1G2M7mQvZ0YO70QlPIV4Zv/rgr4dt7zsBu4NQwm0G+fe4b+EE/DAMUjEm2nLLtDP+rAdqgOfVTyXaMBK7N2GwygBdXlyQxdNuaT0FtRJXRTTFxiAIKNqJI3GK3uu4wfapxaBP3p81aN1ARQZOdOUGgf6bcEDH6bWyM/uNm2Rk6ad+9w7OMmTZ9dJJkzbwHAp6OI11g0hnRuXYadZLis911ucXRTJU20Wwn5wUgMFUa7YKiY3C5Wv01XbXteKTby3+vP/t0d+jQp5tNd3f82D9/5+suK43u4f7v//2/uMc97tFVHL0U3FS8P6GIP2eWP/b+XglhnL0FIBqOzZuo7h5rg9ZORA5iOL81jgbPsPIo7ma/+qZ4nLlPgzIWDZdi3qeMt4lgznmRsQdlk/GgMvwWGEzWuc1GRzO4+vD8QDQj4Qjxere0Frz0rUlCbyNT+yLyPkeoSW+qKhiCmwTg9iqJPo6XQgTJhdxt26z7VvPqHv3OFm1/Db3q+nBqyqdpH2px085x6ZOZBMbH0+s2pIcO2hoJKrF3evCZp2vbontHjGj4ywevv7OrawMCHWCiu6g8ONM4fFq9Doj2ye7lwAs13zClM10M1Pdofi/qdjSggaW9scvLFDywjUvdgcnR6zgW3k/o2/4+M+DvS3fZnbc7L8Dxj/7RP8JqtcKDHvQg0+HQ6zM/8zNPK40XzLHvFEtLIEAYpGc5ZjuF7Ebq6BbCCjtVNF7Phbl9dCe/Ro1NSb7TAXFM0FZVXR8LydeebVsuZ5ynmwC15udctttlj95zbzBsg2vABknYk0GqHZB7iZ11WqJzg+Oe4ehSik/8zJS/wQqY6N/YrpZmyJTzSlSJ2G+qMazLMH0Oi6xNBcvuUk1jU9Vli6x7JQbCJgBG4vd2XODBRMPc7acpkU7T5ncxeXAzaY2m28GBbpJni9u9XKST5xzpKnONUgPTi9I0+ew7EMEtGOFIZ0s/rpxaqUg4ul3SOFn6VFDRvuvmdwo2qKVDDKudFFQyDnfffvvO0RFgRyB0u5uO3bxHf6Q96S6Qc7uuTuz/EnAnBhwPfvCD8drXvhYf/vCH8Y53vAN/9Ed/hF/5lV/Bi1/8Ytx+++0Yx3F3IHeI6zcodg3e3KyyaIeD9gCGf29TlAYwBC5YfvOEaQuxcGqSHh4ggy20U7GipFtxA//w4ZSPyjzIffJgo+6abIaBpgjIRlENZ4Fx6UMq5W6zPY9E/MBKMKXGlq67Vq8De6Nw2oqm628O/mowLQjh8GhidHBsNzsGrcgYOzoeUgmVTuqdXQAahyo/UExxKHdrOjX9ZcCmAD5K1NoQOmmFKgoDTAWcZC0TBREBgKBKWCZgI5YHj4ijUQM2Al0LOkZMyrCCCfelZewtHTu6uSpUBeleGpsyr4x4ysgLmHA2PXx4LZ0fRnSccpbcVADD7jnoMTVtliWPPg8B7Lf58ww9bI+tdy+Z8HmJ4QlI9/2DSCSQdVwyU+3c1musFNL/OjYEhenWuXFvQkd9uuVufKrusg7HDvfOd74TAPD5n//5+If/8B/ae2bGe9/73vNP2QV17cgQv9QBxLV4b0GwdTuXURQQLNCxAo0QcOfeOcHDpqmOznWaYA/TDV6W11ysiNaBjSQ9yo2EMaUZgzl+QGLuWubuZnkEvAn2wNx9FTHCIGWDuM+xJlVpGzDhwQVr+D06i9vTKY3jmC5t6n2vUymbrM22RY5bn+2zZZgcl6kh1aqoZtxMtpURJQkcfRBIjHxxm0gXT21DtrziQURT8RV0lB/M/a3QBibsbJOZrqZ09mOBDsegc8hqAjb874nuB7plVYqr2RHV+DEwgcqsF+k8U+caUaCz+DjmRXktR6nIhK4FDeACTlqgYXHWthKWQ1z6NN5QNqH/Tfuh9cG2X7V07vWUjqfPrd8JHZrGc9mdpjv102KJCJ/zOZ9z2sFeVBftWiwS6sgb7+03nYH6Ad5mVHHQt9GM2m8uLP3UHb0Jphcig0U59IoCc7IwHBOzWYJNmVy6CXLsuE9mH4QpLKov+mW5WMKdQZz2+e7XgT2dG8h0sJsMkH7wc/HZYObCCgOyi2ofoBXbCZqIevTtj4g02OpZ604RnyasvNfZNIOKKRhCkVQIvUHZ7L0KrQQD4lr1BGAs/g0cuWy1Tbks62CxPfCWazBLdI0UqFduvsu12K2lqyBhD+dPTPbvfZPXuNHQtQAACOcA+bCooWNtl8bEp2HZqoDrD1CQ2Mzcq4VRbtLFIS8RCDVjkA+P4RRge2Ci/Ov2v7k0aL3Yu6aGGuywDDpcHrq7Upp8X0zny/ik/i8BdyzA8f73vx9//+///b3pP/jBD+Kaa645dqIurmtriiLYMBzQNM7e1lf/22SgLZ0yG3Z0zeAJYKL8CddJwhJIZV7WKSGiSxeviW8JylaMKTPILA4y11NfqYme4XTidBSYmQ0ErQQvKdrXNUx2Iu718XKk22lQSH5EjfmG3Wj47ETADnxN+H4r3VjQ4wn10qWoH5VRemujWnvqX8/J8fmzQ97gl2YUj8gZJD2LuhqvBicF7/VM/PjspRrZKVdSUz8lbqphzkftsBj3xSGsKxu19IJOhHPBbg3H8BvC0EwmYMI7lyb2O0xaD/4wOJUs9IARNbXUNNmanlbCqLXvfsLRGRBombne/T41bedtX0FTFjQjcUDpKw2DpyAV9P2tlx5M6ELfD4TR1TxqfDOF3fbLOTr7dnHcnWWXyqyhx577si/7Mnzbt30b3vzmN8/S3HLLLXjlK1+Jhz70oXjta1973gm8IG4WTZL76K62Luf0NUJH5Ph+oifQjnD+Y93mpqad6jZRVfMUdsIoo55jpJO4NAtOfFrXeN0WPaHTcxNImG0xdY1IxxBRa4yHa9JCqRLve0mckEvj9+EyRBHO0TIjeckDu7TpkdsqGnYHX2naLGA/yE5AhJQ/x9/d9rTXbiVXNlrPLiw/KJPlo0bOC23M6kHeq0g+1h/b4V1YqGcaIToDbOWOEUh62FhmUGYMIwutu+R3cnRpZDuZ1C5pS8n5TRmgLWKYY6X17a/M7DmWhW837Okwed+rGD1+xfT59PIuufe97xYegfWC3qW6RELEMhmw3u8Mrvj/tVmUCYjryjHPJfB+9phjf7O27MYOIPS/qvfUkXBoGL5fBSKXi67oxxchoc158O8vAigmREibmZBHYL6vVAWyho7b4v476X7yJ38SD3zgA3HmzBlcf/31+IM/+INF+o9//ON45jOfifvf//44PDzEgx70ILzuda/bO75jSTje+c534od+6IfwFV/xFWaD4zM+4zNw5swZ/O3f/i3e+c534o//+I/x8Ic/HD/yIz+Cr/qqrzpO8BffMZpG1euawNJsFcDezKVG2HbCaafyCL+sfbs0NN71uGuVgOhslBvCMh75TtimpaHLZGOQ6lqEEP3kRWJcQrCsnvadOSiAkOcYkH/2Mz/HaDytDppzKWtAR1dpUAZ0JjjjSXMc65hO6q8bEpV/k6LT6qMpeZWQoeoTN0SlSosRKjum3tVmIM9AFgtdZSWvT52kfLTNhnCabdOmUMq+BcXIJethN0393qTSf2PMTqd0xXEumJBGH+QsmIC1raUJs6YrKFh36gVAHXJ8W56S1cgnbbb+iMrRFE98bRPn6ULc3CU1sNENrumoPo0BFNW2NF3emYbHENCiHaKXHQ/Gj0t3R7mLHPWrX/1qPOc5z8HNN9+M66+/Hi9/+ctxww034N3vfjfuc5/7TOiPjo7wFV/xFbjPfe6D17zmNbjmmmvwvve9D3e/+933jpOYj1/Ct99+O/77f//veOMb34j3ve99uP3223Gve90LX/IlX4IbbrgBD33oQ48b5AV3n/jEJ3C3u90Nj7/Ht2BFB/GjF3EzomjWP84toex9l3/k/VN9D4iYmxS6w5ZkUg2L/XsXFgNld4qEV+ngpwNCRyFd3EmjAQSXPJ4pmymHOs/pQVe60HueDnZzxozasBeNHikdO7pO3Ap4JlKJpbyExM60KY2KEOvA6tm3HakXeRXqMsX6CnRaz/Le1Io8ncuUp7PwZjLdPRG3Ca/msZPnxg8rmffr/fXaoiCUHp3F62nPs8nC26yRSAwkNYw2rCp5yZynZ3ZSBfXn2lpD59/Nna4adm5N6HzYDePvpVHT7v2GSYIrm5YOM3E3IIfb/rdYZjODxKQsOt86dNt8Dr/1/p/ELbfcgquvvnqahlNwypeu/ekXIF1x5sTh5NvP4gPf9sJjpfX666/Hl33Zl+EnfuInShg549prr8WznvUsfM/3fM+E/uabb8ZLX/pSvOtd7zqx7a0TKY1eccUV+Pqv/3p8/dd//Yki/fRyC6PMDG/t0+4xWjGm06beFNW/98h7EgcjKnYqQp9E4sKUtGonbzNZpg915F/KloRRQtkn/708zNB145rSdSURzaDILd1k0OyEtwOG8zFoT89R04Zc/VtSKo2SdAGB5+SOhCJRbEqMui1UftPEkwa0UNdWL5hIISY+uLQw0oh6+SHUpZIF4GBNHpiCjRnX6kLN0gkimqXU8nO/rX7mvDj+18mypXBnO9SM5x10Rt+CjcZPr790xTV70M2CjYV0zvXnGdq9XJD87gjzQri2jE/iHwXAeHd4eIjDw8MJ+dHREd7ylrfgec97nr1LKeEJT3gC3vSmN3Wj+LVf+zU86lGPwjOf+Uz8t//233Dve98b3/RN34Tv/u7vxjAMXT+tO5YOx989Jy1rqaOy69xLjbeLlBv6AMnlsR3M2ihacaAfABpbF3WrGUt0ThfC5yd07vLS9CWafKtxoar3wOEClyOz7TRLvRo6Ddt0AeYuja8TV7j8WQ+dNNkVjB65PHbqL76fAT2Szjom8SLDsjqcc66+7HePxt3J/HWiciNXqOfmqvUgZZ09naap3ln1Ksbsyr+u/3tdjKJrIXoa2V/1O1S3Y0SHrl7w7S83cbk4g42NGcZq30VKs4tR117EQZdjcmkbSIi6HoEmfutGGaQ0bNKprsoYJF7112uGvt07Wx8TTOaYvt8262knUosgyXD9e5IG11esn6NelpkWQcz0q17/7aLUtl/1wwp3F/Wl6q699lrc7W53s+umm27q0v31X/81xnHEfe973/D+vve9Lz784Q93/fzZn/0ZXvOa12AcR7zuda/DD/zAD+BHf/RH8eIXv3jv9J36tthPe6eNqZXHGfNvRym1xFlbNTXf+/Gwkzg4n23vDelBnXlNJCBcH9v8OFmzHwSiZgPXtEpfZuaJyL10aDJfMLo0KZpJctQ8di+dvhTaPKubXVue0k0GwDZhgDHLFudpGuLattIYjOhkIQaipuGNsZ/EzSkgd3c8+VRQpXUp8mlTzsZ+W3SIB6abY2GlFL7rTXU2QCj1pHY1gDAV90IDY8QLdMFDIl8FNeu+CyTNl+OG8sqXpO3CafPsG4Pvc9Oiid/npHP+fZO0Sbxto2LEpaCQrIoigrVRR0uKYiRCW34IDF3aswMlpc1WpVGLm10CufZ9D1Tsm5Vr019aOnvnTAeSfvPhNIW0IOU0i8ou7Ejgw3Pp0PhagE+Ojhr6i+a6cO2Y/oEPfOADYUmlJ904qcs54z73uQ9e8YpXYBgGPOIRj8AHP/hBvPSlL8ULXvCCvcK4ZCQcH/zgB/HUpz4V97znPXHFFVfgC7/wC/G///f/PnmAPSS7a3bJtXMt+gHmgUiY3iw0sEmbJ0uzNc3OADGdLdSYCDrmM3SmECQFWQbqZiZSZpEZtqasuw3CLLdISZB160ANpyehUGmG7SBpdy3YgOryxIgGiHw2HV2R1uQ6W+terl7b8mY3eM5Jq1y59p4XXTvgtbMxaD58PQNRotUO1oWO23IDrM7gy97l0dKv9axSCJUc+J1IKukyyQSCxAKNPxpR6rbZZWL1G3a0cA2zkXpYmBqvtcuS9iR58TskVF9hto6szqvHyY4U7XYChlSPRUEUJ+pKPbIPR3aykA83WEt1zKbHd/z5LJPcxE4QmwTHNiDvyonCLgxrK8rope21fUPLqm0zSjNp184vu5SbFKXNqA+4yXMYMzt5nqWbDKRodd9C/zvpxOF83ew4dYwLwNVXXx2uOcBxr3vdC8Mw4CMf+Uh4/5GPfAT3u9/9un7uf//740EPelBYPvn8z/98fPjDH8bR0dFe2bwkAMff/u3f4tGPfjTW6zX+x//4H3jnO9+JH/3RH8U97nGPU48rDPDALHAo/WvKJMJzV2TnOnFXvKj+3B3xHTOKhj87+vbKXJg/58rY3dZGT8s5C22zJOEBgTABjFlACex9YEbGFLIxll7nqAyDCy3nbj7CEsqYhSG2+Yy/eXTpZl/Wbb7Vj/8e6ctt+h5t+WsV7jNg7alQy5bGhXpWGj1/Y4HOymp0Zerbhi5hjBmQa26pgzScMYO2uWx1naM1OrfM0i65+N9jrm0kd+4CcHx9+S4Tuk+u/ZQdP/JdTqstI24xnTwboGBkEuu8LV0DOjK53dn6LH5ygoTB4AlYaIYFiTeOOTyh07xYm4VOMmp5MWq/9HRd3hz81rZeC7g8VgN6ksYZOkuDp+vF3+23aMJyUQCxbDqAJ46xuFO7g4MDPOIRj8DrX/96e5dzxutf/3o86lGP6vp59KMfjfe85z3IuRqf+ZM/+RPc//73x8HBQddP6y6JJZV//+//Pa699lr83M/9nL277rrrLkxkJvMTp43Yi92UVMXPnqZH7+lst0kbJ6PKV7m81LRwTJduCasdjCqgJ8ArEqpEg1saF64pFrI72C2Ug8sz5AA4buINebIAYTOPOWdBa7wztIFu7psbIHeIZS1VTiQtiKGhc2vacVifhOuXMRbFHewIqH3v0idlYVtcQ5gxAgXKk3p2d3K05XRY/e3SogNzqmHO5aXorGq6yuGBc5tTNAuL9okYpf5l9p9VCVOr3GWACeAhlcPcNA4nHdDnTACvYnH16BgAr/Vl7RO+OWkS7WwYAauh2fvsMJc6VCDeYawsiTAplAfwoKoMy6hbiLmAf1YbOsZxI6LihkFPDc4xUishhZ7N5Au80+F6fYJcHkOYMR0+5Ek/ben8clb41vbTKEHppqF17bddvy+k84DopP6P6Z7znOfgaU97Gr70S78Uj3zkI/Hyl78ct956K57+9KcDAL7lW74F11xzjemBfMd3fAd+4id+AjfeeCOe9axn4U//9E/xkpe8BN/1Xd+1d5znDTje+c534v3vf/9EpPJP/+k/Pd+gzf3ar/0abrjhBjz5yU/G//pf/wvXXHMN/vW//td4xjOeMevn3LlzOHfunP1utXfn3BLP8478aNTSTxRBHQjJDTMPIMAF6Bt7WGN0thqUIYFBamxB7qrlUMcNf9x15UDGJDSJ7M7wmBtvLNk8Q9dYTYXLf1smIdAZZs0cBjIbbzzYkbSXe02HWTlt6LhNQ8sMemmcO0vFwIYLwKpyR57n2hCo4hKtP82bB4VM4Twxq7/kaWoUPjrOmr6Y5tZuB2ucbT2TlnnnQ8xK/C5AZVLNBLFCWuIi144D2EhUJANJf9cdqUExU77xQBXscC0MDnRUz3EhRAui+g4apyscVWZtchMOO0wwpduuoqqCDCr58ktGtSmzAQoW8EBbDkVTm5wP3NlaDX0mjBAukLaxNO297UzeZXf8vKdr88zaln1ckr9QNgvbYgNdQ7NkT+M4dOe7tf847g44LfYbvuEb8NGPfhTPf/7z8eEPfxhf/MVfjF//9V83RdL3v//9SE6n69prr8Vv/MZv4NnPfjYe9rCH4ZprrsGNN96I7/7u7947zhPZ4QCKxuqTnvQkvP3tbwe52bai6NM8LfbMmbI/+TnPeQ6e/OQn481vfjNuvPFG3HzzzXja057W9fODP/iDeOELXzh5//i7OzscnToq/X76Ib7TQbAZDP278N3d23f2HpFmwQ8bjUROaOwjlJE02OEQUqMjGXImaXR5CaavBWL0OmFrIlvjnXGhwXWaH/nO3s5ufAAtnQ513A50jk7W9blH56UZvETnGG1HxD3Nba8sFgYIP+62CqO+nh3Ya+vF1/MiHTCpP/J0IS0I9Ur+vdwtzfLR8JGLp0oVal6CRc9U27QCAs1GFrChwMMDhxC2Bxpu94jXN6ySkurH57kFapwwXYRWwCmgw2HdySmwBZw4S7Xa3rxOi9wVdBS/AmjE+i8cLUYuxxIoiFBdF08H1N1amid2SqPu/eQoe23fQVFbwgbXAlVw0lPo9qDULbd0+2kTR+h/7luMo+mLbTitdMQv98zRQe1w/NTFscPxky88fzscz3zBBU3rabgT63DceOONuO666/BXf/VXuPLKK/HHf/zH+L3f+z186Zd+KX73d3/3FJNY1pYe/vCH4yUveQm+5Eu+BP/qX/0rPOMZz8DNN9886+d5z3sebrnlFrs+8IEPTImOAbUWcVngOTsCbTvFHN/xdHtgQmK3zLEHnYlpJ53ZPXs9iKXCCnSoz52L23dt3FwYkYVpU8vOpXR+YbwN24exuAumDnC761DSuBdWP/7MYzE0rWetu265yCBtZcMTvR29ii6H09VoabKn4xm6GndYGmhzz/FZdy4w0N1O6u+ZKIINBRLuyoPeCbyi8A3+vgJ4KPR5XZ7bS7/lFTAq3Qwtr4C8JowDlzSsJN4e3UpoEk/SH/KyKvnNApzyDB1W8k3WgLrlCJQdQCo5mlSMb2DTE1uC8zzao8pWEjLpf7vGsYb5z5JxpTaydsJD8bkzYZj4W5J2XATX6ZrHvi4Fd+IllTe96U347d/+bdzrXvdCSgkpJTzmMY/BTTfdhO/6ru/C2972tlNL5P3vf3885CEPCe8+//M/f/GsljmDJyKjcy9OwhB6tXtCxsJwU8UmOP02S9wjYphMPGSTAmkZn4QWHPtuY0zKom7dbJZnWj9jKj3qkfZmIItuPr5pmOWZ0MyceImuE2Y7izq26/jx2ys93VydHCequTbmv/eS1W2Hy2lkbvy1zdXHbc+TF9EllCUPlbKEe70yAVghSjrceSfKgDPV8MJukk42vQSl7Wr+TtSYn2eABQibdEHDEv2Lwo8daAtnE5WlUrd6ForR5CmEIhXK8mNSfDGhxe/UjP5kWXCXOw0u14KVJkxf9LNxz/idvlvIX68/X0wurnV+Pv4vAXdiwDGOI+5617sCKFtsPvShD+HzPu/z8IAHPADvfve7Ty2BQNGObcP8kz/5EzzgAQ84z5BldNixVkc70S81gypXxLy0d3+WrhmxufOuoasCXQUbzcAjoxaz0C3m2UZCINDyhKzk2edlIVif96XvbfidqG2mwwvjq6MtdDuAyTHoYjw9bn5cFwHhJF5hSkw0XXJqglEJDKln8m2ol+S2DXbmuBImGgui5L6DVE+I3DkpmDTXVjehzLy5CyBAAA8irRCFUg8m/H1UCQYBpDtIvK4HKj0P0mccEOEGcHidEvL58Plx/Z7lwDlfZpMLpajTiDj38YCEUfQhiIphNI4gpl6lnCmR2UahXIEJLLhSv1UBc9oNwymvkhdyITQBhmJYbvtsw8msLoaROj2lme81uj363L79dNKHdo33l91J3YkBx0Mf+lD84R/+Ia677jpcf/31+JEf+REcHBzgFa94BT7rsz7rNNOIZz/72fgH/+Af4CUveQn++T//5/iDP/gDvOIVr8ArXvGKkwVog8cOYKDkOmWT+5RUe6BNX+YCKvfUmUr1aE0q4QDEJHIFGz6OFpggDjLKfEw7cJp3AoyBlKDq8NNJrOvTnTlJDyzMAbGWtsuAC93s7MdHnKuUYlIr/oXZbOgMeuF5kpnFFOzv/IDfKxsAVA5HA0RnyuleBMYPYSDaZLW8aUoX46710ssVLdFZk6uAKICOGFC9kx40OM0zA3XrKaEsQ6gUwYMEKksgGMhAQibpPh5wGNiQ5QVUOgMuGjeh6HZIoRk4oJhA431yG0cHOhw40H6kw04mgBR0eFr1OyQQl626NEpRpfK9Dl/aBuTNKAcLujRq0SdoGZT6mYwiRFX/ggiUuC5BzvQFL0jtggTXV4Lhr0jk7rRA58JcXCbxTiuGMQsg2gZ8RwGNO0Bp9I5wJwYc3//9349bb70VAPDCF74QT3ziE/HYxz4W97znPfHqV7/61BIIAF/2ZV+GX/mVX8Hznvc8vOhFL8J1112Hl7/85XjKU55ysgDbuvEztsWZvwyy3AQx8eN7PEca31nmwI4ynQA2uAxGqaZRsUVYHtHxJzX2Qj3YaO+aYo+V5FmBh0Y26Y6eTjusAx2z3dfPtHw5Teia75oZzZ3n05qkdlHT57E3eDa0vjZCLrpJ3GOm1brFERUo00utvw73UOCgDIGiMNzXZX3mEERMQsNF3RvmhsTaWGF2qjxrbdGFQ8LEKjDiGvok/wVMxJ0jFXAYukyyHKKAgIrOBjytKJNmoTdQkhAVRKUf6UqELqlk4rpjBXEsLwy22ZXim0ASg7sjVZDiwIYCD04FQKRRmL3rOuYvAxDFV4za/0kSzFGCJIiCRl/pUg+avOTSMDZVoCAkjAElMXHCryiLjU79VT0yoAcIdPyJyqIaOE3oLE3etWNlm14fd0vYNuZJ494VxoVzwfLxCf1fCu7EgOOGG26w58/93M/Fu971LnzsYx/DPe5xjx1M+2Tua77ma/A1X/M1pxOYb9+TNsh7pT90Eb/Iauabm0G1t3zSovXw3dEZJy1+AiifoAe5c+3PfQAD19G56bhwnp2jyrSmJeQZ49SIUddxL5wahiObDj7tWi+7dPVmPw2oKEXB/e/u94RuEu5cBna4mTHRHrhD2A6GoR21bdL96MQ1J2NjbSsN8OjSmil7lqTUbcikukEEA8oW2kygZbuyo/E2a6L8H5kIIEJeoQEb8W6gY3BgQxm0PmtxJ67fXDp9V2DWfFYaEiLlwwRgTCwSDJqADbXcqpNa2laGo11Uv+sSCREhbVGkEImB7La7KuAkB0IEwajMoNpakeeBAS9hgQtP84wSL7d9zwpn2qcmjc2LFiVdtejctyYsLTT2AKUT/FIft4/cEM5JKXtpuViOzzPav+uAAwDe8IY34Kd/+qfx3ve+F695zWtwzTXX4Bd/8Rdx3XXX4TGPecxppfHiu116BkbmwInn+WieFTzsCzp0tPGBtv41zuSHiA74UBGtnkFhtJJIHRCUblG/AmXA8kCInZ+Q9z3L0KXqfJ2CDRu0rRybCIUu3IH+byCGhyavrV8PGubcVBwwE6aLzzgW+rMwv+Y+F7UBg3k6K0PP5GfqmQi2bMIe8fhil3cM1F0iwuQ989f4cgKwbgBEq4+RqOhrrFn8ct0i6+JQK5444MJgdb1B4w6gg4FVLkcGZYS8t1U6ImMYCHlUROPKxDHXnKWvbCUS7WcKPAomKOfDMMlhdiTWUd3cgEueRkCWVwi0lS6dSz7CPIeL5ASi21GruUICAoET1zh0u7jmw/uoWMW5XgeYgpDJs+t/1rrnAIUb5irdjtFiEXR0aDtL1JfdhXMnBhyvfe1r8c3f/M14ylOegre97W1mZOuWW27BS17yErzuda87tUReEGfMMTZIkpnTvAd11JGEdJh6L7wwW6PpOwum886DHNIZpQ72boTyPI1cX1XGYfSAGWGyqRrVZ5/0Ji9z3Z+b/MzS6Xr/cV1vIPPJnCNuZzCthKNT72anQENe0j8JceQZOvdgbXCP9tbDiy5Z9ZOGOw0zCt1aVODDU44cbv0UNuCBNDHaoJShD1R0LIzJu2/+PJIVAX5LK8EMfYHKPSeULaorFCBBku9EAWwgMXjNoDWDqFycAZL4VBeEEkCrEcOq1mHWdRvNuN6HEWaQlAl5m6wco1EvRtbCWzOwJdCoyAtViqF6GAIexpGRRiAxlbTK+8xcdDjG8hsE5BFIieykX04FtDC4PhMM5CjAIYau2kGtxnGqoIPsf8PxSRqRtjFy3zrNqNLDjUlUxzCPbvx4zD6INtAZANFKiefAie/zE+XQOxBs3El0OE5sh+PFL34xbr75Zrzyla/Eer22949+9KPx1re+9VQSd0GcyjVbZgpURtxeE0czBA1AmGvwPVG+vve/1Wa9H8ga5kSAKYGRCk4lbqPklg6zdM2Dy2KPGQMTYSt1ihXKYOJlIKfXV2aBX0PvMzNh+tO0BUY/yU8sH+oNWjZIuWtilrJEpmJyb9Sp69idGdO2jxCPpr1pe75J64VpeNQke3atuwl/tp4plBYAf5CZAwdDEv0MdzlphUkjVmQ2MrztivqbkQdGPpD3KxQF0BWKVGTIyAODV4y8ysiHBXDwqlxYM9JhBq1GpHUGrTPSQcZwZoPVwYhhlct1kLE+HDGstxhWI4b1iGE1YnW4wcFBxmqdMci1OrNFWm+RVrle6xF0kEErudYZOMzgg7GkY6VpypP8Qm1/JC47aVLJs0l69FK7HsS1nAlFWuIssfJAhVb5md3ZfleJTwWBWodWz3bB9V/t7B3E4QaV0hbjGBTpKsQhLuHWPuOom2W1ZiCL46dbFqzxzIz5baCLY/8Fcj2+c9zrEnAnlnC8+93vxuMe97jJ+7vd7W74+Mc/fj5puniuna3OMgQ0DbWHuimGNwc4j6Pf0lMq7TEJh9TZx2GzhprEKR03dFTpdualMLapYecOKTN65qx9WLOzltbxLpoWeCyE5b4xPMjogA0fTlje6k/xarH6c29gb1taxbudoFpKF8QMgJIAqxCjHZWovldGoh5De2BhLq6eA5NR2jJrjYyNJvoVoP7vovhJFYS0DJYKkx1XwkDFgBdSYcZIDJV0cEJdRkkAVobCgMRIkHNIRLKREkCJkVJkUANE0sGENIxFwgA3xouNjGEgjGMGcgIhF8bNKnmgsuyiQGAcwSbpcO2CATtpV8omb8uOnLDL3deNfMxbFL0Q0e0I00h2dTWq17qbpfJzqeOwDDPTtjRoWgDS9i7qhvTpXP9rQUII331b0uvw39tl6Ek4M/4uuwviTgw47ne/++E973kPHvjAB4b3b3zjG099W+ypu8AjPENf6l0IjH+Wf5i4EGjFg7N6HMdOdPuphkmTHQHOqwMTRqdYyZ4ZE9DRzUsNT8GEMSIdDBvXT71/OzOg7ON65C2IcQViZp2XApvT8wAcOoi56uaxq3TXCZOB6QFb/fAiOpmnCwezhTBde/Kgaa5JsjIqR+eKoLIocmCjMa/v9CcUiGSxlmkSkQGAAormyioBsdm7go16ceIyqg1qyVOBB+sUGkgy6x4y0lCXW9KAiUvS9gvY4FBkBXDIbpREyJwLKJPORLkUkJ6jYqCDGMzJdDUMbEjZ1BWtEoYJ0DzYMKFaQUYEgBVssAsLKHosCQaC7PwkvUJ7aIA0cW3mXMNULzaM6fgYujPbOFHOe9rdr3SoiRk+DxDQ6rwtBcctwUUEH3PA7Tj+LwF3YsDxjGc8AzfeeCNe9apXgYjwoQ99CG9605vw3Oc+Fz/wAz9wmmk8fXccPr+PJ8ckThR067qoXKcTNKULftBMiZqU6Sfr2b0Us9DtkFxMmNie+dpFNpOqKZ1j5C248AkLehgdul3ve6S8j1wHkZmfguuGNpNubphDP7SFem6bG9Awqbl4ycTzkFm0N9alEousyygT3YsGbIhkA7r04N6bdEMByJrDOwxseh4FdJQrDWPZcUpl10cfcDAw5AIcmrxXwCF3MHj022BQ/GWyrayci6ImiwYoE5fdJpoPBzpMFYthkpW2Du1nFp0NoO4IYilHxUgZBh68ANQrEbMMDl7KEE6I0UmGzVImM5CYQPeqzEWoP7Y1E4Hp+8YdZzKyL+2uvFxodxlwLLvv+Z7vQc4Zj3/843HbbbfhcY97HA4PD/Hc5z4Xz3rWs04zjafv/EwB2IMR+h7aC68ESIbw92OsEwWm3nOgbTpCULxqZquTPtMwFzeDiXQyUzVmtZAXXSYhN7tdcuQGKyv75rtIAxYVSgmVDoiDVCeN7ofz39LpP1+OvfDKP2fXdUfce6KyubbYjuE6ZkcxXSeZrp67qMNq19HRlETyW9uN8dP5fBAKcxMph0o0dAkFJGDBKYcWkKHM1y2prMo5JhhEGiJAo0hGNFwSsCHvKFeFSAUcuuWVMtI6Iw0ZVFi/SDhyAzhYpB+S/5GgS0vKa1XCUY7yISCP2G4TmIvRLlLGL0slzGKqPDHyloFRlpAE4AewIWPJSIy07Zys62twTci6a0XLXwGMrxORatIoy2OJTXpiW1Rla622Ma1zHzMrvXWVmZ4v4KQ2P453ddqfuT7X922Yc6irodmHrhvmJcK5L1F3YsBBRPi+7/s+/Lt/9+/wnve8B5/61KfwkIc8BHe5y11OM30XwCmUpAjxO/wcACY9zvw0qIXafrmfPQ9PP3FhqUfinEguPF0TXquDQR1G5cPTwdXPeJURtwpbqOClTlD2AVpNPnwWXRksWhxkCccYr71sZgqdgWRugOo9d+OtqepaJZ2E021QM2G7Hx0ysjxDeFQHJFgKmzY7sfips91mtunbtrT1CbRhT1vzVCQVpV6VYQZ9DrdsoubKy84SRjhy3pZQUBREVUmyWWqBSAZMsrFi09vgJAar3JIKJS5KoEMBGCT6HIUXe8DBoJTNIDCBwWsAo2SGuIINYhASsopxVoztBgALYBZTplmWNFTSgJTBW5F06JZZ6l8Zss01tAXtBmVpBqtilTRtfZ0jSE0UiGR21lANNJR8FX2jEixnquOYaxYU+oC+7o1f7NppTdekzXEpm9K2dGzugB17bvwrWJoAGctcBDLecUxbCPtiYo87yS6VEwGOzWaDf/JP/gluvvlmfO7nfu7kYLVPazfhYg44dBlH/Vzftb2gV9k964s9Mpp57iWEEOJr9UGau86AWEFSG4RxS6r9kdBfaXF5Wc7XDCgK+aplXaNyaRdCCoNEGBVgnNen1Q+ii9IRTNeT51w7CPmMNbiA9gkPvBuYCWgq6+zUfOjFR+FrN+TMtf6W6LhH10U/hdZ2mTQAAzB9D38GCg9kkokKHig8YwBG2fZqIENPcfXLKSsHNgaAdGliEIaZhLMOKMqiq23V2UjZllMSMhIz0lBynYYsGzHYskpi5r9IOkrWM5GAjVwZBhMwMMatKKhkFFslSFUpNLPodGSMm1R0KpTPNmBNq7/onWq/9/WqCQQwFGlL2kg5ZK5tSBVicykfRgEUgyJI7bKuaZqEpmkwvsVp90Cm6WnMHiC4AYRl912YrnjLfRVzVFgT+l8XhcTxYwJqPJ37HYLjiwsynLtsaXTBrddr/NEf/dFpp+XiOc+k5gDFvksirYZ/J2AzENauX/aebeeIckZUBt4uq0z0PKbZjBKZfqaLLQ+WWbBDHOzjL2lidMqmV167ypDcrQVEPvFUnw0fhQw22clK58oq0LHwfGEmcwqYIZ5OGfcU3mxW1uR9QkqVUTSvJ2nYoy1yC2Lm2rbmmxwna/WAxEOvnnstzRhOgrOt4UyUp/ou6w4TpWlAR05ATlyPgm8lG+6eBwBrBh3kwkzlyHfS5ZOhgAkeyvLJaiiSjYEYKWUkKrtSBspIiUHIWKeMIUnFEKBSolqsRdKh0o1RwEZiQnZXYirgZZvAeQDnVJislDupjksmpMTFLpjuSGkVL7WcqdRd2pJsHZ0BjChW0IdN8ZOMUPowAbqcQkOhNRKmAqw0QsiYAFnumDB9DyRqX61Lfm3LcUw+N/155j7tp3OgBvHboqRSA8d8IV52F8SdeEnlqU99Kn72Z38WP/zDP3ya6bl4rqv7gDgYB/r4k4Bq5bOnN2GDPIP8YW3tAN99hnRgzzmaZ2PILr3NndxzYQxNnt1v08NY7IBcpj2ePwcm5wbL3gF1LSbx71hmY8FQkAvbLGnqYOFAmPNnUpHJ4OTAi9CTSVXaRPnf+w5iPnsa90xhzn1qg3dlswQ6yAE20+kL/h1t8iCzaevhOTVWQSnWsYKKgUTxE9Wol0oq7BkY144uKH56mxFAPiDgQMx3Jy4Gw3T5xEkw0uGI9cGI1ZDBYPBABjYgYAMDY73e4Mr1Bisapb0RBgEcgwGPjDVtcZf1EQjAyAkbTpbtkmu10cJY0RaZBmzygNvHNTKnADiYCZmBcZ0w5gGbMeFos0LORZrBmZAzCRAhHBGDVwk8EnhDSLn0McoQxdMiEckAshj6ShsCjVLeVkdwTL8AE97K0lJmq0OSk2ihUp1M8r02TEqymyWrnpabhIBD1zRMLzouYcW5C1Op0mh/nUPJNAM29gEUi3RaUN7fQjgX2nEn/uP6vwTciQHHdrvFq171KvzWb/0WHvGIR+Cqq64K31/2spedd+IuujuGzkVA52Rv3G8Ncs8wJxICH3YbuXI31wnnllbkm+mGNpMT9t8sLf7uQASlCmYC6Kh0OvD00u1fWVqofrVzOJQgMFyNr+TLeQsDl3njShsjRZV+7Oqk7KUl8X2UYHSMGfWQWyctRt8WWOu9BcjxY/Umddqj8OVK1NhwdH6ifzKmFizcEupSCMGkGpzcke/y3SQbHT0MD0DKMgpXcCFLIZBlFgUcdJCR1oy0KsBiPYxlx4fQK/BYrUacWR/hYBixShkrGq3Ne9CxTltcMRzhYMhW7CNTAR1uaTIhY50KcMk8YEwJB2mL27drARl6lXI7yiuMYAyUsKKMc0drMBetkSxSpBFUzKk7mQBvcp0skLYtquUAgNcsG1Lighczy3ISTLdj3EKWTkoD4QQDKyApU40j606RujuFqLYJPbHWiU/tbgB+0vA4kqq0MjD8KQqf9LsliW6rh7STjkN6Jh1uXyn3ZXcsd2LA8Y53vAMPf/jDAQB/8id/Er5diMPbLog7tXRKONpGrXPPhD8n2ZgEKVNWWqBrw+zS6YAAF159nA2vjkQRRBiwKGHbEVHs6Hr8NuSvmdEQLP0Wjg5I1IIMckBA4mvXj63MSjDErryn3HyawB0zjsnBb3ODXFiy6cWtr1tQ4zPS/bBH2oRV9urZ2mpNu4JFEoBRZ80VdJTwFARIwLKtVe9ZlgzMemgLMvQ3QaxpAuNBtTIaAIdJLUjAxoi0ZmDgYtUzZdBQlkPgQMfBeoPD1RbDMBbAQRkDlTvAAjoYBwI2VmksYbgSL6CjcPgBGQdpVJ5cAAcSDinhDG1w21jAROZS4CMSiBgjZQw5YYUBq4OMc9s1MhXLqyMRQAkDix2SggTL8xGZkJNTae8GIlR4qIqiWqW5ropa/QGgQVbwRiDZGCGg0x+DkGr3qN0nGu7yXbPtwtOG2H7v9BHDK00f7wXaggp9N5lcLACVbj9142agm8nXBXCE6RBwXP+Xgjsx4Pid3/md00zHHeNOC8W6cExfY1ewPZF2nxDHak77hOdnwXPBh1FlSlC+Uh2c1E/q5J06P3px+tHMp61No/wuRpZ4fjZTUyZqKAt0c9KHyW8OSdutq+IHriXAuPz52HSSNj36fNaPX3JLbV03z1TpeKggJEg4SJdI2IGNjuVQ295KZSeKN+/dAR2UWMyFiwRjKMqdKWUMcl8NI0CM9XqLw/UWQ8oY0mgSjoGKlENBx4oyrlhtMAgYaQEHoYCOkZOBDaAw75FHjEgYOeEwEQ5TAR3gZO9BjJGKhGOkjBUNGCjj3GaFkRKYVmBiJGYwMlhQAjMBBwV0KBAxwOFtcsjyEnNJlAIG67J+gpAqmA+1bD9E1yyJpJHt9bQpgABRorVV2V7bCu1+qZ9WujiRYIS+t/eyihtDlqQdwcuedJfdebnzOi0WAN75znfi/e9/P46OjuwdEeGJT3zi+QZ98d1Sg+tKDewjJqO6zlonYLoJpzc7JvSnpb3ktVHvo2S4J8jqRTf7LpHNhGX61KebDGAe+NTyoki0IxU6ODVgxYlswyFs+jwnkYghg3q5DrO2mWT2knpsN1fpCyRWpMeoZwEbahnULMfq0otmc9C6rd9B/hlOsuEkHck9C02Wra9+qSX7pRNlsIlBB4y0rmCDhnJOSUpleyulojx6ZnUOh+uMVRoxDBmrtMXhahRQoRdjjQ3ODNsCQlIEHLFw6jZxbQcMYOQBW07Yokg6EiVgVcCJXkSMLTEGGjCCsQWDeMBmSOCckJCLwCI5UIHaDXJCAR+6w0TKItQ5lw0ig257FtDBCkz8LhZtG0mNfLnhB67LUsmszQABAABJREFUtoBladxZIGnJ5/tpvZt9j10BtvpZc6noAZTuINaju4gA5PK22GX3Z3/2Z3jSk56Et7/97UU0p9rE0mrHcVzy/unhZpcgenRYnlkKgyOvDdX62WeJRcPyQMK+z0z1LT4XTk8JVUYVM0W+IzulXh2ICG5hZtwJ2sDGwgQ67IbhGUYPBIBmdAowQnjlTn65ZREc1BngIu2+45Clac/BYJ9wQ3tYCIdKudTlqRlS5qLg261nBRvyLpFtcdVZs0k41Fqo2NjIsgTSlWwo2PBbX90OFK8cioGRzjCGVQYNVT+D5KC1lETKkRhXrI9wxbDFOm2xSlx2pqQRhwIs9LoyHeFM2iCBix4H5bCkom7AiDVlbARYaIl4wFHABSEPCefyFrflwwo4wBjkGpEwUEIiRibCbVvCIGU3cAJTFtBRyjhvCbRKYC4LGgYidKtqqrybBiCPXJZLHB60S/yo9KKC+dLYa9VHKUfYWecU1lgkELr0RqGdVzpNYLWps6OftoCg7Q8TXapJc16mX1r23IfuQjpFm+fj/xJwJwYcN954I6677jq8/vWvx3XXXYc/+IM/wN/8zd/g3/7bf4v/8B/+w2mm8cK5Rb2Hhg5wfWmGVmeD2oFasjnFv8lvF4gyjLk0hilK9dbNwiQ9M7RwO+TnzJ+TJp0qnV9+afCTpX0SVG/wKQ+2ZLLgStF4u5++rkq5cRgI56wiyiCqg+Ms2Jib7i3R8TzdPhKMHrnJxqe0NcSmPPyMlZp6kfIOM2E7kI3BQzIGVs/NEf+yjJbNjgZV3YPB31ENfx3A7GgoSNETUHUphQc93TXLskrR16AB5RRWW1YpyqFnVhus0xaHtMU6iaJoAziuGI5w5VB2rax4BAno8ICDAaxoxNo1gg0nbHiw9rHlwcAGowCSAx6xzhm3jocm4Rjk2lICyaEnCtpuPSIkEFLKhd+Y5VICDQWcMDHyOTGMJkBDq8c2loCANYM3FYSYhAMAj6LbkQrDZ2VuChikmbiuJ6AjRyDgmxWaMLRNdlpjHcLm+iliPxVQ7VdXra15SaWC756zGY78mB1HdEyWx8vLKhfUnRhwvOlNb8Jv//Zv4173uhdSSkgp4TGPeQxuuukmfNd3fRfe9ra3nWY6L6zzg/Y+yw3cMK0ZL12MsAQa7HePzoEKJXIKoHW6w6JYVlE6+5mr9XcHtlBPAa1ReM5T017NmKPqa7i0BmVDn3aKP2su6i6AOjL55NZBiqWsZou0VTrr8Xy0szxUNObGnpBU87tj0NqHrv3UbTu5pmeXJMOJZLgbYIv84LLqKyoaf9N3hXkV7sWhnqka8xIGx0Oqdjbs4LYKNOwsFDlePvudKwY8WABHRjrMSCu2w9hMl0OBxmoEpRFXHhzhzFBAxkEasR7GAjpoxGoYi/IoMa4czuKKtBUwMWKFjDWNAJcdKwo4VlTASuu2OeGIVwAytrwqkg1OGGnAhjO2PJieyK35jAMcGUnBRi5KtYcE8AHj1s0hBqaiaAtGln0n5Rj3Yl49HzD4iOtJsNrVCU7iQcgymqdcyx7gKoAUep0UUSZ7z8TW1GzLq5o4p/pO+1jtP/WwykBnbd0GKKghNXAjZWnbqba9tq/Pgf1GSbpLFxRCm/CooZuN6wI6BYHn4/8ScCcGHOM44q53vSsA4F73uhc+9KEP4fM+7/PwgAc8AO9+97tPLYEX3e2pSBrn/T3xQmWSs2ekqdsFQroa1o6J9+47l03itwBK5hyXgckru0YWXxNgDK0FH3EEqbSNXQ2q06YSLtezFvyyRxxqyqxsd+1JGEFy1QENioH2HXxOMkh1vXiQMDN4NmFUPOXAkw3wta1M6oVcO7F3BJ25BlApQCLUv9rRWCW3hELhDoJJMPJagEarPKqWRFcoiqEHDJLdKLqUQisOko5hyLjy4AiHwxbrQcCGgY6MAxpxQEc4M4y4ajiHw7TFigrIWNGINUYDH4QRA7HsZpmpxwRsmXDEA7Y8gpFsuWXFAzZc7uuUscoZn9weYoO1gA0C59EUa1XSwXRUFEyZio0NaZck1kcpMYaBwWsutjLEYqye/mpthAtkZAZyZqRcAUnNjUgMCQX8ZbizVORfMOQCawcOg6IaAKxdNvhV5tnqagTQ3/bTtsw59vUaybRe9PWkr3T6Nzp07UThDmDely2N7nAPfehD8Yd/+Ie47rrrcP311+NHfuRHcHBwgFe84hWf/sfT73J7go64nKHTDj/Ic52N6Gy1p2fRAoo9lTonS0KTu6P1M48WHKmY0oOOWb8pbLkzUqqXKh7OAg03eqlf0r39Oma1+E3Dz8CkdKb8F7YotNARa/DLvTXSHaNdLAWobim4k7SFXU7rCKji+CYdDC5SDdXZIAEG7rnYc6ACFJzhL7O9ESyDEsY1gDWQB456Gwo2dEvsukg2VsNYlEJVmmH38rxeH+Euh+dwOGxxkLY4TKPctzgY5J5GXJnO4e7rs1ghY+V2qRQJRwUcKxpxlRxYMu5oGZmBDQ84y2sc8QobLgqhKzA2yNjK8g3AOJdH3DYeII+ELH0jXIlxtDrCER1gsxF0wIoGUApQz3lZa18jYNPbvowCRFZAznUo8lOC0HeHQpckoyQTCltiUVzpVXzaYQ5uOEvSj01U6PqfzRAqaNirNzHH2mB/b5+rn8mMpBt2JwGXCOO+VN2JAcf3f//349ZbbwUAvOhFL8LXfM3X4LGPfSzuec974tWvfvWpJfCCu53it36XoPZbC8Adw6z8ugEEPv4e2GjT0P7W6QWlKY5gdkFVta3IwSVYm7E6thoGMqozsnDsuBp5okAHkm2Tvmg6gMNLVcoglp29DFQiJ4lQw0OTccy+J5FIePTiyrcW3MxgF2d3QeF0aXj07WgffSAf3ZyEaz6Q5jcFgFeDjKCPtVJdfbb1ZnezrQFTCDUJh4APHkjsY5BTGBVAYhZCyXaiTLe7oiyVqN7GioE1C7gQS6Ap228FHMMw4sr1BmeGUYDGiMNhg4OU6+804jBtcPXqLK4UycYARqKMNRXwsTYQknEFjTiUHSCZge0sOyxMOzGDeFuWOSBLjYYiyuLIOmVkZFyBLZgTMghlcYUxIJfdLcxICRi4SHQ2YGw5S0EydDLArIfRVcRYTelT7QDl6NpCO+hQ4Lbqe2CSi5EwbUManoIS6565tAmG9D+1h65tT8vKGL0gkqzIRPueGyCpp581HUAnB72Zf/dTx0ELxvtp+1vs32ENkWfoLobTIet8/F8C7sSA44YbbrDnz/mcz8G73vUufOxjH8M97nEPXDKGv1o3adyYgoCdYZhH/+M8wqP+s4+CM9zRlh1a0ZTwAwLqDgYThjh+5FNv52o4sIE09afieRWja3qoUxxB8dDiSWDo0gn7scmNCeUciCDpkERQ2IZcB68ajb7j2D+l3qmh3qloFuj2AA1Lir/7uon3aXjlPAy3Zl5ehhlxFYBRCKfoZqTCYBwICUfNE7ltr6imzN2WV72Pqgia3EUcAIoeI88rZ9I8yVkniZFoREoCQlZbXLHa4ECWUEyqQSMOaOvebXDX4XacSVsc0BYrYqyQbdeISjzWlHEFZaxTOd2+lEF5HjmHZUldKBxFEsDgcoxrLpllaVsFZhAG5HJRxsGwxZaLsa+BCAMlEDIYQykSKjobg5wDwzmDaICaFG/7mVkdzVSrT4k8sJC+Wk3ZK21QDS//EwEjkCDjhIInqlZHIXQ81vIoWKcaILMEkfbTGeYf0o0YRyu5aMdm388XJ41tf/agRuncs9K1EuIL7S4DjuO7v/f3/t5pBnfx3azG854gwTfwJfJds+HesksvHTabcN96UpSeVEPjnmFgpExGGcwk3sL8IUxMZ1+6xs+JOsEWpp6J0IxOUJFu2RLLIulwHd+jC5Hvchg0Z+qOqIKYkBg/eNWB0wY9hqPphd3O3IBF4HBcoDkbDjp15hy5+lNSp3Oh9WA7UpJ/VlDRMCe5VKcjq30NaSN68Fp7IFteUT2EzaQlAjQSVwAyoJgrVyNfuv1V7G0MA5thrytWR1ivRqyHsnRykMZ6Ceg4k45w9XAOZ/RdGgVgMFZiaEuXV66gjAPh3Wtr1+V/OcZELekWhFsn1AovGGdSBuetSDCo4ABQ3YrLBXgcpi1GJmyRAC6UpcjLThnIrhQPOoAhLlF6/in1h+zMm3frTD7kOPHwFknJgIwcXw/UCUojBCCWuswCRDICePGlWKJrAAumZKXn9Y4I6HvDrn5qr9x4OImzF+wlwrkvUXeqgOOScCZud+44+hohnE4YjV7HVGpY6bonyCrNXrNhYQ7s/aT6zUi50sLPdiqg6JeB0KWG1kVvs2UDG3UQmzpSCXT175IXAnblEsw0A7YUQwngsUomeiecVokuzw96rvx38fOYRp+JBad0+4xlbXCtCFjDo5lCdu1mCjaqH1IJhoENRJ0NJ+HwDC+7ZRNvyMvCkPrX81NAHcCh4Ia4Hi9PbABIr2LQC3JeyhZnRLKxciCjbH8tehhFYXSDu6ZzosNRtsge0hYriL0NkSIMYFxBjBXBrjUidGXIqevIwvvYypXByMTIYGRmHCBjg4yEsp01odr9SHZPOEgZZ8fST0nABpHI9uRZt+oSsSt7dhcqSBgKkMBYAUmwIeW7diJbHpkCE7Z4iCRM6uwUadqqmlOv7xwysf7Y2Lch++cbLlQZNShz67LSLjc351haXpmEwc19d7Sn5S4rjd5Z3GnMOk8QxqKPRWlFSwsHcGRKULVU58PuhldHKZOA+GUUN1BFcBEZVTsTs6g9z50FJZpGzQKFAccvFbAtq5AWBPwoQdWTAwednsmNn13jk82q9gEb+0OYRdcCMktIG3Yd8IuOjQcbsGf2tJN6bq8COqJkAw6ooJFsoCqGuvdKh4GKhGMlO0/kePmw9dUBD9XZMHDRXAcCNq5IG9x1OCtLLPEawKbHsUbGIUEOVRPAgSLh0KaiF4lCaClSZ1NCgIb+ZSpKoxm5nLUC1CUVBz5Ut0qlGnYlLlITtb3h4c1MvRQlTY40vkVQ2zr2bYtOUVPBjm9fOraMajmjnrgSQL32XVNg7ffT0GcNnC/3073ccehndUAukrtsafRO4I4LFHZJHbpSjiktebpeWlpJyhLoMA7pZhbdGYR8S4UJVS0GagicpEDyMNeWFZQY+LCBr1mCgQ/D5aPimxKPxK4zsarPUUdOMxzEbMsybCdcxkHCckgl35xntsxK+cZZAvfxyYUGG3NeQmaUrtcehDmSOwI8mQcLjHw965H1E2BZQSU75VBdevEmy1V/Y1yLAS+vz9MCDmJREAVoYLe8wgZg9FqttjhzsBUl0gIuVqnZAksjrkhHuEs6W5RGacShXUXCUQBH0d04Q4wVkVgaTVhBJBwGOLjO7ImxArAx0CGHtxGwUrCBAjau4AJNMsTcuDenzuV82CEBZ3iLkRM2VIyDKejwYAMErAZGzhmjHFdf6xiubYqkT/U55JsKs6qko4w7OYl1dP/d6N04lspyUmIXJwDbNaL9L8PGsakEka27mx+q9JVMYQvq917f6wKBGWCwL11Le0ctqdik6Dz8XwLuzg04essic0sl3k93oG+Y6IJUotc2qNXV6MU9Fxi1P7h5L8sorV5FSAAio/EzXvluINzbZlAFUQJUWdEvgVheFRyEWU5NLim15JlT0ePg7AYiDc/IJB2JUAwKtPU3nXEZqAkTLJYic+81TZmb8u08T8a2Gbp93SyY0ISRJ+z4TU7y48IjSH2R1SOLgmgAf9YWZCunVw4lNQaGKu1IsvSwpmqWPBUphj+4zaQha5SRRwGGHisvoKNYEy2HsJ1ZbzGkYqJ8NWS3nLK168p0DndJ53A4VJCxRrm8hGONjDMErBIwgDCAkFCWOlbEWEP1MhSzVz2NFZcdJAwy3Y4MFkmGSDgS4zCPwoOd0qi0q5L9AkDOpG2xVkoDBmKMAl5Gle7J0kkaMohHgFexP6IACHJLIQUANP1W8kGo9R9sb/TamAMhtqSjnwlyMrN2XDKQMJFwCJAozU/C8H5Do1VK1AlAm7Z2ySN+nD77btKTmiwqm152F8K1qnvHcm94wxvw1Kc+FY961KPwwQ9+EADwi7/4i3jjG994Kom76G5OjLdPQ1XdkDBicT3NdK4RK4Ntw14CGxNpiOcWmPQ909lYmDpbKlRxUL7YUokQmaVRQjEe1C6zOABiuwQHEkYlYYuNh6gzAPldZ12sjAs1vG6WNW57V0catmGM3btemfo7S54d2GBXt+0VirPXNporz4TVhjNVAIJVhhZKk/y63l/z4YFnBXoUgEZlLFRBBXEFCx5QC3ALYENtcRgYgQEbVVzkBOQ1F+mGHLaGxMIs5Z0sq6xXcrx8ksPV9Bo46HBcmY5w11Ux7nWoSyhiztwvqZyhDa5KIw5TxgHJlTIOU8YhRllSIawJOABjnVS/o0hG1gk4QyhbalHPSBmQZfdLudaUcYZGrGgrFkZLZanFUTV1nohxmLZY0xZA2a5bQISrGrGJsUqMNIyiZyGV75YwbVkzFaCu72t1N8tgAgqtXxnQotgkqW2WpU2qNERHCe2P5Nub0FSdE66AtwX8aNt/A0DmXAtAtM3rs/WTY4zhdxDYCCo6J7wuBXdiwPHa174WN9xwA6644gq87W1vw7lz5wAAt9xyC17ykpecWgLvELdvo+sp9Nm3Dp2/d57Zh9fS+He76ORZeWSVrVemG5MqA05y85OWUZGjJaVVxqOmmWXQIjUHQEFSMjV6VO6ZVDeA3Hequx6Gov2vcfl4fBrsW8ge9e8iGp4USXPntl6W3OIMzCdpAUzOhblEAh2cXR4DICFHCQMNUSpXAYgxG7WzYcys1kk9P0XtcVSg4S2IVv0OBsv5J72lk7pldsRq2OBgVSUbgwccaSy2OWiLK9I5XDkcYU2FcRedDnmmEYfDiDVtcIY2uIJGHMg22DXcHQI8BEisUABGMRPCVWADxkBl2WWAKIWiKIQmkme5Bso4QLFkChTQocqgZHtZMohYdFCOpI3J5Z4LE2fB50UHpPZnX6fC+FUp17NrBwIsZKkfgTmOpnlWEOnGAta7jQmooD/GXNveRItVFeo5kLVOdwPt5cL4N3no0H0acWk+hesScCcGHC9+8Ytx880345WvfCXW67W9f/SjH423vvWtp5K4O8T5gdg7z+z1CroWqGjaDxw9uhLRBJSQe7a0LLkddH78iAii80yuzwsj15e6m6EwoWSHc8ExHl2GMaa0TmarQZmSHVfePMNZqvT6AWp0ilOhwZCqzQc3IEL1FRIVw19+9j5ThET1/Jh+ydX7XvCgWcpZHAjmQMRkAGlBgXyg+Lv8JJtpGr1PeKijVOu1kTLZabBDWWqp4NAvq8CsiarRrlklUt3VsibbmUJUFUPba1gzUiKMWvYEmenrVYI5GMqSwgaDHKCm3a0C4bIaRhiRcA4JZ5mwYWADwqb7DByBcA6EIyZsQDhiyPfyfJQJt3PCEVY4xysctZd7fzsfYsQaW052+NuGB2x5JVf5fZQPDNroAW7lSpO7SURbPq1Ng4G6rZkcUJihJ5jdwDAc2W/XB0ya4gOc9jNCE2lwEqr22R6tGyOtn/ac9Y2m0fcz0vhtCZaAyWV3Wu7EgOPd7343Hve4x03e3+1ud8PHP/7x80nTxP3gD/6gNNB6PfjBDz5ZYLvEZvs0Mq9rwQsNFsIOwuc+3cRY2lI6ZyQk3TTqT/9AgIo41YZGlYu6TqwMSJlQY2XUkmMzIarMyRhVoc8+bikFE7UTBJjAzD97iUjYCmhLMa40bYxxzNjy5HPv0jwpr1DAdu8OdrvEs7MjpAJQjWNhaqI0OydjDiz4yDv1yL7c/FKer2dyfnQpRUcJ/a71O1QdDr/l1V9FBwQVjFCjWujaBA26pFCOWtcFCd8sAWCg0ebZ4HJy65aTSL0UcBRww1RlCqMAiREoF5V3WxTLolsu14aBIxRwsZXvGxTgcRbl3UbsaRiYgFyccC4n3MprARkJI4ZyyBsTRk7YMmHLhE1OOLddY+SEzIQsnbGApwI6Msp9HCkUFhHJ0KPjS7mzaqxqIWuf7LYdjuAWHsIqSfRZhSt1/CERpfYth7q7NQyfHjeONd4mSqi9MbLNj44BPuyeH5fn2UnBcSSR5+sELJ54OeUSwUYnVhq93/3uh/e85z144AMfGN6/8Y1vvCBnqXzBF3wBfuu3fst+r1bnqe96Pg1qFpQwptNKTH/7qFsvRupADdHu9O6kUzPIGp8qUDbTE4u7hEPQcSIFf0BvtsN1J4N/L1416jI+KiOrgx4l2TlhA2jddleV4kogNEheURRiZRhGHHAkDm+efAegrIMcTzux95tzv45a1yoDz9TNpA6MYUxTGL5NvnOovwAmAhpDrV9I8sHgYaiSDqHR5LD89iADbbB6qWh/cM+S5rpVV+pKFEWTLTuUeiAqp6eqDZVyjPy26j67+EYM2PIWB1ptxABT2TFiyj/ltsma91Lb2mQZssOE67ParSgGu4pBrw3LcfUgHDmgseWEI064ndcmwVAwNHICG+gYsM0Dzo4r+UbhYpATpBK2Y7m3GFXrzGQAYoBr2sJqHZYxQACC9qumWVQQEIqthtFaGlWmN4lTRxhuQmjodJstlzo3cVXrvETX97nJBKBJg++bvX5KcOHB+Zkm4YK58wUNf9cBxzOe8QzceOONeNWrXgUiwoc+9CG86U1vwnOf+1z8wA/8wGmmEUABGPe73/1ON9B9ly52hoPaK5eAgfsWzjeYnxIf3+3Mi8wwgvy9fmpdq4fRMplwTLkqh+rySBsulwHbwum5VHamTJLTMhmU+Gisinb2vTOmsc3AegQuv6BKp4OfhUP9NrNU5vvSzSLPDt1e7bUymVlQYGCk3HmgKQ0QdipkYlvmaqUZ0Gf1owoQWt9+p0pSYFGUR1PyyyaFg6neQ9GMKEqXS1kvoKOcicIoSykjBoxaDsrXAIBZDItXHQ0DHIBIF6S9MrDh0jYygC3LMgtEUsFUJBuccFs+cEBDLpRrI5oeWwbO5hUyDyLZqBIOlWwABM7AuIUrVNT2qM/CGGl073tNQcA6M0/mA/C/dTziTh+EYANVHPVdYRJvTWht2bu5IrOeaNsDBs27ORDh0zM3EWhdABinOB5fdsGdGHB8z/d8D3LOePzjH4/bbrsNj3vc43B4eIjnPve5eNaznnWaaQQA/Omf/ik+4zM+A2fOnMGjHvUo3HTTTfj7f//vz9KfO3fOFFkB4BOf+ASAKZDsLmX03IlASYfztYyFMc/YThLnrKSjPkclMffJ82MRTYddInDPzm8GijGnIJKfpt376a0tW8lQ/WVJcgREDDOXLIyg5/zMan8tbjei60xraba1b3D7uG42eOFjB4W5pREDi0tp03HWcyG3Lt/WWTkZ1tczJnVawCeq4S+C22HhkksMDMXypyVb6rcKWBhEZScIUVPTnkEoPTLARYnZqWeCIO1Uot66VuPHBD20WIHHyMDowmGU5RVdTtkiYUQqyy15wCjSjFEkHvUq0otCtxIQVQCNBxv6PDJhzATiBGKayXcpQpKtsL4r+yKuYndeFL/7EaIRcoSAQ1899sy8RScalwKcYwS2D5joAZReHD2F04upw3EnkXCcWIeDiPB93/d9+NjHPoZ3vOMd+P3f/3189KMfxf/3//1/p5k+AMD111+Pn//5n8ev//qv4z//5/+MP//zP8djH/tYfPKTn5z1c9NNN+Fud7ubXddee+00D8A8QwmE+zRs7NdQtePbD0wbS293Si/c3veJIpWP2H2amwnJ3fQrZEY9OVdF18oJAWz42W7LjDwDsm9u/d/oErvtfo6+I8LnVJU/9T4BUqiTxCVnu0mxMDABxxuIFvj9hG5JmbS996RjVD0wWtraLqz+dFlrSCbFqBILqoBFpFZYuUJ0dR0kHAnFWmibt1CHhQPSwCI8i9KNEq18I8aa5BC1FqX6sFHAhjL/3LuEuW9ZFESZg+5GvQogOWLGWRTJRdHHoHiBDGjcltfY8NqkGfVKJuk44gFnxwMwDwFctNeYVWdDFnq8dINRGzNTUUZB5wiFtglllPOJmn7hKDzfdzQzDViHnNn2Te7J7zTpTMKkHe/sKrvGw0kUHJM/K3meJuliu8vbYne422+/HbfddhsODg7wkIc8BPe9733xMz/zM/jN3/zN00wfAOArv/Ir8eQnPxkPe9jDcMMNN+B1r3sdPv7xj+OXf/mXZ/0873nPwy233GLXBz7wgQlN6MP7KJLuA060tS6RmWIYqsi7+T6bhqX3Hhg19HWsqqvkbRqNnxGKcqaxXw5Mw2aGCfUYcvLnPkRGlBPAK6q7WLy9BiK7st+pMqAqObbhKdDR5ZxU0z3Jj/FZTfh8OVbJtSjkzY08MxKcNrx9lIpjYrFHPVMDTthe1/oSk+ZtOuXZZpFa/vaW4/KZNmWCKYiGbZIT8Idy6JgYCmvrrfiVM0MGOSfFwEJvSaVsXy1JKgqeXh3HAywS5R5GKoyeiwRhFH8jqh7GCJi04YghSqP+YpzLjHNclj+2DJxjmBJoBR8JZ3PC7bzCBquybDKRbJS0HOUVzo5rjCxSkEzIOZWLyw4UAxu56HuoRouOFRPgocsoTs8mthm55bq9diJg8IVp/JmcxGtKzJYgGXLavkAIHFC1TPotWwFVYwtkD0X42T4YwJI24pmxmz1t++6yO2134iWVr/3ar8XXfd3X4du//dvx8Y9/HNdffz3W6zX++q//Gi972cvwHd/xHaeZzuDufve740EPehDe8573zNIcHh7i8PBw+sF2CfQ+ObPjS663thhfCF0bFUcRt8MmAd+rpGJp/b9HM7Ocogylm043AyYUUbQCIpVoqHKaMjsFEdVQV2VSQYIBZTQU+nWc/1bG2b4t2/WonBchI1ZhpqJMKlniJIOl0gntFMdVZt2t5YaZVfPWbtDyd/+811ox11sYFFsyV39K63Vu9J1905/SkohCViy3BhTI6WFIfet7aLsq9Dlx0O2YAEABLYUOE90OlWooGCQCaEAFG65ZCmmxeSHHx6vFTc1CkQLEMjXlRbkyCBskDDxgRaMtqaipfG3yWQBM5ow1VR2ODYv+ByMseyhg30j4Z3nA7XwgW13r1tctF30NfT6XVzibVxVscBJl2AJso2RD3gvoZZ8xXxCjR4MwqSUDcdkku7au77tNTo+X9200lr3uQrE+wWz9cRIsu7Dg/ElNTJJAzk+JAJOD4/YB4/73bH+k/vfLQOOCuxNLON761rfisY99LADgNa95De573/vife97H37hF34B/+k//adTS2DPfepTn8J73/te3P/+9z9ZAGH22X46QatrGdCsHgjiCKLPLMyilYv5sHya91kCqrHUuHekv0g2EAaZQCb4hBMVCYgyQqV3yy6ZnEEvTQvVcbMyK5RdLGrhdGJ9tBiXqlyJJ/pdpJzKpznQUIg7fGuVzWJBShXtUeYnXmZhNDVVw5usKzeIqAlBC6Ofkpppv8PEcIyrQ4ZYD/X2UhxYKf7IwmI5fK0n9TBMq0stejgbweqygg49V6RY5EyposYSdSHMUAlU3Z1Uzlv1UoGiX7ERacKWRR+DVcIhh6yi2OI4x2X3yVmWnSe6ZIK6fHLEhHOZcC4n3J4HnM1rk2R4ycaGEzY5YZMHnMsDjkRB1Ot3jJwE1JRdKttM2GaXBwMdVBW8FRFl30VrbXtMqu2nqdpYN67xJHtBqDtdXL/T0p4b2pKDEXsMOtNxlpp7E9SSoyYzPqhesHtJqi+y41O4LgF3YgnHbbfdhrve9a4AgN/8zd/E133d1yGlhC//8i/H+973vlNLIAA897nPxROf+EQ84AEPwIc+9CG84AUvwDAM+MZv/MZTjUfdsSQdfvY7u0Yo33TWoGup0GcFHaII2Uop9nmeS5e9Q6f/l5eBMYNs4DAlQNT3rR7GBESQmAFQkTpcchtAoClgAshOlKzfFJ9Rqkea0EjIpDt8qvIoqT5CahXjJJTQIcs7K5I4EZsWp9HtATqO2272dQvkpUlxAzZaD2U2WkFFqcCq2+LrXeli/MESLGp8LZgLdWtZFumCw8/ld31PTBhHYEsDjlCAR0LGFoSkjJATEgbcjjUyCGdpwFXDEdaJsAaJefJyMNqaEo4w4FYxMX5IG6xEOqZHwrtFC2x5hcxFfwQkUgcUeyCqAzIi4ZPbshOlLOQM2PDKjHpV414DPrE5wFFeY8xlaWWTBxzlcvfX0dEKeRyAXHamcAZ41DvV3xsCjQDJN4yl38jaUdHTGGvBq2FSz5SM3rd5Vw/6rO3KJiNcWkh3GNHv9mGmQ02bZAyg55fdYXGeridlbH+H8Hcm+g5156uHcanocJwYcHzO53wOfvVXfxVPetKT8Bu/8Rt49rOfDQD4q7/6K1x99dWnlkAA+H//7//hG7/xG/E3f/M3uPe9743HPOYx+P3f/33c+973Pv/AO0yEvHh8qUHOLXP4cCfLHqicFO6ZnP8e+A/vOqBj7t5LXvdytPq7aO81pqfFqIbpWxT68DygiOElrKxJamYbOmO2bfgCDEi4WGVKkmUb8kpmFHSoPLmckJrASbdPcj2oyoqroBtT6fD10nGhI/t20R3kmrrrjsxzH3qRI9ZNO1vzd38ImwOD03quoiAFGvWb5EH1aNo4fNhS/35yyRnVoAVcs6XaFjkn5FFORxX0khlIcidZyjjKK2CszW6rdwGnpUEkbGmFbV7hquEcRhrtWtGILRXtjbXIcW/FGZyhowI6yCAXiBkbQcgKLgYa5XcBGZmLwa9z4xpHYi105GKYbBTFUA84bt+ucft4gFF2rmwzFX2OHK9z2xXGcQDnBM4kAIPkd6rPI4GyXAw78p2YBKxTeZcB2moZabVyoWPEa/QSEEKFob7Ky5KmPoNYFFCFRtZ9AnAXukmfYm0o2qYbGu0bzNBtaWEs9q4dowON/z0DRrr+GrpPNynI3wF3YsDx/Oc/H9/0Td+EZz/72Xj84x+PRz3qUQCKtONLvuRLTi2BAPBLv/RLpxrerOs1wOOg4H2VmgDHc+bmDG3cQkedb/65vbv4TMgySbbX2aix6Z3Vsz8gzX/XJRDI8odb3jBJSMgzbLnE4iKABgKPauxLGJYBC4jORgm/rH0Xi5RIXAZkN7gwUJZpdOZm3K9dP7YPUwDSG296YG4OKB5nvFpsY75+5Z9xBQp+a25gSxAG7JwSbkii1+FIvfAEHIQ6nbaFUl9N2JASV4UEFtCRAaQRg3xjroGrLYoxDziLAk6kmoFcT3QFjRhkiWVkwlXpHHIijERYgQBaFeBhG2KB27HGGdpgRVnszjE2GCRhUZrhQceWCWdzUfosW1zVaJdub61g47btGpu8wlEeDHCMuSztbLLQObCRx0GAhV6oko1M4C3AW5J1LjiwAbePlwvYGMnOwyMFIOyZuDgxEtYiZBbgrECiUZhp+lKpW92ePlnMEzryvxUstkSIMHgCRtqxeZeehtG7fuMnY3PhLoV5od2dAN+cGHB8/dd/PR7zmMfgL//yL/FFX/RF9v7xj388nvSkJ51K4i66W0K7pykq187cGbSFAHV0bzpNz/WYXzdIDv0OlGRmHMPWRzNH3pqtNj0PMr9lJwPCIV6TADVcBzbMiWEiGgg5M1IujA6JqnVRgiwdlKQX5lQHO+XFFYhJ2hV06Pe5agb6oknu/OgNXufjFtsO1fbiEWMj0YhSDb8VkZqwnXVKsPCUugsl1KmCFZRyDDZceinl2ryByOMC2JWZe84ZSYCQztgzk91HHnB2LIelJRDKGa1k2c9UFJ3VbPhVfBZrIhCtRfF0xJYr4CBwAR1pgwTGVuyu6y6XoiCaTFF0oBEMwtmxbHllhgCOaEU0MyFTwq3bA2wFZBjgyMmuLJKOo3HAdhzKLpWRGsDhrg2Bx4SUqRi3zWRAwoCHLKXQSHU5sbmKhIOL/xFGV210SLtwIIFyC859i3Qgo7eE4Zoec6W3l2FK4+j6WOQEbs9++ukENs4n6ksErJyXffD73e9+E+ufj3zkI88rQRfccadmg2LUvD9qGXsvjN6yykxcFqETPxrWt6kEKiNdSJt1qpSmcdTILaBq7rrE40uFURlXPRk0MhovrmdE65MtkOL22RhmWw7KV6lsnVQCNUegSdY4EoNHO6JjUkZWglSWYpahYCnzMuiFksBsq9g1y1pyBoB6YNGntEm1lDecqXkf3MQfoZ49YzoY5ABFfa46PAilFUpBgSccAKX4ruZNUuEZHxxT0V0aKEy0zIClHeWaloyEDQ0GMFiXDxzgyNL8b+MDrFO24+BXSNjmLE1VexdjkwdJH0luSwMzA1+shr7W2OYkyypF62OTKew40etcTtjyWpZQKuAoO1DKFtgxJxxtE8a8AnOyrbFdsLEFOBOSgosWbLhnZArgIRr8chWZOb4P6FD9crWSZjRKx6F+OYvkqadj4eK2fmXvW2Rab1Vfw9Htci0dN996914Yl90FdccCHM95znP2pn3Zy1527MTcIW7P5ZJFqpMqHs3OapVVuh3splwamfkEbMym0YVNC6CkBQS63OIDccwrA3YM+WRm3HgrNhho8p5Q6UnoJgVuYEOAgRRLCmiMa/q1aGWQJP3mBksbQIFSttkX08Lgc6yB6RjTtHb5rP1GLd1cfB64ztWzA5C69KLe/dW+Q6yvTtSl/uxHQ8OudauYP6MqDqciWUhwSytMOMqr8i1nsKINAlYKOEDYIuMoDTiDLQbKcg1ley0K0CCU5ZsjJpyh0RVrBRwF5JR4bx8PZGmlLrVscnK7TghbTji7XQEoSzIGQMYBOZfTbD3YQBZAk+UaJa8BbBBoW5ZHuCQoXF5ZlMYpsIvSjQpO5lqO3wFbFbh1DIr1Z07sezi99074JQNze6faQC3eXh87NiA4Bv0dDDYuK4123Nve9ra96Pba4fHp4I4LNmaXK5RpUWX+c2FPvnVAhEz1u0HMjhg6wHP83URjYMOPDo6h+JmsVxxsZ7M2KxYbDX7GG5iVhkeCDjT/Lm5WfMEoRorUbocX6VrYlZiS89PEWccsZ0uDG5sElnkWrMIxgN6AdWwR7I7vvbYyA0KZUZfAfDKnVV2lUrMpkAZAQDD2ZYEKldWtqzOGF8o1aS+SwJ4gMYZe8s2MooSoyqZcpQtZmHnK5SyVcUs4sxqd4Tcgix4HcSkXYuDcuMaZoehpDJSxSll2pBSVhKM8gJFwGzLOpK0pGHvAsWXC2fFAlkuAtdfnyEkkHEVycZujK2eyOMDByaQbR9sBPA6lvTKqhENtb3iwIcsslFl0MBQ0OCmHKIemHMFb2InCsP2/7XLLRAqSuUo2WqDROgUvXM8e6oIK7a5Bp6LtQwps3ECAKZmFsZdkUcdBze9pTSAukFvoL3v7vwTcsQDH7/zO71yodNwxrrMsMjlimZpu1C6tOLru8yKdBep/QFuPqU866QY1NEvMKoRIqMqXE/qIEkiMOYWojMQxsalXi6s9/lzBixrpCmDH7lx1NpK8HOv3Ciqq5IeJgEEUSDU/NqYJXQBCTtejyV9VV4UNyDUDcAOm83i+ehxzAFbfa9SAcGV5GTJRLScwQazE1nom+Pw37c+VZ9HRgJWhgo1Sf8Y5ZGxsK9HFJqSsyyQGJspVwIho/jKKhEMP4ZNZP1HZkspIxdR9BjKvkEE4XI0GPouh2wIniGAnzh7xCmfSBqs0YsUFcGQmHLHqgJS035oZZ2hru2YK2Ei4Pa9sCUWNja2Fyyrg2OYiASknwQpd1hIinMsrAxRH2xVyLoXKci/H0pbv+i0L2NBlkggiyIAEjxV8FDBCJsEIQCJzWW6RBkGiz+R6u6RWZyQy9hCZBCM0FRCI3SF6ons17QME3SJmLYUQQb85dv9re5oAmN4ydlhK2bOfzk3O9l16uexO7M7zjPe/Y457FvOmjH1iAU/peo26S6fP5J6df9OvEBd4vzJRmsbh43b6AOwD8RlUBiCjCbtzNQKv9fxEkl0UQ6tOQJB+iL/g3+cjRRqSMrH5j2IGXabR2Rm5ZKjyqI6eQxnf6iA13eKnZVPC94NK9ePLXDCLDNZ+8PEzsBMMSvsqFyu5AgW3Bbhk3lWm1EPJn7YP1N8+pQTTubHlFIIB6SzKoRVsIMRD5LYnE+oSmL8kyQy4WTMsTaXhoaIaTuCRi14Ok+hqJCRmpFyMgCUw8liUOnnFIFphI2VpdjWons9ylFc4M5zDQWKMDLOdUaqglv9tOMBh2oAgu1HGdQAbVeLCWFFGzglbEM5uG7ChtLlIOjaiMLrZrsA5yWmtZEsqujwy5qIYyrLLRO1xqB0NylSkImp3YwSSVxBVQCLP1nnHsnPFdq109DUKWJEdLqjK1cRVgdToM4emH/RDqAKMRYkCEZhz7VfqePpjMha3rh3vJgHNPC9JKe8gkHF5SWWHe9GLXrT4/fnPf/5Jg77j3R4MgYXOpB1L9ItLLJiCDn3WcO09G0Ag39F7fkm3uDGqgiHiPQAZTEFCYPAy5pAqiCKAjHapJZzLgRkgwsKskg6sQiMzYspCO+hYVpgJEorWfcuABxSmhQoIw/qyIwXYYT8/YHWqKABMDrcTuT3BRh12W4TmClXLGgoadoXJYXnE4mAKuhfBxHk7bnMR86uRKkseN1d2vGDUNuDARisZAcDbYtkzDUMBGVmsj6ZcpBeJRfdhjc0qg5jkW2GYiRR0FMh0bpuwThlbHioAmpQx8CleIwHYyHJLmbSrSXN3dDwKINpsB9tC2x7ExlnvwLhNYB4asAEBFaWz8MjAttjYAEOWUmqfYLG/gW3d+mq2OFTfonlWu+wBiLSgBLBlFFMU9cDCAwrDl9r+W+RSu1Z/QlbbTqHKMEXStjJcvLF1zLglsLHUT48J/C+o82V9Uv+XgDsx4PiVX/mV8Huz2eDP//zPsVqt8Nmf/dmXLOA4jv5Jd9dKCxiAqTKnY3rwN1LRpw72/bTsm0Jyig2L7ZFg0npGWYO2+GWGzKDmsDbU7SEGUKgCjlUEGwQHOiTOwnNkCBslhdmxoVRBBw1Cuy3lwyqm13QIejCLoxKW5mrC22RWHD7MFJJVQ0/K4d1pDmAGZkv6llfUBTZxGez7uhskeS5h+qKYWiCVclTmRHCMQj2qbYzCRPOWwSuJpgYMZJG6Z4C2xWQss9SnJjKAlKLnkImB1Qga2JSNObGAzIwRa/BGqn8oehpByiH3TV7hyPLESANr8QY3jkWiwrKswGKq20AHl42zORPytp6DomWmOhiqg8KZkDdytHwWkCdlZdrWxf4/yOhqOZRnijtSNqnqbzBMGRQN6MAIDCoVlC3mGqZXIMVYvtnOFm13XP0SFzpdiimdW/VKGCahMpDCNrQtzbqrDZAZsC8DRpXKNEBncvee/bsdwGNJunF5SeXU3YkBR0+B9BOf+AS+9Vu/9dK1wwFcGNRrYERfdMKnus5aB3hM0jILiDxAUaAQ0lAZf5BsCJM2W4IiLg/mrQnAgMn2WBt/CEafE4qlUYrxZIrZZ8CWTCijKpQmyNKITzPXdKRSQEVR1IGFsBwlcQwAbdl9g06uZpwbBCVcjwvtfW8cUobcfvPVxZ33c+0tvHMmmlrQJlViAIIpgA6LmnyuUBnFNCM1QPXjAYHProRRZqoEGtnSZGUsAZh1UAC00bapTIogGpcF0GpR5gF5GEFq2yUDTIwRqWQvidbNNoHTiNWQwSSKm6bVyshOnEMiJQlt00sbpJCZp6AjZ1QFT670SqdLJZwJ2CaRWJAwThhwUekQZQI2Xg+jlrOBAAUUW8jSBwXQ4f0VK6MCIgxckJW/ByhmKEyAggEWH7e+a9sHo0Jg1aFgjks2cCbJ2dNhqidXm0a4U9vwFnUsfNyhpcd27v0s6V9dbOlH079O5P8ScKeqw3H11VfjhS98IZ74xCfim7/5m08z6L9jTpla8wr+tc5aPcPsdICeItWMsxmMSj300DQPLCAAxKXHjpEHwlUmbcrkZYD2EhDEcFXCYYxTpSoqyRioztZQwi58owwgFQIwMCjogJVPN+eJxHop2QDYL6ESbv3WRRWetNbLBAlMvcy6vQa1grxUvc/xT6tLA1mKKLWeK/+ehEkoegkh/U4qVuOIoIO51pEPN4GQnZIvG9DQ5RojNNBhYYshNyCbqgoRAXlAzhV0jJxAKp1KppGBjBVyylitMrIDMkS5lpEVOculYKOIy9gAlAAiZtNTyqNuX03CO0s5KR8tS5hk5skpKIeWckvGe7nsQtlWpt4yfZMW5FJWk2WTFmhwARvVuijXcHMNT8EdhXhc/Fqv7p0HNwEYsNovgZW3H8hcDdd3S1IDhgtvDw46URqd8dPq1nUBD3fodifhtNxlHY4TultuuQW33HLLaQd7x7t9Ee9J9DXmmJX3siTZ2J2oSC8DaTdex7+KVFem0B6UKHNzxEWRtDMTNyboUtI7kdbTJ5RBUUFJdvRuWywPRVSfRMHNdBjcM1MBVYX5saWhW2qK6yYDpU/kjoHrNNykThVkCHtlRt2xEnNTU6ismGYyWwFLhqvLuSQxwOVkswoCWwQqVcOya8EztMDcRO+DNoVhU1LT6ZIXdwMBGAfwakSWtqiAoQKOAiJ4TOBtWVpRHAoidxIqapWqBIRrOdoyCRRQlLJmKmADSMbfVMqhfuqVZLlBgYZkRPQzqo4FleUoBzhaEMEM0NYZ9Gp1Njz9ti6F2LKJBw2SBhqjtCOCF7awWUBJWLKw8Oo7FnBDRqR03NyxDDasFma213aJl8FLcXv20wvZn/dxHsyd1P8l4E4MONoj6JkZf/mXf4lf/MVfxFd+5Veed8LuMNeK3HrPpx9p89um0DFdc0h9MW1tOHC7HpoJC/z4ILobTkG0Czygxr+oAg8PMjyQ0N+pASWev1tSKSp5hkvBmnEPmOJkYLc10wo2zJnipIvcGOMeg88ufY4Y2Y7vx3QTvZlaOFFGQ5HG12FkEYVhUysLKASGjZt61+8kNEEAk2P4URTCFUSO5SMxJpKxAhxKXYzbQYzoSmKIkfVQMQWhDIyUXBYZhFT0QdpsjajLkw3IKM/lXra5VmABlKUVwIMNVQQFSEDJBHDoNZaySRqvgA+lM2A2MpIe1KaAoNHfMEa+kS3hLZDwSqQSZl0ysUx3gKNuna1Awj/XgYKtO1aAWXe6uIKNO1qMzoXlC34yKPmKayqopW1dT0djTsKxD91ld17uxIDjP/7H/xh+p5Rw73vfG0972tPwvOc977wT9mnhHEM3zesl5r4PSq480o3k8/Gb8l5aoNvTmeg66Q6WDoBQ5qTHdDouEnekkG2PhSgAchsW6jMDFWig/51Uf8PZbfAKpwpSQkmINCRIPzRMKoOmhcMx6tZNBso+lRQkAe6MjkX6JdeCxm578Bkgazo9WmdVQZqjK8TZJFJgtj2XgbJMoIxaGZoWR8MEUexkVaaoAEOYdakfBnEqaZTz0zS7tV0wVAoxrhgpqYRD75UxZgE5KWXZmOUAiXPjmCTtXPW5uQIOpc7butySBjYgMQEcmQpoAIrURd5XHY5aJrwlDNoPFZj4I+WFznQvJE1BedTR0sYBBq2oZilFFT+TLrUoKOkBGFtu6QERSW8A56htK4xt+q4uiJL8njhtT9afuLl3XnPne+v2BQ49sHGx3RxgOo7/S8CdGHD8+Z//+Wmm49PXyaBOHnTMubaBL4IJ1I7WkrmOy/qC3YzsJE7ABJEYSQLFvqXcHKhAohtGvQKdThbJAQ95n4GwszNIO+Ru+EvfDyJ5z7WoLA71JnmyJZgw0kmAgdhK04GLOoCy+wn4mZp37uWi0pl70DD3WRbrglAVMnuAyN0wLQ/+XBv9EJ6bqJkL4xyawAiuqYrAO3MMq710yWQLG2GsXmWJjAU0FKQgADhN06eNiQnAyBhXWUAHQEl1CBQwFU8jEigV2x0BcHDRxUCujZso1x1aTskob1UxVIpalE25BRxOQmEMVfVRFFwpAHMnuWIr+dVvAWygLsu4mTx5wCEKohMlT/RBSXL10+puVEDUo+OGnmX3irZIPX+o6Veu75XqpAo6Wuf7qX83R2t9aqn/7dlP9bv6uYOWVu4oHY6f/MmfxEtf+lJ8+MMfxhd90Rfhx3/8x/c6D+2XfumX8I3f+I342q/9Wvzqr/7q3vEdG3DknPHSl74Uv/Zrv4ajoyM8/vGPxwte8AJcccUVxw3q0981g7ln+Hsx/zk0P6Er7+s4y6hr9KhvVeKhYe8jHYH2Zaomw2uQlUMprRdrO5KakwpKoGeoOMVTZXI2dnuQ4n/7opE+Hk5GlyJgAOQUEe0ucZmeR1JGKN9kcNP4iCBWTttBj6f1pGVhUq1apq7QYgHp91lQoZlqvhPFdx0F4WATY4LS6isO4XmujelvKm3YtsFaG5N/IhVRX54ZkzBTduDEL6toVhkwS7FEqKJ9qvmxOtwQWLasGj6wykNVhs2EcSiSCZKDRjgg3JpfSmIETLhhlm2o5bPSDyCoBKO8y1tl9q7oGCIRKVZPmYtyaNmWFek0bs5iAXaEGK/zYZLsoEKVcGQUGxtaBgxLBwF1SUWNgCmgCHoSqOCEKyjpfQ8KqgY2OICN2PkZk6UQjR+AG12mYMaDDeengg33W0Kr63SdfufIJv13128/hrbf70TLKK9+9avxnOc8BzfffDOuv/56vPzlL8cNN9yAd7/73bjPfe4z6+8v/uIv8NznPhePfexjjx3nwmlfffdDP/RD+N7v/V7c5S53wTXXXIMf+7EfwzOf+cxjR/xp69rZpn92v/mkDXMuTHYa376zaWds++cuJxIZHQoU0ESampdy4iuiQmcyr1XqSWzH0LcSD+WBILGd4MJrJR9mOEzjULoOvdGyYzztXeLKcHXTSR8S2dIO+7GsW4ZuLGT/gprnWuY7XdOOJu98G7PkLYfrBWoBuwSfrk2FdLoG5cb30iIiWUyvAEFlTnDPxghRj05X41W5MGl9JlmOoLHYo8CGypHsGwJvU90dsi0MPm8T8lHCuEkYjxK2RyuMmxXGzdBcK2zPrbE5l7A9GnB0doXt0QrbzTC5NkcrHJ0dsD1K2Ny+wni0wngk4RwNyEcD8mbAeG6FzdnyPZ8bwEcDeEPAlkq6t+XCJoHPJdCGgKNypTGVPI6EtC0XbRPoyL3blJNhkx7IJlcaUc5NGQEaGWlbJH/JLYuQ+51ku6sHG8TFiFr5rnY1uCxHOrDhdTzCs9/ZMmlbMElHQXYtQJgChp19z4tHFnBH6Je9vtUNeoHugurqLbg2nye5jule9rKX4RnPeAae/vSn4yEPeQhuvvlmXHnllXjVq14162ccRzzlKU/BC1/4QnzWZ33WseM8toTjF37hF/BTP/VT+LZv+zYAwG/91m/hq7/6q/EzP/MzSEunlV4iLkgRTot2lzSiJTPRHmTqSPHuJBKz4WoYphzqRopmphv9xTAnfZ1m2rsDCV2e3PLnOmEuAGCMg5hJNhXsEArQ4QJ6NBuhnyUqs97sMtXtmAl1WrnbsabLSzjYf9XH/eq5H/jCc/wx8WuDvYrx1RQ5dYiz98iooqiadlIwkRlYCVBNhZYyxOiaQKEtFWNeCaBB7Eu0QDKX+k1U7bT4erU7AGyo0BEVOypN2yn1TrEKOlI5y3VemU25ML1qmBbzIKeuUpWKGfjyoIqAbVXB8NK6qBhJBSzUojLJjwdmhS7asCDfsB14gy2h1OU+asJTfQ1So10sS42640R4racDS10rKLW0cQ3TzJpz+GbMW9JlYEO/WRlz/x1cmF2AwvE7t36bZ/3dSjF6rtdf7yBpx2ktqXziE58I7w8PD3F4eDihPzo6wlve8pagb5lSwhOe8AS86U1vmo3nRS96Ee5zn/vgX/7Lf4k3vOENx07nsQHH+9//fnzVV32V/X7CE54AIsKHPvQhfOZnfuaxE3DRna/UDrOdjFutPoZrhLTvTpFeo+6s21NLEwAcdZO8LMbvvSdMJNCJQKnodpQxgc3uhgcLrJZFY3CTS89Z0e+s3lqwofS+3JVhujsr42IU8+VMyLkc3GWSGD9Yy7sCCDvpgygb6tJDGOwmpeUD7w9CHiT2XK/NVRQDTGsVQLWXAni7KEqv8cnikV+LYshyiUteE38BKWTBGBNi0dTQ96MznAXUshYl0CTpT4xyBktzerACxCSgIAn4yGqJluDaI1tbSSh0PJSEhF1PykjdkqGCmLbc7eh2fdXOiZRR2+xdmDKVhLS7K2h0uj2OzhhzQ1eXhzT5Da0qc2p4BhKEXuN39jV0+YoUTLBjWK2NjVxtX4TlFJ9n7ehcQUoAMTn+DuWmFe1Fr769B5DBne8d0OHS4LtfCHTSF93zom7VAl37fEdJO87DXXvtteH3C17wAvzgD/7ghO6v//qvMY4j7nvf+4b3973vffGud72rG/Yb3/hG/OzP/iz+z//5PydO37EBx3a7xZkzZ8K79XqNzWZz4kTcYW5fRNlbd19C1cd1c/5ylpM/PYPZI44JWHFMhysjY4m7y5x83wPqrhWXhMKvKEo9PJ0EqMIa/y6AHuGhLEsdSZjZJKck/xKX5ZMcN++Q5KfuVtFpqvuuouIQroC5fWY3k7rX33vUyxxJmJFpugOBA0fyjalbfzVI5YbGxidgg1glIzDwEna0SKBp5GIDQ5lA1nirQVGWasnMVfFU6j0lV0TSHmjD5RTYFLc/+3ZBAHgsuh2mYMpKWguIgGLy3oMORtGb6BR70CPS/KABDOEFInjheldA5cMLdOzClo5lfmX5w4cX0kCVznQyAqNHBBO6lMIOKDHDzkqBBxv93Sjs0soKNgLXd6DB2g9XugaQxLLSNjQ38E5a8ZTE15v1Pf9Bf86M0ZPwHN1EeXQmmRfCdYHVMf0D+MAHPoCrr77aXvekGydxn/zkJ/HN3/zNeOUrX4l73eteJw7n2ICDmfGt3/qtISNnz57Ft3/7t+Oqq66yd//1v/7XEyfq0871JBL70B0nzNaZ4uIM2ZzYsF3I90nWQd2vVbiOVbpsNbGuY4SdmeKHbuNLXEFHQjjUzQJt7r2dLJZ0x5xsFSnQusQ6M+gJU4NB1IAOdqLonrMVq11i2KXfS67BKZXRw+rGfoStrE1BGZPro7IAGm0JzqXBmo0skVD8YPVPLpkjS5soL02htxko0yhFortTNAAHVi3bmVD2iJJiqIgQNP5RFUqL57kd4ryFLbvpUe2hWF0pavtUcGB5scDkRjE8/eYBh61MEUyZ0+gawMHOb9CR8PQtXfZ+ONB5aYDRZbZ30Y+Cj9a/o/P5crtRKl3D2Flomtd1UGEzDha++3Yzeb9P/9vR75b66XH698VypwQ4rr766gA45ty97nUvDMOAj3zkI+H9Rz7yEdzvfveb0L/3ve/FX/zFX+CJT3yivctluxZWqxXe/e5347M/+7N3xntswPG0pz1t8u6pT33qcYO5A12vZvcACQ3nn20bTtRr/kJUnbh6NN31RcjoNhPObJoawF6mb9Bjy5UJVFMMjkEZ026eUYEDA1MJSA9oYOa74wx+oNVs2tKLDuqajlSlFSxcoGVaRZ+AgDE7CYi7G2eWMkEVZwexbq9Q/fPSYNFHjDHjGp9KtFovDjyYpVF2HwO9bkIscRtzdNkqZSG5ZWc7Ak7qwT48aaZqJ0XPPslGUvUxGGULqNbHxFosapvMVICjZrnTdoyuhxyanzzGTzQls+IMwEGLNxA0gEHf++LW70rTghH3bOFwXG5BnqajVb7VuCY7TtQ/x++9nSkRbFR9kAnDz+4blMYvJbl+YWnWd06CM2HeGlcLGuaQSO93z/FMfDPvZoPh/v3voDs4OMAjHvEIvP71r8c/+2f/DEABEK9//evxnd/5nRP6Bz/4wXj7298e3n3/938/PvnJT+LHfuzHJks5c+7YgOPnfu7njuvl09ztybj3ZPDHgAF9UOHft+ClO19zaVtIY+w6ZIyIu0SqFzAfptslWWTpi9KaCjaCfanm2YrDg5BOYKYAq0wMmk5uSV0iCxOeTyUBrKBkLu52QIqvZ8OddYw6hSZXhm09+98CNvZ1TDvaroANjUbvwpgY9QPlmlYGqp6NY7oMyCy/gCev/Nte3sibCXp6YFXq2W/DDd/h6BhBObTbY3QpQwHyXD0yyrKMT9MM4Ah0M0CihMem02u81Esw9K5Kml4/xN81PD1entClq8tg1XpoC0hC+nLU4/B5bn+XbeNs/L7byiysmU7imbsHDaFBdmjbcl0Kex+3pNtxEdwcMD6O/+O65zznOXja056GL/3SL8UjH/lIvPzlL8ett96Kpz/96QCAb/mWb8E111yDm266CWfOnMFDH/rQ4P/ud787AEzeL7lTP0vl0nLHBBs7lkHCzHhWgXAHc3bx2br1NIb5NC6krfBd3XfaMcOjjECZn4pFGrIINlBsYICr9dGGabAL2/esdtnFr+V7cBIVP8toSyg2FjCgni4bMiJxMMuKkEp05o0PTYq6N+b0Zm1ztN3lkk46d9YzuXLcDTZYQUkAYTHMIM0CCsNUhq4M3jHWYiS86M0wuOgWNRIOJTa6oYIOX/ckYCMBcgIs5qVjrm55RFT69FlSGxVw4TXBWd7ccgtqd5hIOGxZhhHBSQs4RjerJ9R+44EBULapwgE56gAIDw6U6fp4A1CoehiKTRTA2DILYIqklq85IDEBGzyl8QDGvotydugEDTjwn0OY1IANz+w7HasFG3P9b1/AcD5LpKfpfBmf1P8x3Td8wzfgox/9KJ7//Ofjwx/+ML74i78Yv/7rv26KpO9///tPfefpnQ9wcPPDj0ZzSpnt+h91Tj1sFfdUHNmG5YHB3LPEYSDfbYntnHbRT2cIW0FAZEBloHLGNiC7AZSZKHPgGkYw6GXmz4GgQUE7DH/5gmmLnGrYBJjhqEhQEqSWLyHGmJItl+gg5ECE5r9V4nAgJ0yqrGkErluZCVDrxc+85pbTzI9Haxx/t1ufnWc2FKZ+lLYmxShlucWUReH8SKaJzW4oyhkqDM7l2Y6I981J0EciPT+kSEbMaKfUm87exSYXOHE1DKfMPTvDs65d8CDZ0TaRERwJnZlB1yJy9iGMzwGmRGol6cBGoOtJOhzQKVtIXboc86Umbm2ZCsYsLqfbYUrLDDPNb7/98ogPU6vRMWdVONUwrUg8MDGwwQ5s1GfyAIJ9eGxLbBUM1DxbwtSL3w4Lqaj2nfqHdw59KLrTe48J2yRIw3b9b25iOLdE0gMXd4B0A9C6OD//J3Hf+Z3f2V1CAYDf/d3fXfT78z//88eO784HOJZc23AX6FqWMOe3S9frGP7Zi9d1BJb7JLylvKjiaUiX5/AEL+kwsAGgzF8ciDD7Dg5EuN8cM1kBUwM4wqAdeWp8r9egAxqgx9VPgIDoc+QMDGCHK8hGdxu0xSJpWI8OI2coGktyV9TLjad9lt32qufGixaGgiY4WkWD1NbzNF72qIo8Uih3w1VisbUwMepWE1TSQVKeFJMG1OUUzhxAjC0pIOIwVhsfylzninDr2mAzUIeNJVtUUOzBhovY8IPGqztCQoTuJoY1tAy6cXPtD0FR02dY+arXOcncpZvY8phILNjit+4jICKUj3sOejoebLh2HmyDhN/s0ldt1U6WR8jR1VIq7UYTYN1P/bu7Rxxt/7NwF0DEPs9zfi+7C+IuA46e22fZ4xh0iwbClgAIgMiFyztWCUsb5kTJtOnwS8xI+zpa8EDhZma2U0PbAAs9G6O3Jm8DNxq/8qwTfFOINyZExYIpwZabWEZQUtBBsBnY7DHXKoHxM8vubKfmJYAOy8QJ3c56LhHoEtAkTnK/qZ6UG8Pz+SjhECB6EwISUhujwA4BHMwohtRMYiWSELYgTYnUJGjWDtiiZgJ4bIFWm0at4t0ArkRdQdEcNPFvd80ALZgW6PjkAMFe3ERY1oAJW9bwYKGh8UsYxFYDO+hi2tp4mbmCCHvvmTuLBIrrllkLqwEThjHyBJAoTQABRfzVoY3xc8hzCyrm7j7ijpuTZCzR76mbd8GdK4YT+78E3GXA0VZUbzDsOFLaSXjTmqd2HWxG5GfHg+v3MPutd2r8zXYayYsNQjYSVhZDjk4HMxt8beQT+iTMquGDbXkxUGa0LdDogQ9f3KOj48qsdAdose9A4LGRMFFlliTpBBJ4rOsxkak6kAKgPxObzV4c+Ly/fQewFmDO1XOLNVJD4O4qKjdlX59urrkmQETdDKak803UetbZO5nUQe2eTIAhpK6y1nmtY1t5kvpjKqe7Qv2odMwntAFUZt+i4yKIXyj30FAwG15vh8q8a/pPz68BA+mDjbTA09a4yUDHHF1d9vAMvIk3ox7CBh+va7MSVmoAxgTQCCggv7zVhOvBBplZ82m6vD+yxAJ1WWTu3gQ21/96bhf4WJJ2XGyJxyUCGs7H3UkBRzsKiSucefrtfEFwkIfOBEhuFuLXEb3ipnyb8DXfMeIHaCuuoCPGbeJ69S4DjK20CkPMiar10TmnTMYZSjBssgA2QrF4gCGDn4Zh4QwFdDRRlwHPBUgpAXlsZrozhr+s7j1tJ4O+BE4CNlra2XqGfyh1kiEnjMp7mi7tERQkwGiAetJx5W0EGnMxvJVKOwjm35T5EETsL6fyurphbbMC9HjLVYnYAUkGkKjmmVCWv0BUi4xdpTjAxL0JAEuM7j3TtPyVwXLjt6TNe26QzpzzjNm96i101rJk48eBzoMAzbo1cB+X0OmuFZMe9NIFUN4liUAFB14a4d7XZ/XHBkt7AKeG59MU8++fJ/pv3UA1DO9/pv+1fW9JD4M74bXVd3lp5YK5OyngAGqro+mrHun5go4QThsRdZNT/HDtQMcR/zWkasYazDL9qZYqNUU2jjGVAU4YUd1ZGQui8ugy+JtCX2Np1KfFYzqvMEiEugOho9gXmSrL7hQ2nqq7UaqPcoBcWT5wDKA31lke/BJLp0zbly0wPIlrpR0L9UyALHeUgbKAhBZuaDCsHHu5+cqMVEGHOZdVIgCjMCc5Up01Hg/wCPWodQEnFnfTDgYg6Gto8j3PLY8cdIt0uaciH9Q2AK50Pv1tnhkVTXKNt0s38RdfkWbcSybsP0c6AXKm9cBTuskyKAvY0ET6tlk6a12yGWueJjYz9FnuXgfE7g2fNxDRiTMAh7Cs0vQz1uXfmv82vgkinLycGZjn+ksLGEyZqBuh8zMDQC6Cu6OURi+2uxMDDnV7tq7TboTnCSAWw+zNCKkqDVJmMRedoHPkZthTb9XoVu+bpotF32DHDiryfjr5IfdgW13bhPmxOZEwwh3FoxZJF2cuAsLamVo/BwiD52m6pYxI/ZrhrykBNI0kuwQ4ieSinf0rYOEC3HoAwktbAhDTilFaR08QINhuQ+nUOWUBE+Qj6dBpmBZBh04/eSneFHvU14xGV6lD2H7r1Y35ccshvXAcnQICCu9dOG5WX4BBAzb0m1+mCYemRTqbaDR+5mgMTCiIaDMi7xkN3YSUa9ZNp6RD54Le2a9COe4AIu3zrvDuILBh6Tif4eQSARyX5PGuP/zDPwwiwr/5N//m+J4nHbI36nSuCRnPX7tD27t9TOmc77l4OxFp17dXSfadOkW/iFWogghlCo7BeP1AM2veRu3HXj977UzW+nl1zsXtD/uqvJQmcZu/ztpyGGeovq1KbL169YO1L++FtrAk2m3D0YTtCIOoGjGLxsyUw5LLI8+EGeO24uLpFZifXsxidIqrKW25kxijUnBL8s4uFefrroxM4Zh1uzR+/9t9N0Nfcx1rqfP55sxFl0H3ZXUv8r87+EkbN8e4w8zV3pUH06ty9eKlBpTje7u0nVq9uE7eba/y3ZZlEMOzcDW9tX3QhFbanMU1LWtrOy48mzzY3eXd7q5NdsKNdbuj//XoFhwzu27Bdl12p+suOQnHm9/8Zvz0T/80Hvawh51/YMKMYm+YIeT6OE+2p6RESU3Kwf2AWbYdsthW2Onm45d5ryxdkJsJxritn5u4W7/3w84KSjxZO0vWYHqKgp6eazi2jNMpGtLZDZfj6HNmtEYoLSNmsdG9m6GdSDZ6WfZtplWQ67mlNqH13953Oa0TRXv1g7zX2SfZslMvM6VIRHvDSyU0KEdnv0euFkT1o7/UWJZIVyb17MInoOjiKF3TZkI6CI2eBtdHo9f2vVyOlu62bXWrk2piuwG5vMyQ+bZnC1zKhHttTndPuVfdeAEHSiIfnyqXVkY8WzIBRMzobDg6XcaKcfE0PPi7T9MCXfsc0tmhPQkdV7raqu4YkHFnWVK5pCQcn/rUp/CUpzwFr3zlK3GPe9zj/APsNfhZwgaJd8lmUPYcKahP1vgvg9mOFkWF0XTj1leN4l4FE0ZWxkI1+mV+p3EzUIw+iTo8gRcZMKkhL8eD/MjXMwgWJCQ+blajREI/p8yq6RYa3cobonZtgIFqLXUuIx6A7QsO5trDRMHXpbklZ450fnYYCQ1sAI7xTNpmmcGRnDCaMocj1U2awKhSDZUyjBzO5TDaESZ5oAykLVeJxFi/2/NYTIzTVuIep3RQmrEcDEcmFanpM3qRttDIttQWZtwMkapUqctu0DhTH6EeBbtou5lWiasDhz44freyLg2x+utJcjSf6m+mjoOkAmRlECVdGmYOEqgggfHjn5eu2ON0zOlKKyZ0ze/JdvG2LHlKex50xUKyFveutnABXVu/J7kuAXdJAY5nPvOZ+Oqv/mo84QlPOI9QFmqm7YBLdHsyGwoDwHxwk5RN1tw1PB1gdnQoN0jUJQgKY0e5ssWt45xJJTR4F5/ROSujbRr12ZLV2OyYTMqbzHvrpH7cZV8GxNVmg4Ak1sR2p46SoBZMdOu6gIlaxJoYjWymPvedcbW/J9PZJlHtrNGTyCDuIVe7Vu535lj1sltTlxsxV+VQubhZBrHnMRuTJwUr/tL3mxx/K7hw4RnYGTNImd62pCUxxzjUvy7DjBEcVTDCFpYu+3Bml39XVpnBE4WOXv2FYo31oGXoq9G3G64gMATAAgTgG7q2sVq/4bca/tJ+qWNCB5iQr2cHFOD9Zy5gw9qDhAm3rMAxPgtP2ldtQ44Oenfxtt8nZawVQ86Dxtv0iR5Y8bZelsIHKsBo6vBSYd6XortkllR+6Zd+CW9961vx5je/eS/6c+fO4dy5c/b7E5/4hPvqW9ScrJSWyfYFHSG8pjO530GK0BOzy53lTkq3B8onwE6GdfMrEwMzl21v3qR5ZfqFSeuAVgxvkQVk4yMckGDtytQtXvK0mrXw0T375ZpAoPszhIkQFRPncAMgnD8HfpClaPQ8CH95gGhNwK1B+7SwlI8WxN7LIZ6Wa2F4IyjU0nKMzxUU2x5UCYvau4SVSxxFkbSGw67Aidh2mnhT5TY2yzS+RJdlV0invFXCQqjLJrMAy7UJkdQxt2ZHajssyz+ubBwWrLZVNA8s+rVuGYhdkZJiVNdmdzij8OMDxzs3TLWLKc1vS9ekRMGDbHnVCUDFpo5eAYE3ateAT33HbTgBGCiY0PeeObtnGwQ0zCa8Xtg+PJ//9t7Gt8v1wmyfgY7Etmm/Bu4uHvK4syypXBKA4wMf+ABuvPFG/M//+T9x5syZvfzcdNNNeOELX3jCGPcEEntLOvYPMobrGUvD7WRQMaas6aY2DPfbJ4IaK6CgKjpXJu/5MKZjyL6TwuAaHMdYELNVPtgJaMJ2K0MJHLIJSxmwmrtuw23j8r97oqh2YDvu9lhfLe1zS9SCCp1HM6ugyoHEGdBBbpuiggBqwpYKN5BlJuwb0MAoEhHTIPbtKzJRAx2Aiy/muWTJhRcrOISXM4AVWTskacsKPDTMTCi6JGpDRL63S3hMQF7J73G5u9pZP3o+SsNXzWlfkiUfxUjsmQvDLAer1KLBbO63s/SKWBWBh3N9NwEb6iHQIHrmqd/p8sgMAJll+k14IYwF8IGGfg/JxWK4wU/vN7ufF5GLu3Z0Yv+XgLskAMdb3vIW/NVf/RUe/vCH27txHPF7v/d7+Imf+AmcO3cOwxDVBp/3vOfhOc95jv3+xCc+gWuvvbYT+q6acgx+8slxz7l+ADfrspdTMBBobCRIzTsXqgESi6STyARHUAfwOAlU9QbbfNAGY69SzQu5s1UmzjEUGxjd7LLOPmFbMSk1A7G+Z8R06xZXVyTluTDDpNPgtny02IB6xkTL+FrnmEBNVItgKu2xwEagbxuR/62F5961IIiqAS0OdB50VNyhjIFBRQG0YQJMVKuWRc0h0YRhNS3UpG8TZ4nTrMzkRcN2lyo6++IpbZHAQz0kUOyIxSVBQqFRq7dUMfoEcAyFFgCwAlhPgG0cD9UTD5ClG0/gn0ujpwRwLsbOzPaG72dZKkfoKFPYLaLLPeQAIat9C0NYkrFMsqPGpaHXoUEAZ0y0n3y6WqBiNH2wMbvtfAI25uh2AIW5La77Agx579t7BBUObHBRpr5o7jLg+PRxj3/84/H2t789vHv605+OBz/4wfju7/7uCdgAgMPDQxweHh4zph7TVm53fLJdMdUfc2hFDqrw4c/F4Qd7Rt32KrGpPqkZjtLfEmhgcX5QlouauOusqiIL9n6avFryHDPoYSgrRgEfYTBXlwrncNgFyGwzyJbOIxMT+Wo5uUT2LSU2zga9BlEdV7KhcVimPVOmGbrO4Ov9qdcGdLCESW1+s3xzy1ayZyVEb+duOKNaJciYTmGFNU8WbAwvLGdoFrthoaQflZCBKrFowElWcCLR55Uw8WaZkDNCO0QqVlTZo6eBJoez2c4tTSMLSMlFsdXo9CHrTg7U82vG2mQ0jFA8ukRlCKoQk/52kw2GnPpLUmLM03mHfItggNFUSUh4HTaocwps9UgKctgT9JwHqjNxe6dtu9cH236ws5+2v2MB2Y43S+AdADbuRO6SABx3vetd8dCHPjS8u+qqq3DPe95z8v783FxPaNDEnmSLMbVSjYnTQZbd80xc3LybhKt6F8pVyihHRJOBvsTMttxQBn0qg3wnc3qMtekRdLJkuEbHroVs9zZu9EI06QjKYJ96MzkoI5P37jROHaO9FyYBOCrm6Q7Kewx2J3EBPDiQZGgPsXA8AJhyGEsb27v+4K2nmdbD2TpOmo4ewFaBgpsfcqUDGEjFqBx5KeAkWAcmGtBW040KFiAMXtLARBMwYQY0ByrSCHLbc5VucFU3kAENbiV2A8Rg3BRsAK6aEjA24KSVEiiQZAF62g5NqucvKocUamYMT2j8qQJxTmR2OOa7VdVPCcCjBTuobYYAO3Nnrh8wUKUsLc2cXoa2D+58a5+P+27ue28pdCacO8r2xmUdjjurW2Bye3FDGTDq74ZudkdJIEJYe7dwa7Ts1vB95MFmqHZqEb+yG8CRUl2T91tBhMDGgwBgYpzsoliUvjj6Xc5i2GPCBIKTgLiBz12k9cHZbWDRgbS9ICzQc4neaKphdJ57bl/pR0di0RDUmVpyR71OmEZl4l451IL1fkgH2RlQ0svO3MvQXtnH2OQi0oGSKYxyaG+Nv4FMYVmNzQXJhT4nBRuFIXt7IEbLsKPrvf9evqzMeqDflWP3nbRBbXIFf1WJIwF2Ro1dmYtEhMVcP/vjBQpNC/rIRxgSqu1BE1HT5JMdm7yCDH+fUy5t3i31i9avurmlkn1dD7h008DNvSVtv19ELj4zzBzL/yXgLlnA8bu/+7t3dBJm3H7MxRhfd3DVEcUPHr13NTCyKXvfsf2rdAXTtNM22Fq8Do42QHETnt4Xd8qgPw52krsP2Ag0XjSO6VKAucyyJZEXxpIKSipH6kQOHG9w3AU2TLa+ROcKzy+vtMsqnl7zMeEolrDyzsqQZujqK8UUrY5OTSLXqBOUu06bq0lfyKQ0E7hDrripgI1gIMyDBAdAckI5qMXARwNMJLycUJdffJhNtlvFzZbA2mJys9QGcHgpBueiZ8R+CyvcsxzQpyb2bVU11/Bqm5dodFho0+kL1Qp3gZkKYChRdDr7hN6BmCW3i25OGrIv/U66PdIX3P7g+7I7nrtkAcdFdWE2tsQY2pGgQ7JrKUUHf88EdJCZARXhTY+xKzv2s8fMoiTXeLBBWB4yihKd8zsBGxpMr49SvU+k623UDFmrns+OsidvLpmJp/qrrs4IqFqxcwMJN1tkdymozf1eop+r91YiNqGjBdo2Ps8hWXRYUizIAA5kGYVz2O7s680/1DKigGuMuZLIVFR3pqtEiiDlmJ55W7Nqu0yILK66nEIBbPDKfddvDnAA7rczxR9AjCsif7icFXWDy0L1OmNkGrCCDQMdicoOm5GRxraMpaqYDfgyIDuBhE532wg4IYZJQ/wOlujUHpBGpvXnAXgFBaZ30m3abMBk0XlQ0GKcpaWU0wYb9UWHBp0llDsGaJi5//Pwfym4y4CjdZNe1nBJm1m20zZg0lh7nZ/c3MENxgZCjBn4wV9+hwCrX26fGA2o8WBDB3exJtjshLHB2oc5wmwZ6H8T6bryUrFxSFufl/SdL77OjFNJ2nNRSNbyyZvxZsjeSeeXUHZbNIqkKv4JSdd18fCyAQNeyrBX/jp03n/Q4XBxWhlSjNNrSNZIXLvR8LKhPR8MoFIhqVflViGPmk5tW8rkS/wO16FgCCk3SYQ/HLAGSdamNf6m2QAQfOhARQsm9HdOAKuCqIIM/Z44ApOBwjKKZtF36QA2NF0sYML9rnmW3yrl0O2yyrmFQTPIADURIZOCDjI6ZkbKWh5cpDUgJAUdVt5iM4VEE0ZORU7k6Byj1zKvO1+isbiQUV8VYSnF3Vs/k6B8u9ZCRr8PzPWf44L7RTrfT0vuTME5+HN0F5OH29h5Hv4vAXcZcLRuwiBjIy2veu+mr/rhu0bunqMSKVUaHeHc9GofHu63KJakOXOf/m4nilaFO3L9zfivKVO6YcqLFRw+CiiDjNdZdtgHzoidrY55tl0WOhPkAipaLBIYBqsFy1w/+ruEq2d+TMS97ANktzXX08w8H9ctLkU1g6Eypd7g3VkW64dXwqnNd26gx6Ru2/rR6E0p12giUDKDbA5o264KCCO07Lg2S5gsoRgIoCL5AAF5KGDDlk1SBRysRs5SAdy5WWqxZzSbQloFUdddDbT5onNtmFHbrC11yLZXUz7NAk5AGAkYttIG9RwaVQrVeFPZgZMcQyQnhlBwU/qAW1r0UgtXgaQ7lyz9ChgccHB90sAJO/qQeUlr5vi9ZdzWPrhDswNc7Nv/2r6sD8HLnmFfdqfuLgOO83E7l1hm6Dwnd8zZtPp7MwbnaHbtvmU8HDudv9t2jdL5bbDXwb0Jk4AyUGYuWwbbIHUwlqtYgySb5M0iJA82EJ+9TY72Wxj8UflpwQYMj93Usz2q4uEY9+THdNTBslpPPOXBaJ/wfFtZCqe3k6UTFquWbVeKoc9cObHT12hnrXbsfVI5RUUmYfdJpnKgGgSgaBwOPelsk4EqxTDgIPVFEViMBzDruCbZUOlFKvRF+pFrm/XSDarPBWhkp9NEsdw9jrK24babswJTydEA5G3RHTK7GmrYSwCFAostgGEk645FabSUp+76ISkXxWFgBQ6CaqrJ1AAQq6RJ7XZUSV5Jtzd97u4NADG82pv9s3sRllI4fveAxdPtq+fUPs/RBbHqDvp9FbovsLu8S+XO6mYbYFOjKs7eQQbAbV/0RNT81sHBfe5KOdz3uRmuT6MwhjJI6rRVR1iqOqhESBkYBVDojCikjBTs1EG2l9/Sj6kOvj6XOusjNy5QDMd3Pl2rjmUSz8QguzQ/unWTF8ebuozV0Pm0zHneNSM7zYHM1zPDMRhMB80dg2gFaFKg+4CZfeigzNu1WQUKmnZR/DRdEf2uOhpUbGeoxKLoWlQa/c0EjGsCHyBsaQ1SDgUlawatGZSyA1YVWOtFQ0ZaS1hqcbeXb+KyA4YBzgTeUNmS7UGHltthCYtHgDZU7MS0551kAEPR6yA7yE7C05OOs/wW66acCaw6IISqUOqkIqSgK5y7IpVky3JuGGsPsWuGp2n19zqMAxJtWH7MCuMYYRFQ7C3ZmEnfTHLs00KYF3WL7MxYeiz/l4C70wGOlre034j24RUUO45/3w24QzZ5JwpmOgqE9U+dxcAYbogrdAyq3tzAVmZiGWVR2Ho/dBeKncDKBIwMlm2XOmvzupzG83oFKWCD2yT6B5eFoF3v8JZ+02L28I6pavH7MjDz3r5MdXboS6c5/rtGFopwanSsp28hcU/LYaaV9QCBBz5tXCZhcOitbQ/dQX7mvY+yBRNWBB7oyoe2zVtbVNIIUa19MQQ0uKuVMiSU5Y9BwMZAEwBRpRiMvCbkFRclUU+H6q8okTJ4xcBKG5EC1XoeEBGAIYNWjOSWkZgLUAh1RRyN9zKBBoC3BJN2iGcGinKJ7DLhgZE3qMxf76mUbSYqUo1EoI2CCTL1G12WYQmbCBhBGLI3AEblBFkBb9YXKSP2hFKX4ZwcNZJna4iABVJ9ta0oto2mP9Z707Eb3aqd/Wrf5RZ7LenqgRD/WpdNNYWuH5Yy3skILrtjujsd4Fhy+7evWciCWdCxRKYMpf6Y0jYDfOum2Ce+Yf0XlnA6YSpNziIqJ1sv1+9e655HyJkcnYQodmqzp+NaiLPSCG8IR6DHvHIwcQ5HG8NiG8uShEkTsKFpKgnz4U1cOxvSwI8zE+rVYQtCenXiQcdEYtYJb+9llpr2upzgBvBW30jJgyVbl0hh/EYqdjCCrQuCSSqUOaoJcg8YMCAskWQC8gHV90OlLSbH5QThRMjrAjQ4QQCHgI7EBhZABKwy0qo0JHKAw6p2lAQTA4ldlQuTZwIGNtABY+wohtKytFNdQtkUSWKxvVHMmEtzruB6XeJLogfCWZm60ohp8xVj3JbfRXqiAfm+JQBkhO1kIE1hxROSaVeVNlY0zgNhAxmu4/IOOj+e7Voe2WvJMaCcHkFMmAFtlyUApkNnZXRx3eUllcvuhG5f0NEwmV1uF4+RMGlGRGNdzjN20jMyqRl7KEgwOn00hqt6HXNp1KzquKOkTVEFrKKDbyc+vZuwJ89ErTO0BNHXmMmEGyQnkpMQeTMTO02R66724Msqy7S5ZRiWzibM2XSSVS57BtFG7JdvzOJsixoVmJDtwi1gI9XKksuWXlRqoWCD/FKKgolixCsTkNcEXjmQsWpoZUcHt9IPPZRNgAsJMqVBLirvPOBwRVMiHzzYBIipgA1m0EriHMs7lrJRa6GUAc4koIMxHollXC0/Xe3hms4sjTvp0o5WhXYg1ZFaAbwtfVDPBionOqs3AdKDyDgkvGDi39qRACsn2Zi4idShARPHpZtGsPx9b30OfdB2vRQnAti4Q5wbl0/s/xJwd0LAUWvWdA1OGkzP9QbsSHDsYANzZk/YIHUDGy3qr8CivKqMpR7y7lMmfmQmGhQHO7nQJewgXehkhL3HMNOp7zSv3oiS5d/RMmTGlttjNThcAOyALdttYrOn6SyKsoso0LaZ4f69547bxtqwjHEEoglgM2Kuj/NxAH5Zhvx7dKvP+VsIF6jLKAFsTP0xUJdRFGwMZObG9ZqADf99KEy8gAsGDwysFYiIvsWg6JUr6EhjWb4QqQWIQdMjmVCPfO1kMhfQoGezmCpHLsxLd0OFa0QBKF5PZBDskWPwhkncMk6YBNgWW31TwAa58q7drO4HUuV064++TqUjt+2h65q+O+krbd8gICwH9sp0XxfimU9rVfBt0r0Y3h59+pTdZQnHncCprsF+/GCPkdY4o/2YCUe+ezF1jzzMQuZmoE1sOcMWox1pkFjITH462pT02TKKn0m1YEJ5MpWTRVW/rZcPnSm2Uo7pQAc7uyIUwyRYPQOEUE7saMxoa9qAavCI1IijDL/k4ymF09r3mK/CYw5I+zayOToPDvzU2y9xWJqbgXguzLbd+QqKhPVdT3+opVSQmpShkdtpooxQAIPpa5DtTInSjbKVNa+pbH8dYGbLy3ZYpS27YPgQdn6K6k2UpRkHOBJkGYVByGUpQqQeE8CRcrEgnzM4ewUPuXJFGUwEbAm8HQoAYgcqcgGyWfQyKAF0DhUYCHahcHGRcmxRDYQZgxe9Da2XQScUKEs0TsJhNaYgsCfBoxpur2ksok9tiyEcT+IZ/gKa3UdyMQH5c+mq9HsJLvaVmlx25+3unIDDMZrIx5eYwvJgG8OVH10mQ/GxxxCc2N7W1f0ao71zXhplq1ZyU3cGaN9nARMp5K7CoaJVn3UrrJ7d0WTFZCdcwILpc7S8W3cTKK2LtIKl7kR46jILrZ6UKcXCNB08zFgTgUxTr6Y/SE2EGWoc3VmDD/84OhzHAR0adniPCmjN6BxPC8ujvgmYaNMDBPG5MaUYYLHtoP4dN2qDNGARSb2EQyUZeWjAxjCVcBSwoe8gEgxUyYbpcDD4kAvNAJN2QECHAg4iBtYZNOSiy6FLKyhbTJMHHOJfi5HzCB4b0JEBkxyqPvZqBDapNAsHOFQB1fSeiMFHBXSQL08r0xJXFsCcNE528Wt7NTsdWVZE5NRc3aXCtQ703BYz8gYXZhP04nEBtWRmAmkHgCb9c7R7gQ03cMyS7wlK0JTDHbW0Mlc2x/F/Cbg7H+DoYIY6Fu9xgqs9ztVwZPzdBFgD18G5JCokrVXWQ2xT5JmIpbnGzSaTFY8sw4cONiw0OYMpQbXfUWW0FmLisl2Whmk6vLSDGMBYrB76z9PEow6y6l/BhoblcuPNC9iMkVGZJcmsLqCHeiKnuZSAPBa+OjNOVloqg7Uv37Y+e7+XBiz/fU7q0NIG/0rnfs/pXezlWhDNZgErjMH65K3dtoeMCPMrs+PahownkFs2WSWxQ1elH9VcOQoDVcmGLaMoKGEBK6hLLAco5vdF0VSVSlWiUSQhGVgzUhKwoYBD9qoSo0o4HNgIJZWzgA4utkX0SyaTdlAi5IHBm4SsehsKNlSBlLiCgo0WcgRq0C2vKm3ciD5HgsTT1BsDPCRkziUeD+a1SUq1qCXhiUSvaQ8uh9Gp1FDiNZC7U6fCdXjrf0t+Ot8m/WtKs9NcuQfi4TP3grto7lJZFjkfd+cDHDucNtbduh17zFZroPOzW2O8neUT/9zcmfy6e8PNNWCnsGVrti3iYnZgQ+JzrFsn8LprxICMm11440dgAFs2w0thEiVAw+LK9R6WbIBpx1dQwt4YO8NmaxoUM1KwPVDyp0aPAGWKLNtjdQBsMsG1tKD+e+Xdinlznq/r1u8uZ4XfAMtWCmLpbkCABwWTGWfTrvw7SD2nhuuGwFHi9EqgTi9AWZVaGFV9hLxKYfmkdzfJxqoAjewlGiL9GEUZlNe5bH0dOEo0dDkliWLoekQSoFEURCvoKMxbpJ0Dz1ZfAR1F0pElo5SpKISKgS9mQsqEcWDgaEAeUXRFRhRJoehxQMqDiEGcQKNIWgAzoe4vRgHAAxfQlXTyIDoblGTL7yohZTXkB9nuKiAHVFG9ALzEfqrT73y6nXb5vI6mH7B/J/988PuA90l4bZht1L30dd4t5cMXw2V36u4y4OiB6F3bDo8f4JSEHK3elEGHZZMp2CiiWRfPwtJNsITYpFAHGt2S582X9+bMRdpBRV/DZlsubOVbJTOVzyUHNBrpRoA/7Xjns+jTryCjLWqSgV89K1NQT4FeZphqvKMdaDygkrCXByraDTZ2uaUZXQsMJvQ6pSVXwZ3BWZnOjnTQkIwpmeg+SDPKVXaRCG0SOjXuleq7fJCqQa9h/r49ZOCAChgYuBihc0slKsGgA8ZwZsSQcgEkqqsxsCiLMjAAw7DFlWeOMFDGiFSSlxiJuNxTlucRV6+PwADO5RVG7oGt4gaMyEg4u11hs10hcwEd7X2zTsg5YbtJwCZVuxxjkYjQCCATxsTgMYG2jLTR95DdVZLvJMKnbfGftwKMRulQVk/FTglRKhKMbQ4SDT3GgEGgVQZGaUZjds2i6oRUuCN1O5GKINBN21Lne9t+d/UrN3FCK0nxY4S+2rF82Q6/vbB2puu03b5Ls0v+LwF3GXC0rsNXFlQs9nQTztiJt2Hy7QzTiagnEpNZsXrdooeMosEewJRfoS0zLLMbIGDCJiruUjPNBjp8FpuZh/F0T+fBBlW6EL5/Ht0370fSYWnLOkuUvGgkTZrKurZ2cEfni45LuVI7EOxaLtnX7QKMXZ2LPcLfSRcgXj8+MksN7p2jUX0AEtRB5EyRUz2nRHY4jSvR1RCFz6J7MQUb4wrlEDZdFhlQzI2LDocCDl4zcMCgVdHHWKdcpCwDCtBIBWzQasQV63M4XI8YKGNAxggCETnQkTGkjCtXZ7GWra9X4RzO5QEjt1qkjBXKktzIKxzSFrenFTbbNXISsCF3ToyUVxhzwooSNjQAGwXz2peLdGjMaxcDF30MLWpfbYJZvD4H+bVBBzRtW+xAoK0DJApKKcc2b0uIHjioZAOV8YvEJGyf3UvvYY8+1PsWJgoN+OBIV8lk22+nmU+3vS/054voLu9SuTO6mXHaHy56/AB7LaEZ9OcYRM6wra47GEnU6QBMvO3jZKrHhrPMBFoROctas/dsM1oKr1IWqYgqhLZMWwhVUY50/6qMVWEw9aAD9bedvMmaZlFkowqpwGX2ltp6IoKadKwgRg53mxSgAy+amV7VaV3sMzvb17V1O7v81hnc+6MqgqTD6HhK04ah7c2e2zjKM4skYyL7F9ChYCOvaLrNVYGHAIicZAllDdnGiqoAqtta9ZTXNQMHGbQGsCrLJWlgDDQiqwQkMdIq48zBEVbDFgdDkYSsKBdJh+haJMoY0ogrV0dYpxFDquVz1VAkHVsDHYwD2oIAjEwYOWNLCYdpxO004mgcwJSKdCOhSEhGwghgBGMAY0sJvCnviQg8EjINQWqgyxe8cfWn7d9JOpLoU+UN5IRY6WgEGTO4gsIBwCjGzUrotVqp1qnZq2lr2xC+jkPalPS5RfXisVVI1nbXujnp3SItubjh0qRkLQhiy8IkobuWdy67U3OXAYd3Htg7p235+KBjB5JfmonKt33jZQjo6C4H6cxKQIeIHIgS1LR5lQQIrZdgMICWTkGCKMUxNdG14w/V8NgXaBsenN9t57sDAjZhy6g7VFzcZbBM0ONmqy6Hi8ODGaqgZLbqWn2HvWZ3e7h2GU3dqUk6drTFblxwjU+BBtu21whOUH8LsMwryHHwTsKRIL9hoGM8oKqv4QAHZFmEh7JEwmuADnNZYlkVUEFDBqWMNDDWAjrSasSZgw1WqwIoDlYjVqmAjQo6gCExrlqdwyplJBqx0gPmJENXDkc4ygNGTljTaIsLI8MAx8gJB7TBubTCuXEFZsLIA7Zc9KwSAUMmjMQYiDESIx+lAk5EAsmptkktbm83xxSkBXBY9TIXmyOqeKpLlww7Y8ZPEZgr0yXRvSHtRNo8vKRjV7teavs2luzhZ6cEkaeP3dlNh05/hLY8RzcX/0VwnTHz2P4vAXcZcExcv+bI/T+v4Lp4oMed92QsLpL9QRFB9Ur83piaitJBLVmiMxKYMbsxhWFi4gIKEPt0g9jCDhXPr1C/kz/eu/ddRSeiSOrLQRNlx2oTgXMWCYguuWAqhtwFNgIt9+89t2899uq8Bz7mwMkiXUvj3nmw0Eos7LueP0JASvbMctXnYiWz2NiQ3ShDcynjTAJKBJhwkGoggA6sGXTA9beckUJJlD5FafRg2OBwvcV6lTEMI1bDiMPVtkgziDFQRqKMMzTiMG2xThkrGjGkEWvKKNY5VJWYsKYtGHG5MzNhmzM2NGCbBwyUkMTHyCuTphWtESAjlZ1eYCRmnBsARhIJIzsjNlrnKFKhsZg+t2UquUjAhQkWrOo69Wf1BpB1JhIDYagTBVvSFdSTPfjqOJP07RhzfDs7Tp/Z4Vo8MX3ZxHkcujvAkVikPR//l4K7DDj2dMy0J9/Yn+3Pggo3cw62N2ZBiKwLzyVwRmLjP9pvByZ07XbSF3Xc8qBkDqFzxBZqHTEkRONk6TjtAVf+sjWZAkqSAw8hmz5dKiZeUszaB2zMDZinATb2cfsqDx1LyShwLMRSrO1Ni57NtDkqU3NLK0xiX2NIhdb0NaqEQ69xTWJnAyLFoA7gAHDAZRlFgAYPAjZWuazrpSLpWK02uMv6COthxDBkrNKIQQDHIIAjUcZB2uCqdA4AsEplOWblAEdpeqWdrTHiLB8gi2iBUXjxNq+wzQO2KWGbE7aUQOkQ5zKQcsLIZZv2CEamhJESxjFhC8aWE7KWrSqINk2IISbTDdWTWEhFfad9YoDoaMHVg6sfV09kiuGNc4IHVc9Q4cckcTo2KeLpNf8wyCz0u5DpHf3JAZcS/I4w9wURl5dQLpq7DDh2ORu75TTVnYN4M3XvhbcziErgu0L0xp1fDqT4DxU9QFdGyo6KQZgsBamEmj4GAbxl0JrqbMoxcn0kLrOxYPTLPtY8dzdNaNIYNjMMfI/dwCeggBnlVEwuDC6DMQQaquWlJ7yZ+J8n+TCwYeltMzHj9llW2aVv0aO/4HQG/6Btoq6L+wbq/BEBlEwUH5dUKpOOpslL3OEEVwUbB+R2rcTLgw0+ZKQ1l5FqyKK3gSjhGBir1RZXHmywGkYc0KZILjoSjsN0hKuGc1inEatiIAOJGKu0dRKOkqO17E+9io9wez4QeYUADhqxpQEbThjTgC0GDJlx65ZxNq8L4KCyiWQciw7HBuXdAW2RQRi3sqQSJBzu1OZVqZaUkwAGmOEuQwgM0FB2jiWVQgbgUYyaKaY0w19hSUWbgiCNlIrORxVxAp2+YErDnNGexhTSqO3nFBg72wxmZjCJCZhLuiP7NAEbeww3O/1fAu4y4Jg4mq08Xe88no2Ozuxg5tmGemUSTTwBq/ixwN6Vl5wzKCUnu5BFhK643okZdNxz23iLVEIPtmqAkMtaAiGrLgdV64kTPsbNGEAOD4UdJ+i7XI7gNumwDp4q6XCptGWUZhzUw7sMWHCuv0+iQHY+M6k5CdfSd093LNDhGg0zTIt3cgibSsy0PRSwMcEhVuAitl9BDvETpUizr1GvnIB8WHU29Mo9wHGYgYMi0SA5kI1SecaKi3nyxFivj3DF+girYcR62GKddLmkAI6D1daBjSMcpBErGrHGiJXsC02p7HYprJOxEkt0eirPFXyEs7zGyAMyoyynUMIBBmywwiZnpMQYBkbaMs6O67LbBMBAjA0xMgHjSEggrA+2BYzwuiwHGf90tmsYoBUjc0biVAGHfDR+T6W8mKnYoeFKVwEI1XNZGGDnv+JPAScMN3noGL8L/YSlOTWK2B4UhHf+twsTzftOX+xKNHw8vuD8bxdC/LljknARwcjlXSp3UmfHFO+gAbAH8Oh6jh3NPU/C68wOeM94NR+esXeoAK7dmFW04Jm+gIWyy4SNL9M0mDKuqZEhtXJKcZzxiu6WIVm/JP3txjKg4IHEQtMObC5/5UuZmdHot/1xKEtNGy2KepsZWW8QOo0B6ThhtAP03KxxHzpTLvbI1c0aw1koCkjIZrV6z0kY4aouo9QTX90yihrwOqg7VKJ5clTroUMGHXDZiaI6G3Kyq+pv0CoDw4iDgyNcud7gIAnYGEas04j1MOIwbXBAGxysMg7TBlcNR1iTgA0qYEPvQBalUcaqNGKYWTguz1fyBud4hU0eCuBICRusMLDohnDR0RgSY9hmkXAwjsaEhBUSCAOKjkgGYY0RGYRtJmAoi4MeC9MAe5dR9DmoKIUYoDPpnIKMFYllUweuFZjYPELqPrvts+yaifb5hCK91D4XJB7aUMheBdCxuMyoTY1r+hf9cXy9RB++uYc5/3N+L7ZbWu7d1/8l4C4DjvNw+4CTvdbb55QBZ56tm+8DjOxCvNux1zJDkUPaisfpVW1vuLQIf/fPMpkqSyxEVTHNjVF+YAMQdDba5RU7C8UOwar5IBVFqwVHHZjYKYUqrYVb0Y49epBTS6/O4HMzGMw+O+9LVcM7vs/6cwCijdu/Xw5kNx2hiPrTYEsn/vC1Vleg6mygkWpAFB3JwEYedPcKonTDrIoycMBIB6MAC5Fo2HKK3rc4c3iEK1cbrFdbrNMWB4NcCj7SFodpg7uvb8cVwxaDAI01RqwoT8DHAW2RUJZBmJNJN2RjNZgJV+EIZ8cBm7TC7bzGEWcMnLGiFQZ5HnJGWo/InHEWh8hYGXjxB8euSm3gaEsYsQKpFEPaq92TgI8VkDMhyUpoAYaw9q3v8lrAuep7UEEQRPUZRGXpS3ekqGTDJB5kIIaAauZf21D7zNpumsnE3P0YDHIWbMwRhsFlB/1p6lhddjvdZcDRuFkAMRnb6WRMA5g29JaR7HBhFqEHpvXodPBgBtspskGGaqGRMu4xF0bTGVPKwEbF/oaCDRVpeoCSUYTJ7LKaGn6swggd/xyogdztSHmxxaECmHrUvIpeZecJUzFrboVUl1lgQ75ISbgdQDsX8zLY8G4y05qrSw633YBU6RZoJstvbXtygYRlPOc3PJcZtwcVprOhCqJiTZScnQ3bLuuNew1y0qtsfYWd8IrJUso4AHwIDAdAWgFJLIfSkAvwULCxyjhzZoMrDzY4I6DicCjLKIdpi8NBrrTF3Ve34+rVEVaUkUR6saZcgYbcD7HFlWLjYmRgQxmMZBtItLkBRbfjiBnrMeNTDFAmpFRMmxMyiEYQCFesR6RUlnNu5WKBdMUFuOiVMyGttS7qvnEDyN4In0owqJjwHzRh0r9scgAukiBV+OYp2ODEQCakJNteRjcmaZ+mkumi09U2QnZtnMOEwwVSv7VgBuj0GZ6+d/2UF/rhZEmn7Wdzbh8AcxHc5SWVv6vOpgYz37RjBkeTnxw6nHhvKAuz3Ufnw8UZwLljHH5JoE3RZI1Dg2pe5tKqSfepqriUk0k4wSjLEaCy/dEfAOfSRIx6OqzzW5JIgeex0AYL7zKQq9VEb13Uh6XH1furSnHFoBcKMKDRDTJCxwIcbAxVEOHSUUfCmL5JM5lb250RA/ddU3s7wWYHoPj4ur8xzdJxALIu7hsQkXJ0DKmeh6JWRsnOSwkSkMTVmmhiM0OugESthxbJBsCrYpeizOqLbgXJgWvF5saIg/UWB0PGQcpYpxEHqUgn1rQpyym0xZq2uMtwFmfSEQ5oixUVOcNKtsauxSbHmjLOUMYhAWsq0sNMRSd1w3KwoRWlKo4DjAxOCVfljdAkZCpLJGMqRwCsOGOkETkRrlhtkXNCpoRMjExlBwsLRiv2TQAMckCcgvnE4CyQmcp2VhBAQ9H7TpmrIi+V9q10BNhhb2XSzxV0VDxRntWPDiXWfmaWMEN7QQM24Bqfa58Cfmb7ka23ekBS/QfrwX66wI2F1DBe+iQxJn1iaQJxMaUfC2xpb/+XgLvzAY4lFxTrvGuZhNI33hvKY7VXH+ZcIB1F0uq/00FsOUU6VpbBRo0HEdfpUyPt0JmRpinwKyFPDOSRq50AJQ4ApSlW7eNU33ugQXB3L+Vw4cENPMTspCGKbmASkDpIiYBcJSAWpkc3ctnWwT168dySinehWVG4dcMJfjt1aoy/0wB7YVPzjnqXVEiqko2SbK0oDzbUxoYHJDUstc1Rlk/IAQ4FKkInZstzQrUyasswpYFRqie8UhpxeFD0NMo21hFrUfZcpwJADlAkG3cbbseVaWNSjxUyViSAAwVsrCjjCgEbKwLWcHrLBKzBOEI5zEQ1nWTlrgAOKueUXMUbZCZkImQxnz6KNGWkjEwFeFyxKnRjTiDKYBqk2FkUmUt50ooL0M6SEC14D+QEdHAm5MwYtGMFsCeZ0XsWcD6RBpT6L9W8o80bGgHIK1v3CHWZBlgGyejQtOCgvGyeqZF6dOgMIc6kpaULfjrZuuzOy10GHHu7BnTMuL0xRgAIC772RtpUZu7KBGIgqAOAmDcfdFRSQAK7bO3YjGo122IdLyagHAqlA2PzXZktEcwGh/Vlrt/9ZcsoqhMSgECJz7bY6m+LvM23ghiuxozYFVGb3uNMNfYVuZ72wDXXJhhWxxW5HQP1NrRegKe6OAU8kDE9u0x3A3ZqawEbCIqhtpxiuh1sx8sHq6Jy2isPZYdUSiMODzZYD9Wgl1cQXaeiu3GQtrh6OIsrFGxQubyEY0UZAxhnKONAwIYCDtfMsKKiszqKolJmWUqEAA6WbbQp4ypsMOaEkQkrShhRlmtGSshEGImQKeNw2GA7FoMalMpW1pTE2qgunWSAVrBj7aGAvgGJCjqQxUhYCyLR/E4Qo7sBAcfmI8stNFbvUyf9iMjGh27fm7zieN/3mzkPVBqw0dL1pB1Lrp3YXWR3eUnlzuqW2vDJCE8YaWWhIcTeMgvqYBGCm0uKiiCngYd4LZAZsNECjwAYOhMPQmViwdooIy6Z5Aoq6lKLKoK6gUlARFQOZbvg/VraW3TjE8lVZ8P0UjgOWKygZfruWK7jpbv0tlSXLfDQ2acxmxbQOk7lXjMQJBumJIpoRTQTTE+jWh0lZ5Oj+M1UJBtKF4+jB5gKmMiEugU2NRehLK0QgJRxsBKroHLY2joVKccqjSatWNGIu9A5HKaNKYceyvKKgQ2ULa8HxAI2GGt5v6aq0KnAIyFjK00hu0lvhkguUJZONkhIxBgSMOSMFcgkHKOkb0wZaSxLKlWyoXeuIIIAO3JAFXVRwZ0XOhWM6ezm+CrWJRRp52ThsasvbQdcO6hvm6R+XGNR+gDS55z75pdMev1n0o+4uXsvvBfdsfrmXkulF8i148xJ/F8C7jLgmLjOyK6MMRhF2tPvLKnrfD2n65aqs7EDdetYUQ9x8wyT7M6qU2IHpSito4Pk12YUNJHK+/GGQFGfw/zXrLqROmzFayUctgUWhHDuiV0UllESXF5dvBY052r2V6YBHhwVTqLgxUqyX8huYCxh7+7kAc/solvS52iBR3cJDai7DRygJO9Rw6nchiiVqHuHsSkDSwD9/+29e7xlRXUn/l21z7n3dks3dINNy0t8jYmD+EBRFA2OCEOUiJr5TPyYERLjxARGDT4ioz8fcZw2zmh01KBJFMkkDhmd8TFqQMRpMQYxCDiCilEhoOHhAxpouu89Z9f6/VG1qlbVrr3Pud339u3bd6/72Xfvs/faVbXrtb61atWqykR5REg1HAQwOfsFHnrDRu3sS/G55bIMHjrfGgJAxM7D2X3AedYcWAxnxhgMnOfQoXH7owz9MRPOY2wc7MI6M8YsOaCRajgc0KiIsZ4YM+TqdAXCAMCQ4pSKHIAFEWNMjAXVnNwTt6+rhQMQM4bxIDvyNhyEypL3burBBtUwcEaa66oaY8sKaETAEZayE7ulxmEqNCsPwZXktpy31s9qUlK00JoNNs7Ff6k6xCoUbUKMuhvPaRtor+GUvacyb5rplHLikrin9jQ6rSyeVhvS0x7TGgUcbZWqtRWqcwtICM+mCA8Igrx7ysQ3aY4dQRcFbXrJQhPiHMvEntMbkSajmiDYPMiwjLp2nVqu4SD1jrHOngNEqXqP46eGL2IkWCeEZRkmzF2ncYQBGzi4g86NTHV6XHjWT8ukHU8CGzWoiTnZ2vEkIKPT6Cw5qY/vZA9p6i5rlXF5/RGw0YgvLYQQnx7phnfTI9kZVt5Xmg3RdlgvuVlpKZKzBxV2kE6jJJqNoPFgoHKajUHlph2M34Bt6Hd+FY3H0IywcbAbs1WNGfIAhMaYRQQcFdjbbDBmDAWgYchfZ4BDrJUZjIqddmTBNxXAaTiYCDWsP2rMGsDakQMhhjBgN6VSk7Ml8lgLlbGYG4wwYuP9dsS8Qc0uHyzBVAxrObSrRMMhfQIo7lfj206oziQbNiICEeP2cCHZNVoAjK8QiSkWIW3LoSrF/iRpwymTOmX1tRGWijQZhaTBsfCHdjdpcDAF3N9PAMZamVIxk1lWni688EIcf/zx2LhxIzZu3IiTTjoJf/u3f7uHoXWVDKO8gUepkTQFcCm8qbyS+kYpmCV0/KqDT0bAHekPwtXqJaESTCaYPPAIoXJW6z2PYXGkJeiBkYweROBbgET/rNgCWFDAgNRQkvxaxHwqJgEScr9GMmWiQV70OwJnwq/7OMlj/83JUSpvaua3dOLt2S9xt4Tp11gG0JKnQ+ebLaQtoqRCvDmPYguaE5TBRviNhE80G1xFYBGmUoBEANoBu+WxYQTuBWGivfA+OIZI7jW0G4ZBVY2ZmTGqgQMapmIYA5jKL2U14lF0hI2DeQc2jPfHYcSwdIwZGmPGjDBnFrDBjLHOWMygxizVmCGLOdSYJYshvJaDgDlYzBo31SLHDDHW+VUtQ7IYImovBhSndWZMjQfRfPD1IctxDSFsHifvzVUjVFTD9RMMQ6L18EVDztEXDeCMSciXGUu+K7Bo4Px0VKr84ACTlCkjloc1sWbp4g/4QN6Z1H0p/mbvxOlZ0gw0+zKtBtU4QfeNwpdoQ1I+3Z+mX5j1W6U0rCS1dBmLOlYBrQoNx1FHHYV3vvOdeNSjHgVmxsUXX4znP//5uO666/Av/+W/XNrIpjUY6lJ/J2zs2SaEKypKPdqEuqacPQcznkkJYed7I2+9FsGbjwwb9F4OgY2TNkuWnHGo9HZMqdOvUPEJNIZbzge3PXfoIIGgUAHLYJqjnw3RWqilsBrMoOZE+xHBS+pvQ9tzaPuNuKssBcFfnrbRcXAEMll5la9te53weT4deBQMEefnkzrhPzVeM5ynJzTqisqZSJnGIrmWIJ2UTABIEEIUeerK+9sQgCL2GmpUHraeH3JYhRJBRjyDGGZQYzgzRlXVMP6o/EZslWGQcdMrc9UCNlS7MFeNMGNGTqshxqN+N9iBGWGORpgDMFSajYoIA7jfFdWo2F2zr3gMhmWGhVvCatltL1/5yjxG7Y1DZVWKO1cgDI3Bel7ALlSY5wrkd6iNh9tErjKM2WqMXWaMkfVL041vV8bvsWLgPPwOADvy7U8wny4Lf5D36Bo1FfJNXl3hzyRl5PckynUL4ezjSKZFm7UpvKC6nyZx+BfrPycPG8E2pi272k0XmOAWvp72Ka0KwHHmmWcmv9/xjnfgwgsvxNe//vWlBxytVKikVFAQFdnawAZnvyjggGAvItcyaRtsKtS7HWAmLnFVR4ZTiC2YjVjJxTiyDoQYMLXrBGwIg4KAFxsQYoBqlzfWj74C0FCf5joogvEAp6gFUdf5stfmclm4be1Vekh1bMzRLoQhnXKjJ01J4oGfTw9lIM9ZXSpj3A5KwGJSdPmLlBoCh6U5AhY4vmJMIbwsNGbHZ/weu2GqpHDIslcUnpl4cEVu8zAZZZPScqipEuunS1z2c3PaRY4Be2+b7iFJHggaJwfeTeXa1YgGsOyWroJI4JxvOuRbCmHBlxWBUAvglfxSss5yBGdi1mMRMXkNYIEJY1QYs/FH87qmym32RtpjqQGzcVMuMLBMYH/dqAJh5Zg6hzLgWCVKVUemZ0AJGA+HtCOflzAA16q4WTFLQ6nTvCpXsGaeFpkSSOMTn/NLe1YaDU6mUzpoGr5pw9lHtFamVFYF4NBU1zU+8YlPYOfOnTjppJNWODW6lDt6+qYcKZBMeGigod7X7RScgp3ESCJDFB4AxFG6CG3dkOM9snBL9BIQ4d9Xs01Ut/cpri27pwauM0sMSgPY4MTxl/TypD0tMvxmbdHJV7LihBH9ZkjnGvox2XnTRRJtOTgCkQAgCl+TILWsj+KctbQ0t1TQ4rVRSbnQU2vKC78j2IYNhw5ThS1gwDM1QqaYnOTzpLpQfIGB4E9DksBw1TIBEwTYisSBZlDCpENhKQuOK1SIUHuHVSyJC/jH7Vvi6qXBPAaYYWew6QS78+opslp2eZ33cQ6hVuEwHD85z516lQoQveYznHnFAgxGIIxgMIZxwCOcHdhY4Ao76wFGHnwwOwd6NQO19zgq5wXrAAdDrehhTuuZ1yaK8XMEYLGUQr0XdCTlZhA2TG6gEwUsyIMO8tGRAmTBoV4o6HLLLws91gUe320FJRn40FO+VNrXRdiUbxGdxjYNyX4ENgD4irYXce7Nu/uQVg3g+Pa3v42TTjoJu3fvxkEHHYRPfepTeMxjHtPKPz8/j/n5+fD73nvvXcLUlFpLi2Ao1YNST18iQepKSDSeyXUIphxW2KjMWqCqAPhOzRu0RdsGcmvwSRmKSvQiiQQMiBckmVf2Y8pcfhPg/ARUMSwftSOlyXB6eeddkaSXz81qVKfkXJQ7L6Nhb5XAR663VdMqTpOiHBZp1a62p7AyX6TLo5m7SdaXXpiKvEQXamisfNlz4VmnTQkUUPWj4yBh5JHsDOu1A2EUjVRdr8Jgih5Gw5SJROlBrWz4JmAjhIMITtwP/2mGnZ1CYHPh1KI1o6gnqIyShv6NBR5i1tbOT0gAG06rULMNIc77+jnjAbAFoVLVWuS19YBM33PvEkZMGKtzvDYYscGueoARD1Bz5Q6vxSBEsFGzwUJdYWwrBFfnEVHFOuHrpXgbjUIVDsTXurzZ19G042ESg/G0bjRqjhHPw6r6lASZF+h5eGUKlScyaWEeEI7c19fc6ENJQEfW91EOhOR3o49sAUwl3n1JWZ+5R++vAloVRqMA8OhHPxrXX389rr76avze7/0ezj77bHznO99p5d+2bRsOPvjgcBx99NFLmJq20s1qTVcl4PyHfleHwdNXponxiUCOYKPRoqWhB8QtQoDCKModHKc9/Ago0UrI4e0xDAM0jr9LR1h5Yv3S15ohsiXwSTzyOQJKQhZG0EAyxREesQcghfzRvWdnhxPLI84va9DScjRAUyHc5DpjDAJ7Qn3QAET4RTgpLYE8F7HKwt82xeKFgAXiShLKDlm14r/BVkpmypc1cJNbAuvAKDXDJKBmt6cJGQtjVFgeNLvwye3kyiZstmZhUKvD/SYsgDBvgREDY7A7mDGSA+68wG76ZGQJD7Bxu8R6UDFife2mUxaswU47gwUMkikXeV7DeMxLWKgNanYIPFRZscv2hcNw92BNqMc5hR1gZUqywaDyXdXDIk7NBDkV20EU3JzdylnysBOhn/CqZ5ovYeLA56piiS+Lr3TdRisJNtYQrRrAMTMzg0c+8pE44YQTsG3bNjzucY/D+973vlb+Cy64ADt27AjHbbfdtrQJ6hIuCVv7X2e4pfvSMJm92tUf8lrsfVvSFBs6EaXAQYS+jybYIoTpDc4OqE4C3Yt72mRpxhPkI0dg0vY9otmQ1S3JVEsSrb9RW5DWWjS+R3V4CU/5WxoulSf1UyWlRePgxrOY1Vq4FjpunWYdB5nIl7BHiR62nzdNPg6snq+CHzHHVSvhUMHagrGpBjohlQYgX3CixXBwIcQOEHnDSwlCBUhpwNbXXQ7aBAPLBjU7L6DOfoJQA+EYMzBWv+Ww/tluUAAto3CQn0rxz5iwiwcqPgqAo9bxs8GormC58tWOwgGvQYHX0MC7Nk8Ee94O8jLPiULxJSXfXl+zylwCn5qbswSxOhf7sbzNpUx5c8iDT76hLcw2sNEBUhp9aSNly0vpYG4Pjn2Y1r2hVTOlkpO1NpkyyWl2dhazs7NLGCNj+mKdzEsT2Thyirqvg3+6lPkApDUXBZacnS0F4N2WF4U+vArWp1Hz6RUs8glA9COgE81Qu8SyN/xM48kbl7bt6AIlLi0aaKhvbHx7Syepn0veIAMdy0mh3L3GRo/GuqZUwrOcJ0juOG2SaDbQAAnOWygSo9DSYSlbmhlWRuh75P1sxFUXGozkh+y+2k1up1aGwZgJA3b+L9wKklRoMwg1OdfkbsWKK0vt9EsUdwswYK5Cla4ZGDEl2o15a7CznsGYB95otIrTKWzCeWwr7K6HqNkkmD2Xv05r5zO847sJ8FpBQpsgDW+HJsC+OjUFPfn0TDRAdN1CiwZEMZFqT53aiHhBIYUdNG27WwQf6WSsBE3S2Ezz/iqgVQE4LrjgApxxxhk45phjcN999+HjH/84tm/fjssuu2wfpkKq5BSinf2/DmHA8p9RXjKrhExck9YdXhjttMar7suyV3lHCVvXT3jdde26WqKqIdCd3zA/FhUrdlmOout/mGf1n2wQARRiB0eWkykXDTaS3tly9Nsh5SJ5HkbIPlDvjyPKM4U49PeUlgYX2nByq8vSvXS/CxzIp5TKWf1kCZuoXG+0NiMX8hpQCLu4KZdwCytTrLfZIEPB1IQViAi+OAJwUWkVQ0jF63xBsNduEJitB6OsPtcJgYpqb2NBGNcGQ1MnpSzZRWxB5LQNu3mAAWoM1HSKC9eF72AJeZsMDzTIzRIJ2Bizm05xNiAAwnQIvN2G017MW4OddoiRn0IR+4ywasXfH3GF3fXAT6v4L1S2Gwyl5ajFwhYAKbuojNi6KUcHGBGNQzVP+IfU2DT0KbG6SJ7rlTBFEhOoZPoFWeNQiErCDI+ysEvNqDV6jl1xKaycpI12aDZ62ne0KgDHXXfdhZe+9KW4/fbbcfDBB+P444/HZZddhuc85zn7OCW6p84ragk0RBuCbjbtU6PQQCNnOYBSvIFN0hk7Z9f4SBmQplGw9AACKCzAxsK5M0ToSJzq2gEMA+9pVNInxhfelbmsRgHBrXAxnIAOMQ7NNRsCBMLUT41EA9KYCmJEp2K1DWmVDod9WImulm0MoNHTceGqkeFNhlJR6c6NGhfpy7o+MJr1wat/O0FHgUKoRH4prQcW/swMBGe08EDBA8Rg1+qFltZ2uH1RKO4EG0AHR5BDKjwTwyKojbgU3qmMAxFiTMlwdhQDceoWhJ6LQ1apMAzmeYjKWgzJTWe4lDgtiCHAMMH4LeVnOE5yWjjbjhH81AicAWkt7QIUVqnMc4Wd7DQbI3ZTLWOuMLYRkIytwbg2DmxwBeunXPSkUaLlqFWPwfoi60nChoWqTKhQ7RjQOegaqs+NBAPk4fltEHKBXLClRskoVRp/6G+SD1I8JaHvAY+uE9DhpHE3QE0J5BQGB61gozS9uszUL4vdj+gjH/nISiehSaWWDeQ3m4y6YuQNPh8FtFlYTxopy+s6IgaC9kFGOexAB8O5O07WPeqAZLksefTALkwNDiR4BzA47v9QyBEAPjz/XaLV8MkKXbG6B4bXgOTTKNJTq3xkDtMoqeqY48yUvGvlu9s6nxhuyA+dN4on/cBycHm46oOjlPaddCugAEIdEN8EpO+TBNJ8lwMPJcAAsVhjlRUPoAFIkHJnLoDEC3pZDithKk0K+wxngluJUsXwtRZGli8DFsZYt/K7MJ9WB22A82IB+KWtoLhNPBssYIAZO8LY25jIWhFXdWS+3mAeFpZdZziGAxs1mxCms/3wYYMwshV2c4WdMoUCrdFwR+3Bxsga7LKDsJNsPDzwYIK17nDTKNGOI0FfUi6Wo6O8EsClUtWilNm7TheYpY2rdWWmYLNRx4LUVUrHbyhqWKRtqYELkvvyU57lH5JRLvj1Ozl7l/1GuJwANFaCpD/bm/dXAa0KwLHqaWqQkIMOf270BS21K0PxDPiREDtBIQ1Ve+DygpxrV+PJcNBKuEGGWzESHGjWNiQowU4GERjIUj1vhKhxjMhChsoSARPa/4bSdoSVMLL01UbwAfXbXVuwgJJk51d5HseWblSngUTSMyblEnnQvN6XJIJF1w0G4l47wgDFkBEhep/ULBn44EyC6VyJq3849VpaIIefVKI5O/S92gMcS7A1hc3RLFkHJGTahAiV8f684cvXVHFkbBhMAzDPYcwjVMQYUo2KvKstYudy3B/kheqYKxgwLDnHXDXU2YOP3eMKuzCDsR1ghAEWuMLIuvOCrbDAAyzYCrvHA+waDzG2A4xthXFdBY3H2LqjtgZsGTwGyFJqRGKRWrACDS1gcii7KbcJotR9NM+CRrJ6JJT0IsaAxuP0SZvMhgb5nIYdGj+nGq3FNKUu3sVqJqbsl3taOlo1q1T2O2qtqFkvQB28DdaSdiRH/5nQ62hcQc6zRbIcNFinxXDdKg8L1HVYYgdGmH4gyKiK/E6tom3QA1AKS2ANKGzEZvyhl8oaRvKcPLBxO8HGcI2PS94HAL2XivtGVvfVqE5pQuSZfD9plXRDY6Kvo6fGJN9L13tKoVilXGK8STza/kKDOFKaEC1ASiQqHvm+oKmIYbK3D2lUW4lC4RAS7UpepTSfTzZZAo2NWtFEUVCG1RoG1lbYPZrBwrhymgFrosD2visW6hnsHK/DPaP1uGdhPR6oZ/HAeBY761nsrOewczyHB8azuHe8Hr8Yb8DPRhtw18IG3DNahx3j9Y3j56MN+OnCwfj5aAPuXNiIexbW457xeuwY+bOP6+cLD8LPxhuxY+FB2DFah/sXZrFz5OLT5/tG63DfwjrMj2cwGg9QjyrU4wrj8cAfFcajCqNRBbswBOoKbMkvgyV31JRc05hg2HtfDfU6PQwDpuawc6wMLsTWKgJIB25Ei6ENNaWtS/tyy+N1BcnqhapPFCqkqosJqPRtlco7UCfhIbNdSaZBkVW2NgTU7COTePWApPHqErTtKSn0fXtx7Al98IMfxLHHHou5uTk85SlPwTe+8Y1W3j//8z/HM57xDGzatAmbNm3Cqaee2slforWn4ehEyECzFewNUejUG/dLrGDVMSg2nWZt9yASwVrvrjp9lbWqHexBh1EjDhapkQxGwNZrNIzPEpljdy+SFhS+d4reSiU8junwryYu3hnetoNDx+nC5Jhvvh8oLd2V+yHO2sYlsqEDib0eq4jJKg+knfXBv5vP/UKVIImzpCkbvB5VxUCafBpAhHJWoEPKq2hwrAtTXahVK7J0FBbKIZs3DqXoiVNXNx0U+5GvkGFXDUP5gIOyIanTYCdIjfseMnB1x+8bokfqo3oA2dRMNBIVMUbEYAxARLBUgy2htoSDBrvDDBkTMA/jdpP1RqkExq56BuvNgtt91ms3xn7VCAF+2sT9HlAdpmdqEBbsAPNhxYmfTrFOPzJi0XAMsKseYlc9xEI9QG0r2ACaKACounaajnpUeVABByospVoNr+WgMZRmT7UFy95vjf89Fk2h54OUiWo4gFrh5cEtN9uKtF3Sgl4aaz6dKGBDgwbKznn9VLUxoBvVuDgPM6rzUmrTbLT8jsFRGk/CyuW2tVwkZb037y+S/uZv/gbnn38+PvShD+EpT3kK3vve9+L000/HTTfdhC1btjT4t2/fjhe/+MV42tOehrm5OfzxH/8xTjvtNNx444048sgjp4pz7QGOLlry+tUmhBKRlbJSzjZForyAbzQQ6VC04QJbuEl0/zwIDfajTETB7w1FBWyIgBZD0dDhiVU7+9FY9h3RUFyBLzVYj6Ncr4Ww1nVCeolsmDLh0DeFPtBaBL8cnB9IzlRnnafuIcMt1aHmxHFJrHg3XNToIp8ykw9plF3Mp/zdACOnqa96dUq4l/bhrljEKLSZjgAaGQhqi2x/oJBcC+cV06gsFEGiD7/9SZLV3kDZ2f8wYIG6rjAPv5OqF3YVCIwaZEUB4O0rmHBQNY/aGMzD7cw64BpDrgPgIDAe8KCjIouRreBsYBwoCbYa7MD2ADWYCLvtAAt2CCfTyS2BtW7J65jdtMuIHdhwS18rLNRVBBy1QS2AgyuMxxXsyO+0lmkyBICQ/B5Tsrty4n9dgL4lYIw4GGBfUxLtpGtfpm4K2EaZS3vRQj9rMgGIcJu00wBBtRE99SvPMqASfAol6eL0umAI2uAt8RU0Hrn3Umog7QOP3vOe9+DlL385fuu3fgsA8KEPfQif//zn8dGPfhRveMMbGvx//dd/nfz+i7/4C/yv//W/cMUVV+ClL33pVHH2gGPFqAA6imxKGLVOzTgethZkCrNkjdGGgISs4bMalcKrd/XGskpzQBy1BGGvFAs31M2XxUKFIbJPf37o4GQ0loKNfM6aNOgQGw6NHRofD4Bt2U1zkXdyT9Nwpby3FLQSXqC38YhGJawsKaZuUmTQ2/8RCY4ohBdATpBh6ZKj1m+haBTakkKuyWFfk2nIGB50OOFrqcJobMEDdq7IYd2AjhgVAQOvkbHs8mbW+C3gjcWAxxiygyguOQ50zNsBgv6OOAAORgQvoumwDIwx8JutURNwWOf7Y2QHmK+dvUYKOBzQCJqOmmDHxgGzGhFk1OT2M/Ggi71mI+yQrNpIYyoz810j7Zmh2pS0nfZqES8E/Le2K19nrBicFpgSIa9+6/vkA/La1ohNCmHmK1KmaX9T8iWDtRWw69ibaRF5fzG0sLCAb37zm7jgggvCPWMMTj31VFx11VVThfHAAw9gNBph8+bNU8e75gBH4uWTs4q2PBG2UyHqOJdKBbZSoxbgUP6WUvRdlZOzi3R0Cx+PExAOdDghRR6cNBQHWehFB04abDAAb7OhO9dwrb/BWrVqpXCIxsPaaL+RaDLkiPdYnIQ1wsrTvIRgQ0hb0TYfho9PllAzFeqRAgO5hkMDFYrc8oNVCDEV6h2j76XJ07GHHYLzslXFAsC786ZgqMyiIfEaDhDAljG2lV9ZYYNXU7Ls/YEQRFOzi4ew8ICDLSoymGHrAQc7cMFuSmZoxAMG4HQb4qHU1VRmwrw1MMhWqQRnXs7GZMwG897exKIKBqGjugpAw4ENwnhswLVbnYKavN2Gu6aawtSKm0ZJjajDBm6ZPRQFb7sahKjpRfjfyRYAOZjXGsJGBchIaQJ0bWH9Un7OSLervNNpvJ/zIQMzBSATHi2inU6akllO6szvKd9Hc8+wNgeYP/vZz1DXNQ4//PDk/uGHH47vfe97U0X5h3/4hzjiiCNw6qmnTp3MNQc4NAW12b4GtEFecAeaFjFAka+UVq86CCsUGJnmguNggbQGwQtW0Yj4jkZWpgRth7Ug8l6F2OnA2RIojEqdNby1Kj/zPiKAF5cAFnW86lMCCKo12NCdn4AHhFUrbjWMY2C0TKl4A9T4PL6TtHDPL+rVTupQzy6a5PWA7NCsE1LuUl1CvenScCgNVksdI0ZY7sohkmbUDMTlszW3gw5JKhF4zMCQEtARA1J5Zp02y7nKoMAjTrGsJTAq1GNGDWA48DMKzCCqnGaDvJIAAxgaYt7WmKvGqMiiohpj9vuxkpt6W+ABGAYDqjFrxgIzIBMrrpoRdo2HqFEB7Fa4iFv0kSVY78a8ZoNd4wHG9cDNUDKjhjNyHWUajvHYgMfeyYn1aiUbD7YOdPDYgY3UPoNSkBBWsIhNFTdAXQLkw+Ky9vrKnq+x3LZxcJjGTCtU/oMjfxepup+2v8J7i2l7ARBNKcuXWmu5GGob2CzmfaCxZ9hb3vIWvPWtb92LhJXpne98Jy655BJs374dc3NzU7+3NgFHEIaZMN5XyCNH6q2gQ/aniIKDcrnADJAYjKqRR8lWgKG8A3q+LH7W/8WYTywLpQNDBBui5SCGM9wkkwx0XLTZnHHNqQ2AhOvnrTXQKFnjQ5bEqk620dnC8/nEOMGnQUfMA9YJlkS3qZ6n7fBKz7q0aSzPOZZXHh6p/Ur8S1TUcKBQR1KmGA4F9mgYnIUhmg3RJog2K4suLn/2UzbevocSXo6R+3Jjvzuxy3dEzQbgJzqc9ww7JtRsMRzWzgrJOvuNSjQeBBAxFniIeTv2oEMAhwWYMcIgqY0DqjFnxiAfKQOwlrCrnkGNyq+sduUyQ3XQcFhvPLprNMDIDtwyXm8DVXnQsTAW/xsG9ZjAY28gyuo7vaZDDh4DVFNsCx50BPBhEY+a3aoV3Q6QHYzolTfvd7L2EuygYvGUe0TWvUQMI64CS54W3y3eajxS4LQUXAdAmFqzsVIAY5notttuw8aNG8Pvtu09DjvsMFRVhTvvvDO5f+edd2Lr1q2dcfzX//pf8c53vhNf+tKXcPzxxy8qfWsPcJRaUZDBy2CZTF0VOgKEMDdf6vCVwBBgQeG+n8cI86Ai4uE6e91gjR5duh4lrLCQDsiHrlPCALi2qoErYaHAAhs4K/khgtU0A3GJnv6UmhOBh9qZf0TPogD0yE2WTloLk/DIWQzcnIgKPjjCByBqi1TnmIy+hdqKbLEAo5VHVUKdB4nGxYHDsMJA2+bI61LseTylKqxBRwASKaMrXh+X5tWaK6EMdCSPgwCjNH8TMBi/gSyBa+fZ0rno9jYZmUtyQnTGNRx47EMEt2IFYUULEdyKEjvGumqEsV8WPuJB+HjtEO5+spgzC27VCxN21UNYARsQbYtrVTOoMYIzBN1VD1HXlQMaAjisa8cGjIW6grVVmEYJq1GCcayv82MKRp/OQDQ+h9h5iGZPBgF11HokhzYo1VsA5BqQvNR8m2Jf39xARDP76zYgzdpeRNgngQ69HFf6L0TgbdWzUKkmayEaYGNiOlae9Aq8PX0fADZu3JgAjjaamZnBCSecgCuuuAJnnXUWAMBaiyuuuALnnXde63vvete78I53vAOXXXYZnvSkJy06nWsPcEwgqaxLBzymDIe5m1MLDGncYUSswIaoQLzak6mKckX2T9HAg+HsFirjBbFfAmtFIvhOn+A0GIbAhkHsHBYFB1Dkrw3AIwYNRVhEwRXErFKyyFy9kQ4qGIDqDtJ3gLWFqTlqLrip6XBTPux2htVTK36EK2iDg1+SQqeq81wfpc6u9Hti3Slon0KGxN9BZW2MYmyeOQjRQlgqokTOVBn4CD8o5pO2GNaIUa5tmKhqgI0IOuCWWEsxiLBF+gIRwGMCV+ynUaQ+SvnGcnZaA/bB5GAjgg5DFeZrg7mqxsi7QQ2fm33+TsxgaCzm64GfVonTK7Lficg/w4wFO8C4ruK0T3KWKkewYwLXWrNBwSgU0swsHNAYtaxGUUtkqWbQmGFybQerM7t3KIASbgITwQ8WoNo28lkGEVJzwkoxPThRbS4v/s4W4A3cY33SL3Nad8OgoaPdicalBCCmvbfStERTKouh888/H2effTae9KQn4cQTT8R73/te7Ny5M6xaeelLX4ojjzwS27ZtAwD88R//Md785jfj4x//OI499ljccccdAICDDjoIBx100FRx9oCjQPtu/TVnv7JJHalERI3fYft4INmXIl/RQl6IgxCFTGngYP10CHmbDVHfc1TbM7P39gnwwK2IYQEJxo9mLcMYCt6QrajKtRzmNPqoqYgdWQ46aNwxfaKPGtESv41H24joUsjbLCGOsiYsrUvuTQId+fOWchYHXCkqKYeXOP4qxi2+NzxZBlWU49igzEiWW+ZKNxEyTDA1Rznh64wbeHNYIW0IYRRvK4Ydwq1OycCJYYDnneBlw6AhAxWcEs/4M7kzj4cYzQ8BMMyM8xzKHmzEM8BcYSyArKpBgqGC1sTRyA6x2wMGGPbmSl5rAQEdcJqMkQm/LYlWA/5MwT7DzhvXdoJvGfKCnKK2wxJoAX76BEHQp1MncG1sBFS1vM9FPrKurVTeQFRPt0h7CqDCsvNGqssW6Ug7aizy+p4DAJ92TCDfjqQeSd0J4bXFl9ulockXupcJ7c81kcmakv0SmCwh/dt/+2/x05/+FG9+85txxx134PGPfzwuvfTSYEh66623wijN6oUXXoiFhQX8+q//ehLOYuxEesCRkWsIhcquSakEmy9rvpb7LTHrjrD1RVI8DUNR/6xkLEhQ99KeIexGSYDshUKi3lTTEEFIkwMUVpCM3xAKOhm+pxJbwNxvg3xFWGEZpjo4CLvQAddKWwHvkjwZ9fqzVesHOT+rSLU2yb8f3ZcjvmNFTbwHHVNbpzdtJ0YafGr1UPMc9rzQq1EmBa/KPKaIk2vnCwVhqiOiCV9GQAIW7JiBAQXZSmGViReu5MrUjJzRJwZZWq0fkVfw/jzgpuc06CCXr0QOGBAB2FWBB9a7M3d112FkhrWMaKM8AFUWVCFALyluZ4AsGg0TNpiLO7p6sDGWvU7gwAIc0Ap5IwagY4Kp4QGE0waGnFfTJTRGdOrF8UysAIQFMAbMGMHxV3ACJp5/hbdW7SbYOsUwBWgIf6LtYNE0IrYr3w50zSmCDSggA3SfA9DnJIgSuGm0v47r8GuCbUexj28yYsqOe0kolPNevL8ndN5557VOoWzfvj35fcstt+xZJIrWNOCYWpHBwcR7At/epKaEThRAaDxDBjSApkVpzqsAQxKk6gy8oIh7bXDojGS6JQzI6zhClo6BoTZ1U8li9isRoKLSGo8ANgCwjdqMbCkfrBcWrG4yI+ixddzs/qXLZi1QKKi0E1LfWMzLlk6vi28SdVZGKVeOmq0AOjL1RGcc8ayXhje/UkNfjqN0ozQkAnYyYWX9UtVgWuRNfyhrQmZMTvsFCkCXDOKGfoQ4ktegg13YHHacJZeIcQU7qGEqj4WsYGCjJBmAkQFVNlmchVqS5r9bbE8Mw3rNnWUCxtGeAznoALn2YR1fxd6PjZ9CImtSwW0RfWyIv5kAJIBE0zEGjAIfkY+C7QXkO2oO2pK4pJZjuGEKJm0X0vakXsgUWKP9hQqk3g/tMaMOsJGT7DxNQAQMemAQGBWYUHxJPG0kmsBJA4Rim1hm6sibqd9fBbSmAcc0fbQjEfr7uBICaSKLckGDkgnCh+HNPPLG1Tw7HwfsnZKqKRz2nRE44pEabhGL9YJG3lXpDIafflWg0aCHgTh9wvF3rUFIOo/vOnvfSJNOkbND5Yxt4cvziHWGFMqjdL23lJRzoaBdTxwwZvG9PIzSNRCqjAzitD+VWIeQVnkmtSSWYj2QcvV1gQQQGvJ1LfIKYAyxjAgW7IS2rxeoVbyiHrMEGlr3CV6zEZ5LmomBegAe1B5n+o8k5XdHPmVkwJVPSA23jNdHyv5bXRVx71tCABsxb2T6xF27NkHed4Y3utYGokH74b9/HKdQNOBogA2xxdBajESDgaCxMMoWKm8rwVGfbGCo2nJo19JBsEXDd03aWBGN3NWjLmprK9LWfJGW3Iy3hrPY9tfV2ev+qKdlozUNOIDY6Ybf6U9F6d3GUs+Ecy+AiVT6UhClBuFaaZQguW2AbpQCEEgHnyMOiVskkokCOoSpnyMIErEJaHxHyFQXeapN0EngACQaFtucHRJ4w+BNdaL6vTDd0k2yaXknKIHrGNWPzjC79zvJyqutU2RANFjMHD3Ktk73ear0mtRy2FKc6TSOitZfsQIaAsxI1YEw1eB/RxU+FFhQ71q4JaAVUu/YDL+7sQMuMOxsQIwHFtbt8UKymEa0ccRga4Lygbwhs1WVifw11yZoNSLA1JodBTpEqyFTLh5ABHCi7pEYh3og0ai3XstgAj8C4BCgEc5jBTxYgRJpb3Jdx40QdRx6isbFZeOmhQ0NhXy4uwg88VZS1lNrFVSRNrQRhXebfcMU7a8z4r3h24cIJOnX9vD9VUBrGnDkg/xO3mn52vwiNKgd2jS4giDK38nQgwYdJeHlO5Rgue5eUs+QdDxORcxqa/v0uSzBJStCi6PPBd05EeLKBNOWLkSw4VW+saPm4uFsO7J0Je/5ZzaXZllJqk5tqnL2HfE0nV7oQKdRpbVOj8RyJ803TXgt1SyAjHCDY7ysuSKT0xIhLoZS8kprp9weIOk3OGCggvVBGwlDPJNmz8EAxgCTAYYRWCQaDn+wrPwYOO2bWzkVQYYExyLkBzqJUp9V9bHwQEfxaY2F/2RZZWIkHaLxqB1Y0QAkeA/1AwXZrC3YWAi4ELsOKNCRTKl4A9AxR0BSAiMC3uvI1wBBWfsLy2obNaBQX7oomxpp5Q7xZ2G2akWmb39TUWgMKye197Vr85WiNQ04kjJq68M5ObXzCl9YS44Jmo4SgMjCEywx1fw+UkHV+k5cTUKV5uH0kgRMWN8e9SZvcGpoVutqGOA6JjpETwgGc25pLYJ3Sx1eABuswUbqOyC5Fit8iBGpzgnFmIAN9X1Z58bI75Ub8GI7uSi7W3y8lMBIaUrFnxvhtYGZCaDEyztEKYkm6PB57vbQUV5DZcM+FvAagUcoJwvn0EtHKEnyRsaixGAGeJBlvdTBWtAInPAfsJ+u4QA4KIANV/d4xMDAumk70YBIsDUA6+vyiEGVgOQMcFgAYx8Bs1s1I5vNBQ2HAx/sp1HcynQPdlhNqWRgI9Rj6QL0lAoDNPLGoMzeBkYZhmp7j7HXbLBvYyr/E21fzd7AVJ43Da6dViTaTkmhRiApHVwBaHQAg8lee7MwAiqc0P4mhjtlO10lgvpAoTUNOBJS9X0a3k4wEWRwi5DJGVUSoqe/8nvJiCyZC4pCIIQ8QeiwjRoJGXWxDlbwA3vBXTnDN/YCQ7abZ8B1aAQwOUkSOgY/v0+ekcmDBdF0SHu3unNLQUciDMXyXqmP4xJajnyet/nR+W/fKeadaoF5Uuc5aUvr4vOpQEj2W5UV6dU/XStVEjDqvyzXgISOPkpEcRofkuEfsWVv+6DYGQGYwOrd5qmh4SDBB3pL+iGl6WAAMHHDP3jA4EFHWEkimgTIiYARoR6w92HmAYdskqZpxDCGnat+gave8FM1ZAB+BYz38o8MbMT8IUBAh7bR0PuiaKFOFP1lWMAEsOEeG+vrDZDacNQRbDg/Nh4AZjYebquA2IZSzaE+cl8b7huZbdpLJW0sVJPUR0dg5eZ7ci1E+rfEW6bW9jctAJr0XrifnfcFTaMxmvT+KqAecOwhTRIui+UD0GzYWsUOIBhq6fByjYY/BwdmzJ0oKtbTAoCR275zBcmeFym40aknKyZ6MV5KuPwv6wBZuG8RO73QIQOJ4yLt8AucpFH6rbTTLByql023wCbV+VFMQGmUlnekOgdKDV+V19T1IQEdWUZq7ZHna4aZp0OhSQZk35swPQLEbU6sKmd2viRy7UNYyeQBg9gJuPxy8Tmg6v3WGgoC2BjoPQfd2TuMs+zBhAcOGmz4+RFwTaABA95QuehulQAeM6xxWgwoUJJTDQ84yNfzWgJQ2R0ATcxDHrv6TDpv4OtsEJ4EGkk9RgY61ADBslu1wvGQfE6uPZ8RQMEyIEDURokvmmArEkGIviYgtJXwXLIvtEGPnCYJNF3HgWYfkfdlJQDCUPkW70/b/pYMaKwEMeK0856+vwqoBxz7gBYDOhYVXlcDE+Bh3aZUKG1br0mWlVbGqZyF3cL3WuR2tASCLpzJxPltb7gXVMmV6q2TkXW8H3KEkXY68lt3QLXfXl57ENXAQsCInwJqnauWIxnJ5dco5+0SjSKS+pADy6zjjiCG1B119vWArXPE1tCECMltKyDBuvJrMPhgawtvcgkmk9hXiBt7sgQauwdcCTD05a+2nDcWTuVfOQPRACi8piyACuM0AU5z4W9qzYi/JgB2wYMmQtwMMPsMWWqZ5HdLO2SpQ1B8GZAI17W7YTK+1FiZvAdP3zRCvcpBBxL7ClLhNHxoyLJXVYeDdk/AnLSLMYetAtLwWF3bBMSHep8DdiB9jow/3FPgoA1YlEBGnr9ttNSj+NDAVp56G46eJtBitBaUNqTSq1x41jY6aFPL5+cATBD8KBTjF80C4OwwjEWca4lpT4wFLZyqOjwOX+o8PYbRiQcZ3vCUAlP87DCVovKCsg4wbEMvL8koTV275bHKYZE+GpoOFZmkI8lTeS1tyCkImJJy3sVqvEhiNjEDFZALjr8AB8iMGDcU0qgtpdkbBiNll1F8yFspLHHwFqZBGLLWgy3DDmJYHIQ9pFJ440rAVgyuXDjsQQQbuGkCQgAH1nv8BEU+oYrVJ1Pka9RtiwAiGIhLavNskWkNyRpft3PtRTDI9PfEZiOACajrWgSJ1BtqgA5YhtEgQpq44gsaibFvVwIadFjK0DpoSoLbf83PQZuIcWEaMrQ9deh9iRJwrkjC1rdaNQnir0dlGutMVuGrMDkLI/2ZrRrMwHsrhQpaejb59Z4WRz3gWEKaWokxbUXuMgYMHbnvAIyJjaytsbGFW4NYEoAKNghAkVErNNjg6KQJULYcHnxIBynhedmY+05z7ZzUyE91dojxpiOwZscXdnqV7bIbWCMHGGiGFfo8AV4xTQobufSy3sdGf8yU1LoSJQurYLMB9m7nofIo13SV1NiaRMMBeO2CLkwp5ygYWUau2sW5F3DawywIMGN2sqmKfM5WwwsXDwoq9oqqisJ0CtWImg4v5Svy9p3ep0cAgfJpPj2VTzd7LUmgupkFDCj/HZEP6lbQ5qg4Jb/CFAWQ5FkAJ77tJFMhwi9tIvAhGoEi8sZpFn9PuzFPNAse0CjwTTUr8OGuOQERvp7XnBiPJu1Fd1BS1qrZhQvNX2hnCTBn1V4DOGAVpgIZenpT26W11O2ixrfUD+bNVMB7A3RIJcO+I1Xue/z+KqAecCwhTQuq9ypAqVh6+Js3ztZEkB8BqxGxEuyJ+3HZlr4yAVjAKH4R0tY/NN59cxBKqjMh1+GxjMQ574zUt+UC32Ydmu9EIx9HsNFEGypcbl+x4uML3g7zxl/oSKea1iqR7jBzwNCm9ldajSTetnIOZYqmS3lKL1nAoV/5EUf0kicIyzMtIazUcPfJr2v171iCAct+vcEwNAEq/p4YQ3JFwe5HwIeegqtqgInBA/ICKy6syQUCy/sgJ/Q7Bq4SD9Ut/nQSMEFxKsM/04ADjGisGlZauTwMoEP44OpZcC8O+KkcKMAh1x48WK0BiRqK5J6fwokAwQv2BKD4Mh3r+8ieKwBibWwfufZB39fG2Rpg6Hvc5Xo8u25rUnmYpIzTS5S0sZboHKNqTxxu7VMhXhoYLfb9VUA94FhiWl7Q0dGDCuhotdXIBF0xoWml5SB4KTbAIFzg9rLw17JbLJeDclEzR7u9bEChQUbobLXgL3aOSOaoWw/EcAH1Luv4HQ9N2cvsEdiYRLpMSmUjyz6Zo+OvcuImxIMgAaMg5LjaovS6F3RMFPdI0RoOpTUxHhgEoU5O85H7zSALcM1gQxGcaE2YyoqwF4l6ltuAEuRe5GU0P0eqMqEFbKgg2P+nrL7kgENAqNF1yt/X9dNIXosGxOeZXKdAhYMGJOFjfWalBUR29td6yWyt638GMPQhYEN75w3flbVJqHtJHsZ7rH83eJV072pSqs2x9HeTKAcbXXz7FGGsTeoBx1JTA0yXO7XpHYRpyhqwNFSZywcajTD+ig0qN1gM0xK6ByfdqXLsD5JRBvk4OMQbFRxtjbcF5CiwgaDV8G8ko7V4sI1eRiOQKBzWqm9U/I1Rm97Era1zRPP+pI6vAABKbyTlkj5JNRO5dqShBdP3dDrzBFCsr6wYdFnoNEgZaE1Q4E+jh1HARCc/B5wiPD0fi4SmmERBDZTZIHF2DnWwQ6sT0itThvn9jNwSbt++1PdS/k4tlVV9k/Cp326HVhW+v5fwAXH5t76v7TQ04FbvRw0gp+XIHDUgrYBD2pXW8rW0B/1uyItCBibgXgADIalfbW2tqw1yga9Eul53Ul7fp3xtqSibct6j91cB9YBjCUmbV3TyaY3BpErWaZMRhU4Ms4U3xK3ezeNQI8PY8VmgqpqN36ef2XfwtQUrN9rpDo8xTyh4fCp8iwgCBQACiNKrSlRHKzvHpiBCHSKE2liAEJf6rGQ01aDFgo2uMpF49fOi5smlrHXzNh1eyf6j5Td7ocjiZ0V4gkCQzcnYu+125Uyi3VBIQgwoCQQeWae58ButaUyrsRATwBXHlSsUv0kbYwIAG07tL5QGRIQywRmbokvR56eIWIGJIvlpFGb2ewplQCLwQXnbRaxEnAEJP40S0hzSowEDlA1IrFsNwAEOfLnGgZTGo6nlaNMI+gbinX8l+6TovgGc8qNwXch01wykspUAxJRtSrfTSW0vPJ6kveDp2JaR+lUqPS2aiprCBpPrvMNzzoRNMVA1MkhYo/BpqJcbQs4xcpbQODWgWhtn7a6uQUEY+Sd6OaO3/6AAOprCOklJ6OjTOKOnQ/ZRqYTokZi1IO/UoRVIMLz3Rc2AApPquKbp9PL7k6ZWGkCtXNahXARAJnyqnAO3AM32MENBWo5TbVqAq1cJcJqgwBe/S2pH4KwtGGrptMRBUpc5FC0znDZPAwAVIBHAtQMdFIxD4/tBuAufLJn1SQx8NqaxguerkFLG58LgJuhgOLChs3GMCHZYhSHbwftkhzwlFZeAgGBwqlbvgBI+DTaC4JfItNGo8AUAIAHEfNPAPN3zRmkw9JFt6pZqBVXeTAQY7j6X+Nq0GEAKzgvh8pR8nenaU76eloR6wLGHNJWdBsv4sCsgB0BSwd/C6MN0Vv/+h3ZNnQ1s41vt4bIso5zQ7pxX0ui+WaUIGmBQLUJLD+EUt7f1QJ3uKEuZZsOxxt9RJd1cjZJ2ntaDDVv4piioA97o6hBLI7jOTOLJFYM5rtoAUpsbbXkvtyTcANAAnfOMbHSTTMsIQKWwOiV4Bw1hp8kjy15Qu/eZBaZGcEjw4JJN2NsPBBiv5dDAg6wDE+LiW6ZPJAEioNnCL5WlKNSzahuAh1/ayuIbPQMRIW/IhykgrpXPGa9KhjYMSaUa1DE9RJSAjYQvpNsbc1qbONbSq1JiRaYUHHiexIBZ3pPplkY78UwsTtcUgA/PIn9cpYLUVsPX99RupdAWOs6qZcfv0xmUN6cu8KCNQ6cF+Mm9aXkn/V5GmraP6Xp/FVAPOPYTCp5Bp+ClpPEBoSeSyXKlsXA2JEo7oeWWsFnrhGByMzssRZWoLJEMo1FCWP9KHJaOpkCH0/TKE23EmnSK8ZrBYUqFrJ6Hbh6JViM5kPEpSTEJdMj7kwpnSmvhRPuUd6QF+xpK8k134O4eg3y+UzbMjoIqYMJiJ6srBbw9goqbXLisyhhETstEBqjdviUhWlJV0Y/0A4gR1JBhJyKAx17wk4CNHG3Eaysuy5WfjQYfADuGs9RsARvySvCaWjf5tDsThoTXBBsawLkm6JeeWg8CwvMIKKRMCDbRgEQAEQFCmOaoOeEJ1z5i9lvvRpsNF2cKPhDaSrFNQf8uPAsfmZ5Z8xd5fI7L9sATNBXJgGAasJG30xL7/iice8DR07JSofdrF1ec/VKurENDhBc2FHs+1iACqepY+CGjPxuBQ3Fe24OE2vGxofYVMQyQt2JiASRtX2bjaDKMthJNh19maFXnmWk4Em2HhDuh/ZFiKm41n3eQJXVA42O6vzWwQZW17kgLoKPpe6AMOoI7bUvpVAcQyllWNAggaC9nPyoXjYX3YCqO3hKwueDSyMSgihwogQMD7N+RaRPHB78El0K2hsUxhLDLbBDsyZxPpEpeIAStSvLNio/VPiutoIMRgXRSHzI+wG+25vNbP+d4JiAue00EcFqVxHdGoqXTaYLcB8iK4y9/j/KwI59uSwnQULxNWw/VrlAAG1Dpya9lwCRtqvCsCOjbwpM8CBfZEthiAy+UXxtNw7dKhPhqojUIOEKLQrP7aatgbXxTCJfpZJASQB3R+psRRJRAh36U8QRfGmEI6d816SdJZ5bHq7LOGcnZDHQ4kOOClw4ITkMhjskyCm8nnVEYjvsOVNyZI+sYOT08n557Tuaroe4nn+ZH84UOsW2VUULSQcscQcyyIjVuF0BH2YiUY9klZx2wFoKqMmQjRAL8dFozkQwRdn6ps/ZeqsJjknqEaG/gfbxEJ16qFvp7Mj0Ho7QiKhsCn0xhyJFlYqiyjKh9yb8lJjFkV2uBNvKtxKMD0/fkI+Sx7mcyvvBeqW6jUVZyr+GkK/d/ofjKy8olzZw51NMfH9tdq9ZDn/W15XhbgXnK3mvck+uSAbQPI97K7ZskuaqdthYfp58pjKr40rin6LiXitaIhmPCBhv7B23btg1PfvKTsWHDBmzZsgVnnXUWbrrppiUImbNjb/mmJ0J7X5pE25qWAsNUo/ASTyqM4+jHj8CCME4PcZ+ceizMl6/KKM4mvPk7oQNleAddrDrk0mc105zflizhnK8Rd2Z8qTUMeZhtR1HadReFJoLTABTrg/62wK1+t6apJBziEcsPySg4X8Xgdh2tIXtvwFoHGiz737HOoLbuEL7auhG8jYdhv0RT6oTsasoqPHknhAV/cPS6qQ5jufktyL4F8s1QfG3lpFpn5woid098epAC26UuI7Qj5o66req9hcunWudBLKt09RYrAKOO3Hi65L03XwWWtytNGnQkACT/YPbjlzSM8jiK0rhaBGjD/w1LPDShi/bf1mjQaGo79jXYANKy3dNjFdCqABxf+cpXcO655+LrX/86Lr/8coxGI5x22mnYuXPnSidtj2lqQDo1X9ZZTMOXGIqlBzO84SVngi3vqKwf2XD5OduUt/E86wxFUIiwaes4k/RmYSALC/JIfUsxX3TnuQjq6pumDCqx6O9mLORXy7V8c0hI6XA87eXnDmKAxlH4h+mZ7BDQQTX7rdGRAhPFR7UNwCMABmU4KWfj+ZzxZV7/4llv7pcYPJbKQleFrvKbUkXPokVSvjP0mXSagtEnGgA8NeS0YQO4znZjHdCInkZVXsu7Agp9PjbbHtLrVluorI2UwIpua6xAR1s+tqWhjTdmuv83CRxIIXSwkAIs+xpsoL0eLOZYDbQqplQuvfTS5PfHPvYxbNmyBd/85jfxzGc+c3GBTSqXrvq7xPWwnJTm3eJKFw4P1T1O9dMl0qr7iRoRFbg07mT9LccpgJAe0rK+kMaWqIodDqt4s+ehI9W2HdkR+OGFKuLDto4txDMhvVMjQaCs/ZBOkNQtpWnRacvtOEI5UxJUokr2gpKoawVSfEDhH2J2F2xLEgPFTHXNybSe0g6pmZioBkAQRCRTMzrcME3keZnTlTqc8nGWlvCOvq1nhOJXTyBuLz7dhFR5FV2g67T53+nqEv8RzPGsXZgDUTMRPkq1A07DTgYfclYrW1rbSc7XlTMJmG35UNL5oNqwPmdZoyJo5UvvdaR1SkFc8unBXeH2tEe0KgBHTjt27AAAbN68uZVnfn4e8/Pz4fe9997bZFId7ETK1+jtJYWFB5P4kknwEhWQRxc/62WZ3UNzAhB3H43vFynYhyATRFFYOhkmwrLwGTKajhKv3ElpsBFfbh56BCjdR94nJmlQnS46+OS7pizBaQZhyWPO8ij/Pem+fxY9kralt6SeVvPaCYB1HTCJcYa2mQgzD0rwhe3llWQO9YNj8g2axscJMGGfDNmJlpv5qbOByC+b7chwnr79JUYgnQGicyVMYNMaDFXn5bnUQZlSaRh8NsCF86Ibk5iBEKWxIL9kPFSFhmZBx6HrRfl3Ml2SY4/k3nQAphFmKx/UR0xknCLe6VvzstG0edT1/iqgVQc4rLV49atfjac//ek47rjjWvm2bduGt73tbR0hcVbDWiW0P6nh0RLgjlYNQCP22KCLDsJC5+t60WQZZUu4YWTZGbfaVcSyEwy5RiTpXBgQZ1CJUI9Mbu8334GXDMSk4wydmFWdowpOazbycmxgDlYKggyMaMo3dusCJTlNkjJy6gANrg+l9uAyTUNyTtJCKsyYN8WQA6CQ/BBnXpk09nEYIO76q8GlkFWf6TddE78aYTpB8bvqRODapm7GA+Bwtd+EpdMUvaFSdjDi0m7t9TNLotwPUyCtwKQAbMpcPgn+I3MMDEQQEbQW8EJOtW3Fp/1nsLyX1evYXgRsxLJuONxiTtyky0qlFMCwmg5qOUPS1MWXA5CsfrYIxqLzvTJj9/NF8k0EN/uKLE8BbCe8vwpo1QGOc889FzfccAP+7u/+rpPvggsuwPnnnx9+33vvvTj66KORSUNFSc/cQlqdOx3qmIottFGO0ydF2aQttCW9KSN5UNDYPj3nC+dMuJB6R91zQZi0IwnCykdsvftRQyBWni3z9EkHJytXCO2dXX5f5p8l8MIITQzzmK3qjLNOuxRXI71cuFcg1hft5afBRXhcqCCtcq4EMiibcEvKhYJGoBmmqhON8jM+3ygiDPkshtc6OA0GETnnX76ctM+QoGExRgEA2Rk2Bki+grExHgRzwDxhugV+WS5bB3bU6hoO7dHzAc6uSE/BSLbpoaxWc2iNjeRvBxiXOuuMTynWK7mfZ7Xen8SDCBbQobQEqU8MDTY4GosCqS2LT7MrGm+8mmsskF3rdpXz6TzIzt1gQ+VtKawWmlrot/Hlt1vD44xtQnirQ4avKlpVgOO8887D5z73OVx55ZU46qijOnlnZ2cxOzu7+Eg6Rz17wLcISkRHCQQgBx1ZOkJHGdesk/+d8Kpz7G+zMArzTWyt36U0E1+ENL1W/uXDWcVHAKxf98hA2EMl8HDaeSWHPFedJeI1J3xIQQayMKF49MUedTaTyw+LKb8gayncbxBrAa4kar5sVvNpyZsJa4C9tscL65YqHlZVy0hZByPf7ONhW6t6oz6DssBs7ZfKungD2NBTM2CwFSDj06c0Q0nttQAMB9uSBF8hXoeractcty2XojSbFKiOzrzSx+HMCCvBEiPPDGywByPJEm/dTphDljdWoKg0x/aC5vMOwJFOneTgwn/NBM1Ift3pV2MSYCmV1VIBjZWgPP/35P1VQKsCcDAz/sN/+A/41Kc+he3bt+NhD3vYSifJ0TKAjumiLQgtoFVwTZNCthbRqyT0EBxBC0EAw0YQYygKNO0bgghuMwvV02rNjB5ZJg2lBDj8WWs2SoBDd2KlzrbxG2lYWnu13JTXm7byE4E/TWcSHLe1PBeAaVX5JaN6REGpBKYrWxPDkAwi9Rxue/nEpwdJ+t3Inj2YCGWfxKX4GHFaJ2f0+UbEsMaDMhPdqYPkmjwYcrWVCd4DWIwuFHeo1yjvlVIgka9knW8yqYqS/oDpvCPWMJ2RDZ1lSiV1BJ7xZuAj3awQjbM8Cw71GnVenW0hnLbrIl8WHk/gV79bp1C66rpqpt2kGZcivH1Bewk4Vok6ZlUAjnPPPRcf//jH8ZnPfAYbNmzAHXfcAQA4+OCDsW7duiWOra0GZgWaT220vluqCF18k1vA1G1EA5OCdiNdfRDfcZHoEbCKW7tPt/BCRoGNoAvX4CBLebFhccrbCRZKnRwHK/5plpjqJMb8KTEWwmmzxWh9lr/fmbRCmIUXVTxJcKK9oLxM3FlwQBJ2DgDytLN3EKa/MYzyKbzLWqmVABf3TqgSXd9P5DZxC1vRC3gQYCsAgoCBcTvRSpWTZ2ETOIAHBK5IbWHvk6/VDARYQ9GOhLno4jymnSCaCR5ZGPFkygKa/LRZRdHXSR21HXJItTVsQoUM/k0k64xPj98fJSl1zgvOl3EOMkIdzkFH/nEtwj+7nwxiMtDROcBR4REU6OigRnjhm6dI+6T2TBJ+OcX7jX3HAUSrAnBceOGFAIBTTjkluX/RRRfhnHPOWf4ENOrjlKCklabj61SelIRY0piyEbQGGY37OlAtPUwUWDpiRgwvrGLJJEyevomjCd25KbBTAhxJBFnvnQTp7ru+3F8HQal5VXz5+1poConRXdd3hHAzaht4dZafPPdaDK2+bitnAQJyX0BICE/KD6n32UbV9BlgEYR/CXg4QJGl3+e9A7SsQszrol+ybCjJMs6mTARscOXAARvEgySJEWxYARuGkm3trcpGEGB9WAmwG3B0Te7JBu0dghEsVwY8ig7HQnbIt3MMM9ZDyXuXLwH8GAUb8n1aWoRfUyOifWzo+4Vz0q78d0s7CsHq9iXFoDWnKZiJQGQ68KKfN7qIAAYkU4HEeF+HnbRTVZeTrivro5Jvyfo4TOh/l5qmGCRNfH8V0KoAHCuONJstwZ+Xt0Z2DZqbzJguOUWhpr4nudUVqBJu4iKb08flBHYkMgcTuuNMHmUAJOHjRuONm8mV0pSlNQFnLeks9HktH9Rkaqs6iyk/LRi7+AJR2s8mg2LOzG1yhOUZJV/CNEzGVwC1AjbCD1ZhKruRwKen8yTJouHwN3ggAMKdBXAIoLA+aXYgPAhgQoMK65MgYCO4Ytd5NkDYOdaBmLgJIjOifYYh0JhB1gXgtGwGwWcJqfBrHzm8EWze5kjxa8FfKmrJ7knCvAQ6irxZe+gABzkwaLTL/PmE8ACpjhpkqLqTkKpnSXvgBlsDhBfZ1Oq+qQeNS0zahm2P39//aVUAjv2CphUIK0mhwyokVI8omaPvgzatR3KtOiItmHRjzpcNF/sz1TmUBG5jZKXOyUiqBWx0NdiuEUQujJOhWgtNXRcWUXE6y08FE4R/KYyW8kvehwIdpPKlBUnpeNv4MhATwQYXgpT7fumuBxBt2cS5ZoPIrYxJNBz+XgAb6XMtyAPoMPGd8CxE6k8Vpfnln5G+xy7+uAkbRV5Z5EMKPI2dK3YYSrVlBmBLEdd4sENJBmdp1KBDZFY4MgABpO2goeHoaH8aLOq2loCNNHlJe+saNOZTdOF7O2jqdipl0c24omBjDVEPOBZDnF1PI0fa+BbhSKzcDJp3Q2NVjTtc6Uadqd3zwbB0IJSNDFJvjhFsRAdTeWCLpNBJ5z4xsk5S3eO8w2uoivPfmreQgL3tc0rvF4u5g7G1/OJlzoeEjxvvNMpZopPR6rRlOCVfsY7pugMx8DRBc8CQXWTV2XM3wYbScBAAA1jjwYbYbBgFVDLAUVeIs1P+aCj8GGBiGJsVoK9OQcMhs4+gMLVCyicJhY2Y/bSBN4qVWcvg08QKD/ncAGQaiYJWKM3DuC+K3NOHusdI21VXGXOcekzDQXo97TRArmFs03hoINMd4PTttFW7OUWY+xJ/sHXH3ry/CqgHHNNQ3hFN4pvES/JvMujQGunuqOOosSvI8ChoGzJkH2REh0AhBPQxHWRSxBxXt4QIVRJKnVEODhSIkF1K8/vJb0lyqe/UkUhxLFVHo4HBxHmxSeUn36FAyTRzbSVwoL4xgA0xbMjDzd9t4wMh2oCo8JqfgBRswGk5/LUcoYoR3AoTMQSt4DQeCnCAPNgYEriCn2LxYMMAXCHkadCAVGomieB2ps+rpAcGlgFTZ98RVqAgLsgygBmh2awJzi8IKGxexWNx2KXK26cXspsuk9uXplgnCWC14oht0+mYBtnFdpUD8fjctZesDSaZU3hWAiBt4eUUwMakBriIduoBr2PtBlih7u1LkJGnYa8GayuV8MVRDzimoTYBNTVfe8eLxsglY52mHpFuUOyDzONkP2LUvZsfOeWqcfjOQanmKXkuwhHexwGH8KllG/qEapYhX3q/awSm0AKXlvMV+BtL7wR1UMZf7Fjlx2RQWCZqgiSgjCBJ35AOtVBnqJk8yjVl+ZSKnJUfjGL5yZM2zUUeZquGQ4BH1nuHeuMSLqI34KGsHYjWgSsK0y0soCMzFuVKg43UbiOsPiEBG/F9UAQdOeAQv3VCtnKgIxQVKT6mADyYGGYM8V2mcCQpMyeCZet3x43ZIsAitjUCG+NAR57NfkQb5LT7CuVcrNBGkveFR9+y6nf+jgadWV3V6DUJr6WNldKSx1Ni72ynLfHmg6m2MIvh7UMh3ttwrFGaVrZMa8I8zcg2yIHpwmz64YhBaZ5k5UDSm8aejZMRtUi1TGiRMqpKOhgldGRVQvDnkaUtfK4KN49Hhx3afNppxiWvij+cOTS87j0euBl+fJgnGFNTMupvIIo0vgnlB9Z73gg/NfgdftKCncpxJBqH9s6J2Y+udQRlxgw0+npVXI7rx5nsgYV4Hm2EieCrg8kDBRO1GQ7QOhARDEcrByJYjD/V6hUrthuVAht+uiXYbZiYH8H0IgFH/lMqoK5kaSvBiFsYRphSkZU8lhBWuBhyjsoMvKGpLCOvjMuLsd82gKVdI4625agoPhNAEfJcBJW059IyUqTlWBDIXGx/up10hFeoJ93ajA4g0vbaxHbaEe9ehtnT0lEPOPYnmlJNXtxTpSU81vxexdjwlyGdnQzBcmM/YferUcIGXqIt0EMbhlOXs/h8yEfqWaPWdgal5znQaNNsaL6QkHjZ+K3fmzY/J9FShSPBNbQihd/ezgGc2dIU+IPDKA0USuCytt69uY28Bb5w1g7gml8BBP2bB1FdWiNmWCKv2UDUYlB6bf1UiVv6CgdK/HSKBh7WMDBwGgp4DUQAGuockhoUQbG+aDkM68CEq49Os0EWyRQLGQAVYBY8SIJzQCblSYgaECICbO0AigD1/GB2eVw7o5Ek5zKtgstCV86N1St5+0m0gOk3x2tutpesvPSZ83Y1gX9i+1tEO50abHSBoZUiXTZ7+v4qoB5wrCgVhO80b+UajhYqu9BmNJx0Id9ZFEiQhtJ8kGhHpBNM/DfEa2rEK2E2PkZdh3+NZ8lW4xNAB+Wdnw62BHiWbGTTJkjz8Fu0EHnfLDK8BWhAPSsa7ubAQ+6F5/JPnsdrmrajDyAWSAS3vCP3ZCVKZWDJOfdydhYUPZAagh0a8NA4QOGnQ8I0SZgyIdgZgp31IAPstBhiTFoBbNhPtQCYs27qybp8YuOzQbCUAWAsqhn3zXYsiEbX43jBYPd8zOCRB+Di1Mvb/hG7uLkGaAyYBYapvKKpBqhy4MRYwMI4G5GxBUYu0iR9ZJwxKQNUM5gsqLYxXaTSSK4N6o3hGnVAlV3arvy/BuhAqjlpAxFZUro0GSHZoT5O6M+maKdi3zTJjYJk00QhvS+FuAZ1e/r+KqAecCw3TdGWAKhOvSCcsgCnwSVRUKmRpwYdDUGTR62EV0mYAZnTKP+OBx5pUJwko/SVebQ6nsbul1AdoLov92LnmTkoyjrftJtsGsByDoCEOyuArg6uaYpBIUadllKhJuYZraAhj0CkZKmDzgAoo7X8klfEuZuOMwE96hWdHrkOW9VTuC+rUOKSWHI+MSqjgAY7MKCABhuCHTrAwQMPQiq/vFY7A6sAO2DwDIAhOyFs/JQIKDoCMwAZhhnWYaW4GTotD9cGzTbBAVigAlAR7IjcShb2YMPGKXUit8EdE4AFN8UCIsdQEywYpnJnAoFgQGMbjEslXofvPaA3BPZ8KdgA4g7Lhf6koOnIYYCrPhqscKxSJcpARd4WSoOj1NcG2kHHnrbTVmyivoUVY6mPXkrNZ0+BesCxUtSoy9zyYDro2tk2OhtUJlzkBWmQhPbGx+z9CGQWdqW0cHRWOemTrFWdlBiSZh2bS5YCHSxW/yr8nK8QTpbE5vcVErwYR3RNp6QdQEEoeZSBhC6woaPIvYbmZaQTmNiT5t+ryqE0vZLEqcJQ4MLNNUSAQWqqROqgDa7KKUyHoDJBqwF/vx46oGErARsAxIYD7luCXceM03LQwAMF4w5iZzxNBkAAGzbYrjATeAhwXQNjaSM+bPjlrNZ69+oufF4g5/hLwEZoP74CEFATwAuyEtal14DANSMYkFSurOxCHZqnyzoJi0Jec2WAunbZLjYkXVSa4gjlxwlLAOmqWNveaVzrKNFsf3GlVbjpT8rOSAOQadtpZ7t07aGo2Wj0cSqf9xX1Uyo9LSuVQMDeBDctIG+MTHXD9r/Dfinaa1GhQkujDHP9QMfwwo2cOjfSED7ETcZK6VdTJ6mRnEIcHM+NTm9aWoIRzpKPkQrTKcVIEwDRwhtAXVfl8fVDd9SlqZ1SOrVDL4VtA9CQqZKB02xoA9Gw5NWQW8JqgHoGDghUHnAM4LQflZxdXPWQgRmEaRXRcIjPCyK3msNpNiyMAcjYKGP8Xig8EOBBAWwQey1JTW5pi6XgF8QukHuXyXsURZhdChjMAJgHUHuwwT79+Qh9xgALNo7G9a65pPiMcW1lksAiavq3aSm3COJ95Ix2cNEVp7RT6PbX0SISTcciWs7Edir1dtowlrzVTibrDYH26v39n3rAsZI0LSidsv6Xp0I5npSgIAU6WDdIbd+RBdeV3NgxTsM4gUoaifycsiOCDB1/mhhOX2iLfIoEdlHp/eZHt2lJqDGy0oIoE/REOccUMU+i3GOB5GFWH/SoUobEoaoJ0PDzFiTLsfXZswuoEAdYYaqDw06wTORsMbxbc648GJAlrpXjd+DFg42KPR8DXsPhkuOvycJUjKryUy2V9bNG5A+ArVtx4jZ1i6DbrUoxQA1wjZgPA9F+RFkNgtsIzn8wWz9VxM6/B7H7BiMbIbJ6T9nBiPt2FsAe9oPhCA40IEkK3qWPpdzyQ5epPk+g4rLXDk2HZ9AhNMPU9zuTMWU7XSUj/7VCPeBYKQq+CibxTRlcrqUsBdQYkHaoWQSU5PP2OkI1ginytIQ72QhxCgrTKB0ufVQnKKOsyTQJMS2WpivAqbjyvGud6lqEtguI5damRvbajcbOw1mc8hHOEJMieFAHqakUHhjwwLipE70/SrDFcNqN8QyBZxA1G+ocNRwEO7TgGQYq9vf9eeBABYuAriwGwxoVu/vGeNBhpFoJKHL1xtYG7Hd0Zfa73tY+nprAloABwVYMjFLQEWahCF6T4kKlBZV1ssSWsswfOOATyjOoS9w1hzyluB19iaT8oLF41lanAPZpeS+iTYWR0LRhTg5yuna6mHbc0RfuC+qnVHpaVirtepgyqFMc6bQGp+tbkc/FxdILBgGi0iCdnueJ/YRyf12IUDv/SnxwZJ+SvNtmEzLpAzlfyidndU+nbREdaINK+dgmkFv5MpDWFr1KR+cKJK1ZaJ3qktvCh3bbmRKQzBlDfYgApfjJ+chcwlMHey1HdOgVPYIiLGf1xqEGqGcIGLr7dsDBboMHSKZU7Ax7zQa8Z1IFNgbe+JQYNKhRDWsHMMg60EHwNhwCNnw1InLJtox6zN6xh9/ZtvZHRR50GMAwrLHAgvFtQvLDZYX1NhuY8a/Ou4hkGa/Ob/H9YR0+8uFwAjhA3ueNTF3V5Toey00V7UQBRQjustva1CRK+LrfYak8S9ZOVxHYAHrA0dMSUWc9zkeJ3M0vYGEStQmWLO58Sj7GIWcOgEdGe8VwVUCNrZ7bGgJzXPmgVfOt38T+lI/EkJ6TV6bsvDo0BVPR1Hwc2LtABbNVzyeDjwaHpIfi79al1PrbNWiU93OA4/lCF62ndQjlTdhy0DGMq1HCUtZkCSzBVnDLXod+R1dvo2H9dIoduDMMYOcsMGSn0Rg4zUOYZqk4rlIZWlQDDzaMDaDDgGFITanAgQDL5AACE2hoMa4NUFcgb2jr3JA7w1bU7OZFRDuzULk2Q9GdOVFcvcVDAR3kNRz+iXiO95oL+NU2ZgRQBjZUQ41L1JmS9pfq/yiWaYmSNlUGAHsGNvJnKj0hzClGU9O209a42+6vMNhYQ9QDjv2JpgITLY1uMe9lSCMYdE0QckWhVZhymXq8UFqB0pZ8zVcaOUlHylmnmIddHCHt2w6HWtMRL+UbkpSVyi8R/nlAKfJolnMLCfBNdjTT71BgC/luqD1cZjdtQgIS1KqVIETdUlmuCNYQ7Cw8MBFtBqkVKX4Vil+JgiGCtgOi9RjAAw4HRszQoho4fxwObNgIPIhhUEcTCkMObDBgQTDsfg8GjHHNoDGBaw+U/PJWJq9FCdcWvNtBjcQRKbsVKsF+w2tLgtO9SkqNYJlhGMDAwMKCxuwdl3mg6e1byP9m75SPayn7lnYVjIUtOtsUfD2wzeWure2qFcwUbi11O1000NiPqHdt3tN+S1OCjiZAKAx9dZDTRG1tU2gV5oM5GXlPCFmretsjVtfhn+obWzQgQPn3CtK0jtsKL7pzDjwClYFGUs6YrpyDlATQcBSn3ZczgMpE4JAnJVx70KEdeYUjdUduZ52RqKxEsRnIsBVQDxi0zsIM67j0Vew2BgyS86DG3Nw8Bt5GoyKGMRaVYVTGwpC7HhiLOTMPEGG3HcJ6kMHwZ39YBsZjQm0rjMZD2LGBNQamInBtwMZ61+sGC1w5cDWC0w9SzE7JFyagrt1ZZoKYKSxXZvYvVMYZzo4AYgsSww4POpyzL3EJb0DFVQucHtLuPFB3aF3x6nYWbk/ZriY0t+Vtp7qW7z/tvouYLXgvdnzdm3f3JfWAY1VQ1mga8+wlEVJwENYih+LoWAnxMML1Nxip+r6g2UjSp/uuUlqQ9m0SZkkQp4OvDGjoiAqdWJtwLy6TndauZC/5WgV+G36YQMUy6eKdwOdGzRpQFiIjP0WgtBRMfvM+uWdM8CbKVRWWvsLA2T5kBw+8Qy+/9BVipyEOvhTwwDqCmbEYDNwKEx6IXwx2xpwDBiqLubkFrJ9dwIAsKqphQQ5skAMclQcfDxrsxpwZw4IwtoQH6hlYrjzoQAAcBIvRoMKoHmBUjbHLDGHHFbg2AWg4+xMPVCo448/dgGxfH3UY/nJAAJwti9OCOPAkTuDBfimuIVBFIIq2JDLN4mw5AMCAauvKwdrO6YowyJD+JLR7qIvmaKBrem6qgQs3DU6XvJ22JWQx7XlfDlKY905LsR8NqLqoBxz7MxVbbhlctFP6jHKwolcmhL7JX7QBlvxmaZolu2W5bGiYEhXaTctIK4AjDUA4dtIhxLzT4pjkPMiml64yLQnfBHTRNkCTKYzwu6WzLBqDTskXfisdVel9ARaeN4gokmcOhGBQBcNGlqkTQuJvwxrZF0X8b0BpQMQmw2s55jz4GDB4wDCVxaCyYVWKW6VisW5uAcPBGHPVCAOyGJoaFWpYIlQGDmyQxUGD3ZitxhiQdZoNQ1hvRnigHqLmCgzvW8MbWCzUFUawGKHCEDUe4BlYVGAYMFvUICygcloWAQszXivkHXyFleeU5oEZeOUGI/rB8q8FV/AEt9dNVYemGrQc0vY84CPAT51kRS+DAFF4SHmzv6FBfCZ8izsKl6YA1f3Gvaw+LW07pah903xxDjBLj8WEAHtaIuoBx/5MzX6/7eb0QeYjiTasUhRWpc4DBb4mq/cD2QQ8rVTo1AppY0CNGgvAB6ozozKbjnKqOYel5nOJTRnbinna8Ka19ZnIxypaz5cADZ1IBSoJbmv1Smk8tDbEb6TG5FajuO3l06mVdMqFHdiYRbDTcMDCHTRgDKoa7K/Xzc1jOLQYVGPMDSLgGJADHUwGxlhsGMxj1owxMLUHHAYWDnSsMwt4oJ5BDQPj95GvYVChwgAWA6owoAGGxmLX/AxqVKiJUNdD51KkYqfqZr/fyozLSZIlthWU4zC4VTIVxel8y8E2NLg19wDEeYc17nt9OVKpvQRtE9p3Us7rqWjnp2h/zd9cvEzAbYsd2N6300ank4HqvW34y0gC9Pbq/f2fesCxBimCjtKoV93u6iTSAAsj5SZbUJ5MlUabRtliYNYKNoAkTRPsYbNETkFLzQdg6k5PjY67+ZYCdCRjTqWCL7AFzYabWoh7qCA7SPHBbdim90FRGg45C9iI+6cg7A6rfW4MB2PMzY0wM6gxqGoHOKoxBlQnoMOQxfpq5MAGWQzMGEOysDComVCzmyKZNWMs2ApMBpYFcFgsgB3oYMaILWhosZNnUWMIw37xb+VH2RagymfgkMBj66ZFsrwJNroEb9DhrkkUI6LpUAcZA7a1BxukVCflhta9bbyUZQfYbwY4HZ/UmTZN2bK1U0KcIlqKAJeJrGw7vIfU23D0tDTkVbF7S/mgQv/XGko1xZLbm7Z1LU1bkVbOqUfnlEfYoppNdB3cxtuR+JWiUnqK+K/JGPeiaBnRFuPLQlJ83UUSQVACNnKtRZCCUHYdXptBcSoF6mwrtxFb2Ok1AAnyGg72YIPDvijpweGAAWhQY/3sPGYHNQYCOAYecHgNhgMdY2wwu1ERY0g1hqbGkMYYGuvABgxqdgcM4wE7izE84GDyOg6LCgNUsDAYAGyxq5qBNzMFEYEq61Q1FbzrcQLXBKJKTY0g1XCw/+1nQWT6SQCJvBc2hIP1GEOBDQF1XXZWJRKcwtrXTRdAKWg6Sux53Wt7fznaaVvcGZUg2v7WZRwI1AOO/ZlI/k0BOoJWouV5BiK4dVQr6k0l1DqmQQgeoOiNl1qJJ+zb0fUBOZtWw06Is3vQt39Q0Op2azlI14di8TUKupzfYUSZ8bXwt2o2NAPBewx1o3eWd7RGw6v3beU9jYrn0WQKBWFvFDv0O74O4KZOlIdRKL8bNKyxbnYBw6HFzMBpOIZVjeFgjNmBaDFqzNAYGwe7MGfGGKCGATCgGkOv4YiAg2DAsGQwZ0fYWc8GIDKgGiOv4RhhAAMLplk8iHajnic/BcN+SsXXv6DpINhZC23Pob8dMqVAcNoQq5e+Imy05+6F+Raw9Ya+WsOR2+OQ37lWtIIBYEidQGgrBIp9REm72KJxbJBup+1cWJZ26rU+Lsj2QLVSZcW6iH5KpacVp1CH2oFB288iiRAI7xSEi2/0rEEOc/QTkISXNWSZqmlU/jyOkgoF2XvtH8TTWnMnnWJ+0S3Y0xeXW91KabKgyoVzNsXICjDkpMu2Y8okrw+N8iOltdBJKWg4NNiIUydItqAXzYY47YJf0aEdgEUjUgU2RANiOKxe4YHTbkSw4TUbA4uZahyO2WqMgbEJ2JihMWaoxgBjGEBpODzYIOsABgxmjcFcNcL99SzGXKEigwEYFQYgMGoijOsx5kCw2I17FvxciLVOS16RX2bsbC6MBeyM036EjeEEcPglsgF8CeiwFDUcBiBRoQs4qfwqmjrVcCQawFCeoZHHMBipbUcOLHKAMYXWZI+chO1xO22LtxR2xt8a0KKi3Stia8F7MaXSL4vtaeUpFzSF1QeNToOyjkjYbGHZWqFBsoCTSYz6NhEmzkH6dE41B63429MwbSe2DGCjAQDK5cLIAEWRLVs22AVAJvF5QJo84ZzXgwsdDDHYmKjm10NGOHPhMK0yILcM1MSDtC8Ovx29HVpnsxGmTaDsNmQaxW0tv352IWo0qhrDymI4sJitxpgdjDA7GGPWjLGx2o1ZBTYC6OAxDNUYGg6ajZqcNmOspldmjQMdAxpiwWeOBaGmOoCTGVQ4CPOoYZxHUvZavcq4Ks4MWLfrLM/45yMKmh5jyC1RsU5bIc7S2FqI0SiHqQev0RAQ4T2TUq2riwIYclfamwYanLMqQFECrzkoZU7uNR2FNatbCK+TcW/AxoS4e9rn1AOOA5mmMRiEb9IllXqmiWDfqZSXSMZL0UCUR98FQas7vPyZ/Cp1fk22cie5v9GelEsHseejCeUX7rX99tcJrpkUt9ZuyFxAwV6Dya0ysYNUixE0G/5VJsAO2XkPNRzsONhw2B/FaUYY1XCM9bPzGAzGqKrSUWNYjXHQYDc2VLsxZwRkpIBjhsYYYIQB2PvCiEBDn2fZaTruGa0DwbrtVIhQ13FrFTk2EDBvK9T10G9K59JM5FbcgAhUMXjI4KEFjU34fiLxVkpuszeD4M6dxspbLMmGA2pfJDKw3l17KEQNJkLlcoYi4ZZ+zkiZidq9AmcakERL0lV1WEe2NO10VYONfkqlpwOXCpWTjHqcCSq9KiQ3RisGWdhptjVu/yzfKbPM5TrYCUqOKCj300Y4wX4mUJjMn8RGGY4rl1/IFxmNynRIwbgwhskqHVJWWRpNrDtshFVsOPwD8cUhyVeARPuYsANythmSfAEYAWi4wwwZg6Er7QGx02oY9ke8XjdYwMbBAmaIMSSLGbKYIfbneMySxXozRg2DeWYsMKEmhmFGDXZaDzCIGAcNFlAZl8DxuMKYGQN2K1YGcm0ZVcXA0MKCgJoAqhxoIkrOloxzZsZeOyH2GmkpQ6ZOAAPUzn6DyLU1Z6zqQAiR2HMYMNdRaxk8xCKUPwWgkEbVmG7Jir3NhoP8/6iFKVNUnGXakr0gGeBMmsrZY0+/y0nB1/0eUg84eloVRLLhWt7jFFlTahWcBVsRpBoPLlzJ79xFWFD5Toi66ZWwBXRw48KzNwJsvrsYvpy3OFeNluxWQqKLkeS7qZOtM13573AtagefjgzYNHI3F1Si/agMcmKgscST1VJQka8OnLDic/ujUMXBkLIGAXBuykkdA+OWvVZk/eGAQ0VyOFfnA7KYJUblI5kBwFSDGajgtA0VO+1HxRzCGZLFrBljdz1wRqL+IGY3peLxnCG/df3YgqkKoICJnQ2HfJtxnklt7dIldqUkAEFndkVhViSUGeXtxMcjNk9BqeAAZ2wvfl8W65nCYNtdM7f4+GgUqtiMsAIq5facjgc86Gj0L42L+K1ZvMnj5hvNuDunbjg797RU1AOOtUYNYVRqVGpErF8saT8btgGtEcEmgKBdKtrQKUAhi6xTyQWtHrWU1L75HHSJFmXkNqUqeBovhsWgtOTuYGwrPhFSQPv3AjE/WrVREWRQnndKs5GWkEpUhQhU/DlVjLk4arHPUFgnDMolAgJQMcxABDHDGIYh9qLeXRtizNAI6yu38mSQHEAFDscQDmwMyCsPfOpn2X3Rgk8hE2DYwngnYMaDliFZzJka89YDIABj55fcax/cyNUYt/8LxuINV8BGDvzYrdAZR20BLBcGvwyq/OoUjxCYnUamqAETga4eJ1rI0MxiSbpq3uGKP0bgmZvaClntottm/GTWjM122hbzFO00dkMunFi92+DICnsbZUb0uLan7+//1AOOtUZTyklg6VWP2TinnY9kZISysJTOQzqzXIqVAixd7xVNG860mT0t67RAR0VfVgc1QVgjbyi5Dhvy6WkUbasRwIlsIia2Hc3kxUGmn0YRPn9omw4nIhg0cJoNEMMSe/zCAc/4GoFZM8K6yms2kB4CFoyfVpklxhAUNpqVZLG/z3DOwAwzKgBMFhUZD1ic5mRoaqwzI+yuB6hBMV0QzaErs4oAWzF4xODaO94Aku+Wb+aKwDWDbGwHYWmsHHBBOK/rDGMFTShUoZuZ11Y0qcHUPbYvTad0KvkEdKBYFxSjCmvp2ul0sngFwQbglz/vOWiYekXQClMPONYi5XWzQ7uoR60lrWd4JeksOnufKdKX7akwIchJ88WlAKaV74vAZ4ukZoKLu82Uvquh5OgAb0oDlD6QUe+U4EUGhnob+uTdqJpgkFvqKVMq2lYjufYeRL02I2jyJclasFbW2XYY1zG7reXd4fZ8d5VzhsaYC9ModXIYmVqBxRDOlqPyWEf2kGP26fGbtlUgP1ViYYlgWDQcbtrGeBBDYIzZgEDw5h1uu3t/WK/pIGLUFgkU0dgg1DeCdzxJoYwFwuT5HUw+Mk1SBIA+30N5djeWRhNmFOth6/LTAtFklkKYS9BOp5XDk3DYchNb7J2GY3Usi21Oru6ndOWVV+LMM8/EEUccASLCpz/96ZVO0uokAjqNkyi7nFZ9uZjpCN3TNo7FhDOFuhcyIJwONiyx3mIRfDRdBycaiynCm6qTZ059bJQMfH1AKb5QoCNoPvwz4wRqPnIPmguZpqjUN3UcPGSHc1g0GvpAmFaZqxYwMDWM12YM1FGB/dlihmrMGaexqMhpN8JB8doBETftUpGfhiG59tu1+bbEIMwa69PkVokEDYdMrXhgTJX7Lur6br89vdb2xIPj2dtfdbYEZkC2tG+UsS44l8SyjUMzzMDWqZFgdI5UGmEucTudmnF1aAhWO60awLFz50487nGPwwc/+MGVTsrqJqcvRmuHwoVL1oKnJUjo0cmkVt6FOCYTe5XvVG9447jE42NHknhSwEvNF9j93yQwEYbDk0apkkctYaqVKkltaCxX8A/JOM0EqPgpLPzGbVEvCyOKvOT8cYQVLV4gaeebAZgMRIshYEP5FiME0DFbjTA0FsYAFgSDOkx5RG2HxSyNMWtsNBxF1G5EsEHi0gIDP/Uy8FMx5LUdMi1D7DR/BowZGmPWjLK0OesSMMIAlioGBrVToedNxe9RL9vNWxNzV5cLMUA1B7fmkt8lcu1FaUfCNIh6Q7Q7ElsCbFNNRuQrgNM0YlVfWxKXpFGgaBcjFt/+JobHqk9cGeDhnLvt3bEaaNVMqZxxxhk444wzVjoZBxCRutIdTwEssPtHWkVbJFZa+mmHFtOSH0myXE8Y0cm55XumSt0i+KYiSRbUSK6UPLGdYaiRV5HRP8nVUh1hakoM+SgBICHBMjdA6h78nLwyGgXB+5pI/XgE4ZVtxBbmHcifgx0Jwuidh3DTJmpUT+wnF7wmgchizixgxtTKZkNyWAMO9mAjGow6v2PsV92SW5EC+OWw/hk78DED6zp2GFQwqJgBC1gm7zBV2YWYEXbXw6DF4JB8Cp9YGQCVRT1S3ywaEETRJzvI8jhWMpKy11oP4wAK134U6QPh4OBLBg2U5reX3AGUavRJFP1vhHqUpEJXplS6d0r69FkryF7qdhooA15N1Jed9wGtkSmVVQM4Fkvz8/OYn58Pv3fs2AEAGGO0UiB2PyZB+MjyJlW1uluFpl1or0u9zr2rU+p+cUmTsfRUUCjIfWodtqZ56yBAofzayoWyck2s+ciH5hFE8NAlwENtYQqCWzIydiKcDWBrN/IlP6ng1RbWDFATwRLBjr39AhOsBawlWEuorXOa5TyXMsyCdeVuLahmN83gr21twXYBw+EDQL2AerSA8WCEUbWAkVnAQjXCrsEYw2oBM8MRKjPGiLytBVnUJGdgDIsxWYzIYgzCmAljAGMm1P4sv0fWYpcFdtoKD9QV5usKC7XBQg2MamDMANcMM2a3r8poADtvwOMKdmRgx+5guR4ZjHdVoJFBtcDAGEAN0BjgMYPHAI+B2jLqMWM4srBjBtUuH8LZsl/NUoNsDVMz2NYuz9j6szpg3fpbtmrZbM7jK4j/nZpsZBWzpDVp1NL8lZJWpOX1paaJxrNATWP/+cufqL2VS2OMli4xy0gHLODYtm0b3va2tzXu/x2+sAKpOYBocjvtaU+pz8eeetp/yLfHn//85zj44IOXJYqZmRls3boVf3fH3sulrVu3YmZmZglStXxEvFrW0ygiInzqU5/CWWed1cqTazjuuecePPShD8Wtt966bJVnNdC9996Lo48+Grfddhs2bty40slZMerzwVGfD476fIjU54WjHTt24JhjjsHdd9+NQw45ZNni2b17NxYWFvY6nJmZGczNzS1BipaPDlgNx+zsLGZnZxv3Dz744DXdiIQ2btzY5wP6fBDq88FRnw+R+rxwZMzyrq2Ym5vb74HCUtGqWaXSU0899dRTTz2tXlo1Go77778fP/jBD8Lvm2++Gddffz02b96MY445ZgVT1lNPPfXUU089TaJVAziuueYaPOtZzwq/zz//fADA2WefjY997GMT35+dncVb3vKW4jTLWqI+Hxz1+eCozwdHfT5E6vPCUZ8PS0+r0mi0p5566qmnnnpaXdTbcPTUU0899dRTT8tOPeDoqaeeeuqpp56WnXrA0VNPPfXUU089LTv1gKOnnnrqqaeeelp2WhOA4/vf/z6e//zn47DDDsPGjRtx8skn4//+3/+b8Nx666147nOfi/Xr12PLli143eteh/F4vEIpXj76/Oc/j6c85SlYt24dNm3a1PDWulbyAXDeaB//+MeDiHD99dcnz/7f//t/eMYznoG5uTkcffTReNe73rUyiVwmuuWWW/Cyl70MD3vYw7Bu3To84hGPwFve8paGx8MDPR+EPvjBD+LYY4/F3NwcnvKUp+Ab3/jGSidpWWnbtm148pOfjA0bNmDLli0466yzcNNNNyU8u3fvxrnnnotDDz0UBx10EF70ohfhzjvvXKEU7xt65zvfCSLCq1/96nBvLebDshGvAXrUox7Fv/qrv8rf+ta3+Pvf/z7//u//Pq9fv55vv/12ZmYej8d83HHH8amnnsrXXXcdf+ELX+DDDjuML7jgghVO+dLSJz/5Sd60aRNfeOGFfNNNN/GNN97If/M3fxOer5V8EHrlK1/JZ5xxBgPg6667LtzfsWMHH3744fySl7yEb7jhBv4f/+N/8Lp16/jDH/7wyiV2ielv//Zv+ZxzzuHLLruMf/jDH/JnPvMZ3rJlC7/mNa8JPGshH5iZL7nkEp6ZmeGPfvSjfOONN/LLX/5yPuSQQ/jOO+9c6aQtG51++ul80UUX8Q033MDXX389/+qv/iofc8wxfP/99weeV7ziFXz00UfzFVdcwddccw0/9alP5ac97WkrmOrlpW984xt87LHH8vHHH8+vetWrwv21lg/LSQc84PjpT3/KAPjKK68M9+69914GwJdffjkzM3/hC19gYwzfcccdgefCCy/kjRs38vz8/D5P83LQaDTiI488kv/iL/6ilWct5IPQF77wBf6lX/olvvHGGxuA40//9E9506ZNyTf/4R/+IT/60Y9egZTuO3rXu97FD3vYw8LvtZIPJ554Ip977rnhd13XfMQRR/C2bdtWMFX7lu666y4GwF/5yleYmfmee+7h4XDIn/jEJwLPd7/7XQbAV1111Uolc9novvvu40c96lF8+eWX86/8yq8EwLHW8mG56YCfUjn00EPx6Ec/Gn/5l3+JnTt3Yjwe48Mf/jC2bNmCE044AQBw1VVX4bGPfSwOP/zw8N7pp5+Oe++9FzfeeONKJX1J6dprr8VPfvITGGPwhCc8AQ95yENwxhln4IYbbgg8ayEfAODOO+/Ey1/+cvz3//7fsX79+sbzq666Cs985jOTnRdPP/103HTTTbj77rv3ZVL3Ke3YsQObN28Ov9dCPiwsLOCb3/wmTj311HDPGINTTz0VV1111QqmbN/Sjh07ACCU/ze/+U2MRqMkX37pl34JxxxzzAGZL+eeey6e+9znJt8LrL18WG464AEHEeFLX/oSrrvuOmzYsAFzc3N4z3veg0svvRSbNm0CANxxxx2JkAUQft9xxx37PM3LQT/60Y8AAG9961vxpje9CZ/73OewadMmnHLKKfjFL34BYG3kAzPjnHPOwSte8Qo86UlPKvKshXzI6Qc/+AHe//7343d/93fDvbWQDz/72c9Q13XxOw+Ub5xE1lq8+tWvxtOf/nQcd9xxAFz5zszMNHZJPRDz5ZJLLsG1116Lbdu2NZ6tpXzYF7RqAccb3vAGEFHn8b3vfQ/MjHPPPRdbtmzBV7/6VXzjG9/AWWedhTPPPBO33377Sn/GXtO0+WCtBQC88Y1vxIte9CKccMIJuOiii0BE+MQnPrHCX7H3NG0+vP/978d9992HCy64YKWTvCw0bT5o+slPfoJ//a//Nf7Nv/k3ePnLX75CKe9ppejcc8/FDTfcgEsuuWSlk7LP6bbbbsOrXvUq/PVf//Wa2bF1JWnV7KWS02te8xqcc845nTwPf/jD8eUvfxmf+9zncPfdd4etlv/0T/8Ul19+OS6++GK84Q1vwNatWxtW6WKFvHXr1mVJ/1LRtPkg4Ooxj3lMuD87O4uHP/zhuPXWWwFgTeTDl7/8ZVx11VWN/RGe9KQn4SUveQkuvvhibN26tWGFfqDlg9A///M/41nPehae9rSn4c/+7M8SvtWcD9PSYYcdhqqqit95oHxjF5133nn43Oc+hyuvvBJHHXVUuL9161YsLCzgnnvuSUb3B1q+fPOb38Rdd92FJz7xieFeXde48sor8YEPfACXXXbZmsiHfUYrbUSy3PTZz36WjTF83333Jff/xb/4F/yOd7yDmaOxpLZK//CHP8wbN27k3bt379P0Lhft2LGDZ2dnE6PRhYUF3rJlS1h1sBby4Z/+6Z/429/+djguu+wyBsCf/OQn+bbbbmPmaCy5sLAQ3rvgggsOOGPJH//4x/yoRz2Kf+M3foPH43Hj+VrJhxNPPJHPO++88Luuaz7yyCMPaKNRay2fe+65fMQRR/D3v//9xnMxlvzkJz8Z7n3ve9874Iwl77333qQ/+Pa3v81PetKT+Dd/8zf529/+9prJh31FBzzg+OlPf8qHHnoov/CFL+Trr7+eb7rpJn7ta1/Lw+GQr7/+emaOy0FPO+00vv766/nSSy/lBz/4wQfcctBXvepVfOSRR/Jll13G3/ve9/hlL3sZb9myhX/xi18w89rJB00333xzY5XKPffcw4cffjj/u3/37/iGG27gSy65hNevX39ALQf98Y9/zI985CP52c9+Nv/4xz/m22+/PRxCayEfmN2y2NnZWf7Yxz7G3/nOd/jf//t/z4ccckiyWutAo9/7vd/jgw8+mLdv356U/QMPPBB4XvGKV/AxxxzDX/7yl/maa67hk046iU866aQVTPW+Ib1KhXnt5sNy0AEPOJiZ/+Ef/oFPO+003rx5M2/YsIGf+tSn8he+8IWE55ZbbuEzzjiD161bx4cddhi/5jWv4dFotEIpXh5aWFjg17zmNbxlyxbesGEDn3rqqXzDDTckPGshHzSVAAcz87e+9S0++eSTeXZ2lo888kh+5zvfuTIJXCa66KKLGEDx0HSg54PQ+9//fj7mmGN4ZmaGTzzxRP7617++0klaVmor+4suuijw7Nq1i3//93+fN23axOvXr+cXvOAFCSA9UCkHHGs1H5aD+u3pe+qpp5566qmnZadVu0qlp5566qmnnnpaPdQDjp566qmnnnrqadmpBxw99dRTTz311NOyUw84euqpp5566qmnZacecPTUU0899dRTT8tOPeDoqaeeeuqpp56WnXrA0VNPPfXUU089LTv1gKOnnnrqqaeeelp26gFHTz311FNPPfW07NQDjp562o/plFNOwatf/eqVTgaAfZuWn//859iyZQtuueWWfRJfiX7jN34D7373u1cs/p56OtCoBxw9HfB0zjnn4KyzzlrpZOwTWk5Q8L//9//G29/+9mUJO6d3vOMdeP7zn49jjz0WAHDllVfizDPPxBFHHAEiwqc//enWd3/rt34Lb3rTm3DZZZeBiDqPL37xi63hvOlNb8I73vEO7NixY4m/rqee1ib1gKOnnvYhLSwsrHQS9pg2b96MDRs2LHs8DzzwAD7ykY/gZS97Wbi3c+dOPO5xj8MHP/jBznfrusbnPvc5/Nqv/Rqe+cxn4vbbbw/HoYceiv/v//v/knvPfvazW8M67rjj8IhHPAJ/9Vd/tWTf1lNPa5l6wNHTmqZLL70UJ598Mg455BAceuiheN7znocf/vCHCc8nP/lJPPaxj8W6detw6KGH4tRTT8XOnTsBANZabNu2DQ972MOwbt06PO5xj8MnP/nJ8O4pp5yC8847D69+9atx2GGH4fTTT29Ny86dO/HSl74UBx10EB7ykIc01PmT4jrnnHPwla98Be973/vCCP6WW27Bsccei/e+971JWI9//OPx1re+NUnnK1/5Srz+9a/H5s2bsXXr1uS58GjtyTTv3HfffXjJS16CBz3oQXjIQx6CP/mTP5mohfnCF76A2dlZPPWpTw33zjjjDPyn//Sf8IIXvKD1PQD4+7//ewyHQzz5yU/GunXrsHXrVmzduhV1XePnP/85nvGMZ4R7W7duRVVVneGdeeaZuOSSSzp5euqpp+moBxw9rWnauXMnzj//fFxzzTW44oorYIzBC17wAlhrAQC33347XvziF+O3f/u38d3vfhfbt2/HC1/4Qsgmy9u2bcNf/uVf4kMf+hBuvPFG/MEf/AF+8zd/E1/5yldCHBdffDFmZmbwta99DR/60Ida0/K6170OX/nKV/CZz3wGX/ziF7F9+3Zce+214fmkuN73vvfhpJNOwstf/vIwgj/66KOnzouLL74YD3rQg3D11VfjXe96F/7oj/4Il19++V69c/755+NrX/saPvvZz+Lyyy/HV7/61eSbSvTVr34VJ5xwwtTp1vTZz34WZ555JogouX/dddcBAJ74xCcuKrwTTzwR3/jGNzA/P79H6empp54iDVY6AT31tJL0ohe9KPn90Y9+FA9+8IPxne98B8cddxxuv/12jMdjvPCFL8RDH/pQAMBjH/tYAMD8/Dz+83/+z/jSl76Ek046CQDw8Ic/HH/3d3+HD3/4w/iVX/kVAMCjHvUovOtd7+pMx/3334+PfOQj+Ku/+qug5r/44otx1FFHTR3XwQcfjJmZGaxfvx5bt25ddF4cf/zxePHo+Q4AAAaiSURBVMtb3hLS/IEPfABXXHEFnvOc5+zRO/fddx8uvvhifPzjHw/fdNFFF+GII47oTMc//dM/TeRpo8985jP4kz/5k8b9a6+9FkcffTQOPfTQ5P4LXvACbN++Hc9+9rMTbZHQEUccgYWFBdxxxx2h/Hvqqac9ox5w9LSm6R//8R/x5je/GVdffTV+9rOfBc3GrbfeiuOOOw6Pe9zj8OxnPxuPfexjcfrpp+O0007Dr//6r2PTpk34wQ9+gAceeKAhkBcWFvCEJzwh/J5mtP7DH/4QCwsLeMpTnhLubd68GY9+9KMBYOq49oaOP/745PdDHvIQ3HXXXXv8zo9+9COMRiOceOKJ4fnBBx8cvqmNdu3ahbm5ucUkHQDw3e9+F//8z/9ctMu49tpri9qNV73qVfjt3/5tXHzxxcUw161bB8DZlfTUU097Rz3g6GlN05lnnomHPvSh+PM//3McccQRsNbiuOOOC8adVVXh8ssvx9///d/ji1/8It7//vfjjW98I66++mrcf//9AIDPf/7zOPLII5NwZ2dnw/WDHvSgvU7ntHGVyBgTpoCERqNRg284HCa/iSgAsDbak3cm0WGHHYa777570e999rOfxXOe85wiWLn22mvxO7/zO437p5xyCrZv394a5i9+8QsAwIMf/OBFp6ennnpKqbfh6GnN0s9//nPcdNNNeNOb3oRnP/vZ+OVf/uWioCMiPP3pT8fb3vY2XHfddZiZmcGnPvUpPOYxj8Hs7CxuvfVWPPKRj0yOxdhOAMAjHvEIDIdDXH311eHe3Xffje9///sAMHVcMzMzqOs6CfvBD34wbr/99vD73nvvxc0337yo9O0JPfzhD8dwOMQ//MM/hHs7duwI39RGT3jCE/Cd73xn0fF95jOfwfOf//zG/Z/97Ge47bbbFm2/AQA33HADjjrqKBx22GGLfrennnpKqddw9LQmaMeOHbj++uuTe5s2bcKhhx6KP/uzP8NDHvIQ3HrrrXjDG96Q8Fx99dW44oorcNppp2HLli24+uqr8dOf/hS//Mu/jA0bNuC1r30t/uAP/gDWWpx88snYsWMHvva1r2Hjxo04++yzp07fQQcdhJe97GV43eteh0MPPRRbtmzBG9/4RhjjxgTTxnXsscfi6quvxi233IKDDjoImzdvxr/6V/8KH/vYx3DmmWfikEMOwZvf/OaJqzOWgjZs2ICzzz4br3vd67B582Zs2bIFb3nLW2CMaRh1ajr99NNxwQUX4O6778amTZsAOA3PD37wg8Bz88034/rrr8fmzZtxzDHH4K677sI111yDz372s43wxEh1TwDHV7/6VZx22mmLfq+nnnpqUg84eloTtH379oatw8te9jJccskleOUrX4njjjsOj370o/Hf/tt/wymnnBJ4Nm7ciCuvvBLvfe97ce+99+KhD30o3v3ud+OMM84AALz97W/Hgx/8YGzbtg0/+tGPcMghh+CJT3wi/uN//I+LTuN/+S//Bffffz/OPPNMbNiwAa95zWsSp1PTxPXa174WZ599Nh7zmMdg165duPnmm3HBBRfg5ptvxvOe9zwcfPDBePvb375PNBwA8J73vAeveMUr8LznPQ8bN27E61//etx2222dNhqPfexj8cQnPhH/83/+T/zu7/4uAOCaa67Bs571rMBz/vnnAwDOPvtsfOxjH8P/+T//ByeeeGJRE3Hdddfh8MMPX7Qh6u7du/HpT38al1566aLe66mnnspEnE/u9tRTTz0tE+3cuRNHHnkk3v3udyeOvXL6/Oc/j9e97nW44YYbgpani37t134NJ598Ml7/+tcvOk3bt2/HBz7wgcYqlQsvvBCf+tSnOr2R9tRTT9NTr+Hoqaeelo2uu+46fO9738OJJ56IHTt24I/+6I8AoGhroem5z30u/vEf/xE/+clPprKHOfnkk/HiF7940ek79dRT8a1vfQs7d+7EUUcdhU984hNh2fFwOMT73//+RYfZU089lanXcPTUU0/LRtdddx1+53d+BzfddBNmZmZwwgkn4D3veU/wZdJTTz2tHeoBR0899dRTTz31tOzUL4vtqaeeeuqpp56WnXrA0VNPPfXUU089LTv1gKOnnnrqqaeeelp26gFHTz311FNPPfW07NQDjp566qmnnnrqadmpBxw99dRTTz311NOyUw84euqpp5566qmnZacecPTUU0899dRTT8tOPeDoqaeeeuqpp56WnXrA0VNPPfXUU089LTv1gKOnnnrqqaeeelp2+v8BoyWkBmR/yJ8AAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "fig, ax = plt.subplots()\n", "plt.pcolormesh(detunings, areas, mu_set, shading='gouraud')\n", "plt.colorbar(ax=ax)\n", "plt.xlabel(\"Laser detuning ($1/T_1$)\")\n", "plt.ylabel(\"Pulse area ($\\pi$)\")\n", "plt.show()" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:19:44.460749Z", "start_time": "2024-02-09T09:19:44.296983Z" } } }, { "cell_type": "markdown", "source": [ "Notice that we can see the usual Rabi oscillations when our laser is resonant with the exciton transition. However, by red-detuning to half the binding energy 'detuning' = -50, we notice that a second resonance appears when we increase the pulse area. This is TPE.\n", "\n", "In the above case, we are only looking at one exciton transition. When the laser is resonant, we are fully populating the $|x\\rangle$ state and hence $\\mu\\simeq 1$. But, through the TPE resonance, we are occupying $|b\\rangle$, which then decays 50:50 to both $|x\\rangle$ and $|y\\rangle$. Hence, we only see up to $\\mu\\simeq 0.5$ because the other half of the emission is polarised orthogonally to our collection polarisation.\n", "\n", "Now that we have located the TPE at roughly 'detuning' = -50 and 'area' = $4\\pi$, we can take a look at some properties of the biexciton source. First, let's plot the lifetime:" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 33, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG4CAYAAAC5JsY+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABwD0lEQVR4nO3dd5iU1d3G8e8zffsuW1lYehORIihiAxREVKJJLLGBGPWNYiWayBtLNFHswTeiqLEmErFirKgoYEFpoiBK72xle5v+/jHL6IYFdtgpW+7PdU129pmn/HbcMPeec55zDL/f70dERESknTDFugARERGRcFK4ERERkXZF4UZERETaFYUbERERaVcUbkRERKRdUbgRERGRdkXhRkRERNoVhRsRERFpVxRuREREpF1RuBEREZF2JabhZsmSJUyaNInc3FwMw2D+/PnNPvaLL77AYrEwdOjQiNUnIiIibU9Mw01NTQ1Dhgxh9uzZIR1XXl7O5MmTOfXUUyNUmYiIiLRVRmtZONMwDN58803OOeecQ+77m9/8hr59+2I2m5k/fz6rV69u9nV8Ph979uwhKSkJwzAOv2ARERGJGr/fT1VVFbm5uZhMB2+bsUSpprB57rnn2LJlC//617/461//esj9nU4nTqcz+P3u3bsZOHBgJEsUERGRCNm5cyddu3Y96D5tKtxs3LiRW2+9lc8++wyLpXmlz5w5k7vuumu/7Tt37iQ5OTncJYqIiEgEVFZWkpeXR1JS0iH3bTPhxuv1ctFFF3HXXXfRr1+/Zh83Y8YMpk+fHvx+35uTnJyscCMiItLGNGdISZsJN1VVVaxYsYJvvvmGa6+9FgiMn/H7/VgsFj788ENOOeWU/Y6z2+3Y7fZolysiIiIx0mbCTXJyMmvWrGm07fHHH+eTTz7htddeo2fPnjGqTERERFqTmIab6upqNm3aFPx+69atrF69mk6dOtGtWzdmzJjB7t27efHFFzGZTAwaNKjR8VlZWTgcjv22i4iISMcV03CzYsUKxo4dG/x+39iYKVOm8Pzzz5Ofn8+OHTtiVZ6IiEir4ff78Xg8eL3eWJcSMVarFbPZ3OLztJp5bqKlsrKSlJQUKioqNKBYRETaBJfLRX5+PrW1tbEuJaIMw6Br164kJibu91oon99tZsyNiIhIR+Tz+di6dStms5nc3FxsNlu7nITW7/dTXFzMrl27ghP1Hi6FGxERkVbM5XLh8/nIy8sjPj4+1uVEVGZmJtu2bcPtdrco3GhVcBERkTbgUEsOtAfhapFq/++UiIiIdCgKNyIiItKuKNyIiIhIRM2ePZsePXrgcDgYOXIky5Yti+j1FG5EREQkYubNm8f06dO58847WbVqFUOGDGHChAkUFRVF7JoKN3JIq95/kc9feijWZYiISBv0yCOPcOWVVzJ16lQGDhzInDlziI+P59lnn43YNXUruBzU9nVfY/39TNJ9sDqrC0PHXxjrkkREOjy/30+dOzYzFcdZzc2+q8nlcrFy5UpmzJgR3GYymRg3bhxLly6NVIkKN3Jwax75M719gef5j/9d4UZEpBWoc3sZeMeCmFx73d0TiLc1Lz6UlJTg9XrJzs5utD07O5sff/wxEuUB6paSQ0jcuCf4PHdjGW5XfQyrEREROTS13MgBuZy1pBe7gt/bPLD1u8/pN2JcDKsSEZE4q5l1d0+I2bWbKyMjA7PZTGFhYaPthYWF5OTkhLu0ILXcyAHt+HE5Fh/UW2Fnz8AiZrtXfRbjqkRExDAM4m2WmDxCmUXYZrMxfPhwFi5cGNzm8/lYuHAho0aNisRbAyjcyEEUrF0OwN7sOFx98wCoWbsmliWJiEgbM336dJ5++mleeOEFfvjhB66++mpqamqYOnVqxK6pbik5oOotG0gH6ruk4+jTFz78AfOeyM1LICIi7c8FF1xAcXExd9xxBwUFBQwdOpQPPvhgv0HG4aRwIwfkKdkLgJHZieQefQCIK6qKZUkiItIGXXvttVx77bVRu566peSAjNJyACzpGWT3GQxAaqkLn88Xw6pEREQOTuFGDshSXg2APSuHzr2PwmeA3QMluzfGuDIREZEDU7iRA7JXBOa0Scjugs0eT3lK4Pa//A3fxrIsERGRg1K4kQNKqHIDkNq5OwDVGQkAlG1bH7OaREREDkXhRprkqqslsc4PQKfcXgC405MBqC/Yc8DjREREYk3hRppUkr8ZAK8BqVmBOW6MjE4AeEqKY1aXiIjIoSjcSJPKC7YDUJVowmwOzBhgycwEwCgpi1ldIiIih6JwI02qLQu0zjjjfpoKKS6nCwCWUs11IyIirZfCjTSpvjwwgZ8r3hrcltg50D0VV66VwUVEpPVSuJEmuSoCXU/eBHtwW6euvQFIqnTHpCYREZHmULiRJrkrygHwJsQFt2V07QeAww1V5VpjSkREDm7JkiVMmjSJ3NxcDMNg/vz5Ubmuwo00yVtVGXiSGB/clpiSTm1DQ07RDs11IyIiB1dTU8OQIUOYPXt2VK+rhTOlSb7qGgCMpKRG26uTrcQXu6nYvRUGnxSL0kREpI2YOHEiEydOjPp1FW6kaVWBcGNOSmy0uT41DordVO7ZHouqREQEwO8Hd21srm2NB8OIzbWbSeFGmmSqCfyfxpKc2mi7Oy0JqNQsxSIiseSuhXtzY3Pt/90DtoTYXLuZNOZGmmSucQJgS01ttF2zFIuISGunlhtpkrXWBYAjJb3RdktWFqBZikVEYsoaH2hBidW1WzmFG2mSvdYDQFxqZqPtcdmBZlDNUiwiEkOG0eq7hmJJ4Uaa5Kj3ARCfltFoe4JmKRYRkWaqrq5m06ZNwe+3bt3K6tWr6dSpE926dYvYdRVuZD8+nw+7yw9Awn91S6V07oYbiK/xxKAyERFpS1asWMHYsWOD30+fPh2AKVOm8Pzzz0fsugo3sh9nfTXmQLYhLjGt0WvpnXtSACTU+3HV1WKLa/19ryIiEhtjxozB7/dH/bq6W0r2U1uxN/g8PqlxuElOz8XT8Fuzt2BLNMsSERFpFoUb2U9ddTkALgtYbY5Gr5nNFqoTAr825QWayE9ERFqfmIabUBfUeuONNxg/fjyZmZkkJyczatQoFixYEJ1iO5C6ylIAXNamZ6CsS7QBUFW4K2o1iYiINFdMw02oC2otWbKE8ePH895777Fy5UrGjh3LpEmT+OabbyJcacdSX1UOgMve9K+HKznQmlNbnB+tkkRERJotpgOKQ11Qa9asWY2+v/fee3nrrbd4++23GTZsWJir67icNZVYALfd3OTrntREoBxnSVFU6xIREWmONn23lM/no6qqik6dOh1wH6fTidPpDH5fWVkZjdLaNFd1JQmA236AX4+0FGAXnr17m35dREQkhtr0gOKHHnqI6upqzj///APuM3PmTFJSUoKPvLy8KFbYNrmqAwHQa7c2+bq5U+AOKn9pRdRqEhERaa42G27mzp3LXXfdxSuvvEJWw3pHTZkxYwYVFRXBx86dO6NYZdvkra0BwBfXdLixZwTeb3OFlmAQEZHWp012S7388stcccUVvPrqq4wbN+6g+9rtdux2e5Qqax88NdUA+BxNv29xmTkAWCvqolaTiIhIc7W5lpt///vfTJ06lX//+9+ceeaZsS6nXdrXckOco8nXE7O6Bl6uckWrJBERkWaLabiprq5m9erVrF69GvhpQa0dO3YAgS6lyZMnB/efO3cukydP5uGHH2bkyJEUFBRQUFBARYXGfoSTv7Y28OQA4Sa1c2Cxs8QaLz6fL1pliYhIGzNz5kyOOeYYkpKSyMrK4pxzzmH9+vURv25Mw82KFSsYNmxY8Dbu6dOnM2zYMO644w4A8vPzg0EH4KmnnsLj8TBt2jQ6d+4cfNxwww0xqb+98tcFVvw2xcc1+Xpadg8AbB6oqSyJVlkiItLGLF68mGnTpvHVV1/x0Ucf4Xa7Oe2006ipqYnodWM65uZQC2r994qhixYtimxBEhAMN00vipmYkk69FRxuKN2zlaTUAw/oFhGRjuuDDz5o9P3zzz9PVlYWK1eu5OSTT47YddvkgGKJLKMuMC+QOT7hgPvUJFpwlHkoL9hO94Ejo1WaiIgAfr+fOk9sbuqIs8RhGE0vz3Mo+4aRHGx+unBQuJH9mJxuAMxxTbfcANQl2aDMQ3XR7miVJSIiDeo8dYycG5s/LL++6GvirQf+fDgQn8/HjTfeyAknnMCgQYMiUNlPFG5kPyaXBwCL48C/vO6UeKCW+uLCKFUlIiJt2bRp01i7di2ff/55xK+lcCP7CYabg3RL+VKTgBJce4ujVJWIiOwTZ4nj64u+jtm1Q3XttdfyzjvvsGTJErp27RqBqhpTuJH9WFzewNeDdEsZaakAeEvLolGSiIj8jGEYh9U1FG1+v5/rrruON998k0WLFtGzZ8+oXFfhRvZjdgfCjS0u8YD7WNLTATDKNMeQiIg0bdq0acydO5e33nqLpKQkCgoKAEhJSSEuLvQWoOZqczMUS+RZ3IGJ+WwJSQfcJ7i+VHlk5yoQEZG264knnqCiooIxY8Y0mp9u3rx5Eb2uWm5kP1Z3YO6hg7XcJGR1BsBeVR+VmkREpO052Fx2kaSWG9mPrSHc2A/ScpOUnQdAvNaXEhGRVkbhRhrx+XzYAjdLYY8/cLjp1LkHAIm1fjxuBRwREWk9FG6kkfrayuDzuMTUA+6Xlt0dAJMfyot3RrosERGRZlO4kUacPws3jvjkA+5ntTmojgtMv12Wvy3SZYmIiDSbwo00UlcduLXbYwoEmIOpSbICUFm4K+J1iYiINJfCjTTirK0CwGVtxr5JdgBqivZEsiQREZGQKNxII/vCjdt66F8NT0pgeYb6Eq0vJSIirYfCjTTiagg3Huuhl7P3pwXG5Lj3lkS0JhERkVAo3Egj7trAjMMeq/mQ+5o6pQHgLy2PZEkiIiIhUbiRRtx11QB4bYcON7b0TABM5VURrUlERCQUCjfSiKeuFgBvM1puHJnZAFgrtL6UiIjs74knnmDw4MEkJyeTnJzMqFGjeP/99yN+XYUbacRTFwgqPtuhlx1LzOoCgKPSGdGaRESkberatSv33XcfK1euZMWKFZxyyimcffbZfP/99xG9rhbOlEY8dXUA+OyHvhc8pXN36oGEak+EqxIRkbZo0qRJjb6/5557eOKJJ/jqq6848sgjI3ZdhRtpxOcMrPLttx063HTq3JM9QJwLaqvLiT/Icg0iIhI+fr8ff8Mfo9FmxMVhGIe+o/a/eb1eXn31VWpqahg1alQEKvuJwo004nMFupj81kP/aiSlZeM2g9ULZQXbiO8zNMLViYgIgL+ujvVHD4/JtfuvWokRH9/s/desWcOoUaOor68nMTGRN998k4EDB0awQo25kf/idzas8N2McGMymahOCAw81vpSIiLSlP79+7N69Wq+/vprrr76aqZMmcK6desiek213EgjPndDuGlGtxRAXbKNtMo6qgt3R7AqERH5OSMujv6rVsbs2qGw2Wz06dMHgOHDh7N8+XIeffRRnnzyyUiUByjcyH9zuQNfm9FyA+BKjgPqqC3Oj1xNIiLSiGEYIXUNtSY+nw+nM7J32SrcSCN+dyDcGFZbs/b3piYCpbhKiiJYlYiItEUzZsxg4sSJdOvWjaqqKubOncuiRYtYsGBBRK+rcCON7Qs3tuaFGyMtFdiBZ29p5GoSEZE2qaioiMmTJ5Ofn09KSgqDBw9mwYIFjB8/PqLXVbiRxlyBOWuMZo65sWSkB56UVUSqIhERaaOeeeaZmFxXd0tJYw0tNyabvVm72zOyALCUV0esJBERkVAo3EgjhjvQctPccBOf2RkAW2V9xGoSEREJhcKNNGK4vQCYmjnmJim7KwDxVa6I1SQiIhIKhRtpxNTQcmO2N6/lJi23JwCJNT68Xq0xJSIisadwI40YnoaWm2aGm05ZPQAw+6GiWBP5iYhI7CncSCMmjw8As83RrP1tcfHUOAILqJXmb41YXSIiHZ3f7491CREXrp9R4UYaMTW03FjszZ9euyYpMKNAZcGOiNQkItKRWa2BqTlqa2tjXEnkuVyB8Ztms7lF59E8N9KI2R1ouQkl3DiTHFDsplrdUiIiYWc2m0lNTaWoKDATfHx8PIZhxLiq8PP5fBQXFxMfH4/F0rJ4onAjjZj3dUs1c8wNgDs1AaiivlhLMIiIREJOTg5AMOC0VyaTiW7durU4vCncSCMmb6C/0xpCy40/NQkowLO3JEJViYh0bIZh0LlzZ7KysnA3TLbaHtlsNkymlo+YiWm4WbJkCQ8++CArV64kPz+fN998k3POOeegxyxatIjp06fz/fffk5eXx2233cZll10WlXo7Aosn9G4pU6dOAPj2lkWkJhERCTCbzS0ej9IRxHRAcU1NDUOGDGH27NnN2n/r1q2ceeaZjB07ltWrV3PjjTdyxRVXRHx10Y7E0jBVjdUR3+xjrOkZAJjKqyJRkoiISEhi2nIzceJEJk6c2Oz958yZQ8+ePXn44YcBOOKII/j888/529/+xoQJEyJVZodiaeiWsjkSmn1MXFagL9hSURORmkRERELRpm4FX7p0KePGjWu0bcKECSxdujRGFbUvPp8v2HJjC6HlJjGrCwCOKmckyhIREQlJmxpQXFBQQHZ2dqNt2dnZVFZWUldXR1zc/uNEnE4nTudPH7qVlZURr7Ot8rjrg2k3lAHFyTl5OIGEai2/ICIisdemWm4Ox8yZM0lJSQk+8vLyYl1Sq+Wqrws+t9qb3y3VqXNgfal4J9TVKjyKiEhstalwk5OTQ2FhYaNthYWFJCcnN9lqAzBjxgwqKiqCj507d0aj1DbJ7fxpzIw9rvnhJrlTZ9wNg/dL92wJd1kiIiIhaVPhZtSoUSxcuLDRto8++ohRo0Yd8Bi73U5ycnKjhzTNVRcINz4DrM1cWwoCky5VJwTSTXnB9ojUJiIi0lwxDTfV1dWsXr2a1atXA4FbvVevXs2OHYE1imbMmMHkyZOD+//ud79jy5Yt/OEPf+DHH3/k8ccf55VXXuGmm26KRfntjssZWLfEfRhTKNQlBdY+qSrcFc6SREREQhbTcLNixQqGDRvGsGHDAJg+fTrDhg3jjjvuACA/Pz8YdAB69uzJu+++y0cffcSQIUN4+OGH+cc//qHbwMPEVR8IN15z6NNeu1IC3YK1RflhrUlERCRUMb1basyYMQdd3vz5559v8phvvvkmglV1XO6GcOM5jN8Kb2oSUIarpH2veyIiIq1fmxpzI5HlddUD4LGE/mthpKUGji0tDWdJIiIiIVO4kSC3M3AruNcSereUuWF9KcoqwlmSiIhIyBRuJMjTMM+N7zBabuyZWQBYyqrDWpOIiEioFG4kyBNsuQn91yIhKxcAW2V9WGsSEREJlcKNBHmdgWDis4R+L3hSdlcA4qpdYa1JREQkVAo3EuRtWIPrcLqlUnO6A5BY48Pr1RpTIiISOwo3EuRzB8KN3xr6veDpOb0AsPigonh3WOsSEREJhcKNBAVbbqyhd0vZ4uKpcQTusirN3xrWukREREKhcCNBPtfht9wA1CQFjqso1OKkIiISOwo3EuRztizcOJMCi23WFO0JW00iIiKhUriRIJ+74U4ny+GFG3dKPAD1xQXhKklERCRkCjcS5He5A09shxdu/GnJAHj2loSrJBERkZAp3EiQ39XQcmO1HtbxpoYlGHyl5WGqSEREJHQKNxLkb+iWMmyHF26s6RkAmMorw1aTiIhIqBRu5CcN3VKGzXZYh8dlZgNgKa8JW0kiIiKhUriRn7gDMwsblsNrudm3vpSjyhm2kkREREKlcCM/2ddyYz+8lpuUzoElGBKqtfyCiIjEjsKNBBkeLwAmm/2wju/UuScA8U6oq9W4GxERiQ2FGwkyGrqlTIc55ia5U2c8Db9RpXu2hKssERGRkCjcSFAw3Ngdh3W8yWSiKjHwK1VesD1sdYmIiIRC4UaCDHegW8p8mN1SAHVJgVafqoJdYalJREQkVAo3EmTytDzcuFIDSzDUFO4OS00iIiKhUriRINO+lpvD7JYC8DYsweAqLgxLTSIiIqFSuJEgk9cHtCzcGBmBJRi8xVpfSkREYkPhRoLMnkC4sdjjDvsc1swsAIzSirDUJCIiEiqFGwnaF26sLQg3cVmdA+fQEgwiIhIjCjcSZPb4AbA44g/7HEm53QCIq6gPS00iIiKhUriRIEtDuLG2YMxNWsMsxUlVHnw+X1jqEhERCYXCjQSZvfvCzeG33KR36QOA3Q01lRpULCIi0WcJ9YCtW7fy2WefsX37dmpra8nMzGTYsGGMGjUKh+Pw/+KX2LM2rHdpbUG3VGJKOnU2iHNB8c4NJKVmhak6ERGR5ml2uHnppZd49NFHWbFiBdnZ2eTm5hIXF0dpaSmbN2/G4XBw8cUX88c//pHu3btHsmaJAK/Xg6WhF8nWgnADUJ1kJW6vm/I92+CoE1tenIiISAiaFW6GDRuGzWbjsssu4/XXXycvL6/R606nk6VLl/Lyyy8zYsQIHn/8cc4777yIFCyR4XLWBp/bHAktOld9igP2uqnO39nSskRERELWrHBz3333MWHChAO+brfbGTNmDGPGjOGee+5h27Zt4apPosRV99Ot2/a4xBady52WCFRRX5TfwqpERERC16xwc7Bg89/S09NJT08/7IIkNlz1P4Ubi61lY6f86alAPu7i4pYVJSIichhCHlAM4PV6efPNN/nhhx8AOOKIIzjnnHOwWA7rdNIKuJ11AHhMYDa37L+jOSMQbv17S1tcl4iISKhC/hT7/vvv+cUvfkFBQQH9+/cH4P777yczM5O3336bQYMGhb1IiTx3fWDMjTsM+dSelQOAuayq5ScTEREJUcjz3FxxxRUceeSR7Nq1i1WrVrFq1Sp27tzJ4MGDueqqqyJRo0SBu2FAsddstPhcCdldALCX17X4XCIiIqEK+e/01atXs2LFCtLS0oLb0tLSuOeeezjmmGPCWpxEz76WG4+l5eEmuXNgKoCESmeLzyUiIhKqkFtu+vXrR2Fh4X7bi4qK6NOnT1iKkujbN+bGG4Zwk961NwCJNX7cLq0xJSIi0dWscFNZWRl8zJw5k+uvv57XXnuNXbt2sWvXLl577TVuvPFG7r///kjXKxHirt8Xblq+Iken7B74jMAvV2n+1hafT0REJBTN+iRLTU0lLS2NtLQ0Jk2axLp16zj//PPp3r073bt35/zzz2ft2rVMmjQp5AJmz55Njx49cDgcjBw5kmXLlh10/1mzZtG/f3/i4uLIy8vjpptuor5erQMt5W1oYQlHuLFYbVQlBM6zd/fmFp9PREQkFM0ac/Ppp59G5OLz5s1j+vTpzJkzh5EjRzJr1iwmTJjA+vXrycraf02iuXPncuutt/Lss89y/PHHs2HDBi677DIMw+CRRx6JSI0dhdcZCDc+izks56tJsZFSXU9l/vawnE9ERKS5mhVuRo8eDYDH4+Hee+/l8ssvp2vXri2++COPPMKVV17J1KlTAZgzZw7vvvsuzz77LLfeeut++3/55ZeccMIJXHTRRQD06NGDCy+8kK+//rrFtXR0P4Wb8CwU70qJh9311BbuCcv5REREmiukTzKLxcKDDz6Ix+Np8YVdLhcrV65k3LhxPxVjMjFu3DiWLl3a5DHHH388K1euDHZdbdmyhffee48zzjjjgNdxOp2NxgxVVla2uPb2yLMv3FjD03LjTUsGwFlUEJbziYiINFfIf6afcsopLF68uMUXLikpwev1kp2d3Wh7dnY2BQVNfyBedNFF3H333Zx44olYrVZ69+7NmDFj+N///d8DXmfmzJmkpKQEH/+96KcE+FyB27b9YeqWMjI7AeAt0hIMIiISXSHPczNx4kRuvfVW1qxZw/Dhw0lIaLyC9C9+8YuwFfffFi1axL333svjjz/OyJEj2bRpEzfccAN/+ctfuP3225s8ZsaMGUyfPj34fWVlpQJOE3zOhnBjDc8SGrbszgCYSsrCcj4REZHmCvmT7JprrgFocgCvYRh4vd5mnScjIwOz2bzfnDmFhYXk5OQ0ecztt9/OpZdeyhVXXAHAUUcdRU1NDVdddRV/+tOfMJn2b4iy2+3Y7fZm1dSR+dwuIHzhJiE3ECDtpTWH2FNERCS8Qu6W8vl8B3w0N9gA2Gw2hg8fzsKFCxude+HChYwaNarJY2pra/cLMGZzoBvF7/eH+qPIzwS7pcIUblK69gQgoVyzFIuISHTFdBnv6dOnM2XKFEaMGMGxxx7LrFmzqKmpCd49NXnyZLp06cLMmTMBmDRpEo888gjDhg0LdkvdfvvtTJo0KRhy5PD4nYGWG8IUbjK79WcvkFTtw+WsxWaPD8t5RUREDuWwPslqampYvHgxO3bswOVyNXrt+uuvb/Z5LrjgAoqLi7njjjsoKChg6NChfPDBB8FBxjt27GjUUnPbbbdhGAa33XYbu3fvJjMzk0mTJnHPPfcczo8hP7OvWwqbNSznS8/tTaEJLD4o2bWJ3N6Dw3JeERGRQzH8IfbnfPPNN5xxxhnU1tZSU1NDp06dKCkpIT4+nqysLLZs2RKpWsOisrKSlJQUKioqSE5OjnU5rca7v7+AXu9+x+aJR3LW314Lyzm/GDmIThVe3HP+wuAx54blnCIi0jGF8vkd8pibm266iUmTJlFWVkZcXBxfffUV27dvZ/jw4Tz00EOHXbTElt/tBsCw2sJ2ztpUBwCVu7S+lIiIRE/I4Wb16tX8/ve/x2QyYTabcTqd5OXl8cADDxx0vhlp5faFG1v4wo0rPQmA2vxdYTuniIjIoYQcbqxWa3AcTFZWFjt27AAgJSWFnTt3hrc6iR5XYNZpI0xjbgD8GWkAuAs1S7GIiERPyAOKhw0bxvLly+nbty+jR4/mjjvuoKSkhH/+858MGjQoEjVKNDS03Jhs4ZsTyJKdBfyAv7g0bOcUERE5lJBbbu699146dw7MPnvPPfeQlpbG1VdfTXFxMU899VTYC5ToMNyBlptwhhtHThcArHu1npeIiERPyC03I0aMCD7Pysrigw8+CGtBEhuGOzABoymMY26SuvQAIK6sLmznFBEROZSQW26kfTJ5AuHGHMalKtLz+gCQXOnG5/OF7bwiIiIH06xwc/rpp/PVV18dcr+qqiruv/9+Zs+e3eLCJLqC3VJhDDdZ3Y8AwO6GytL8sJ1XRETkYJrVLXXeeefx61//mpSUFCZNmsSIESPIzc3F4XBQVlbGunXr+Pzzz3nvvfc488wzefDBByNdt4SZyRNoWTHbHGE7Z3xiKjUOg4R6P8XbfyQ1o0vYzi0iInIgzQo3v/3tb7nkkkt49dVXmTdvHk899RQVFRVAYCXwgQMHMmHCBJYvX84RRxwR0YIlMvZ1S1nscWE9b1WqjYQCJ2W7NsPwU8N6bhERkaY0e0Cx3W7nkksu4ZJLLgGgoqKCuro60tPTsVrDNzeKxIbZva/lJnzdUgD1afFQ4KR6z46wnldERORADnsJ6JSUFFJSUsJZi8SQuaFbyuIIb8uNNz0FKMOZvyes5xURETkQ3S0lAJi8gfVTrWHuljJlZQDgLS4O63lFREQOROFGALDsa7kJc7ixZecAYCouD+t5RUREDkThRgCwBO4Ex+qID+t5E7v2AMCxtzqs5xURETkQhRsBwNLQLWVzJIT1vOk9BgCQXOYM63lFREQOJORwM2XKFJYsWRKJWiRGfD7fTy03YZznBiC755EAJNT7qSovCuu5RUREmhJyuKmoqGDcuHH07duXe++9l927d0eiLokij7s++Itgiwtvy01ypxxqHAYABZvXhPXcIiIiTQk53MyfP5/du3dz9dVXM2/ePHr06MHEiRN57bXXcLvdkahRIsxV/9PCllZ7eMMNQGVaYO6cvdvXh/3cIiIi/+2wxtxkZmYyffp0vv32W77++mv69OnDpZdeSm5uLjfddBMbN24Md50SQW5nTfC5PcwtNwD1GYkAVO/YGvZzi4iI/LcWDSjOz8/no48+4qOPPsJsNnPGGWewZs0aBg4cyN/+9rdw1SgR5qoLhBufEf4xNwC+7HQAnHvUhSkiIpEXcrhxu928/vrrnHXWWXTv3p1XX32VG2+8kT179vDCCy/w8ccf88orr3D33XdHol6JAJezFgC3OTLnt3QOzHXjL9REfiIiEnkhL7/QuXNnfD4fF154IcuWLWPo0KH77TN27FhSU1PDUJ5Eg6s+EG68ZiMi54/v0h0AW1F5RM4vIiLycyGHm7/97W+cd955OBwH7r5ITU1l61aNr2grPM7AgGLPYa80dnCpPfoCkFBad4g9RUREWi7kbqlPP/20ybuiampquPzyy8NSlETXT+EmMnM6ZvUcCEBKpRe3qz4i1xAREdkn5E+zF154gbq6/f8Cr6ur48UXXwxLURJd7oZw47VEplsqs2s/PCYw+6Fox48RuYaIiMg+ze6IqKysxO/34/f7qaqqatQt5fV6ee+998jKyopIkRJZnvo67IAvQi03ZrOF8lQLGaUeirf+QJc+QyNyHREREQgh3KSmpmIYBoZh0K9fv/1eNwyDu+66K6zFSXR4gi03kVtqrLZTPJRWUr5jU8SuISIiAiGEm08//RS/388pp5zC66+/TqdOnYKv2Ww2unfvTm5ubkSKlMjyOgPjYHyWCN0LDrizUmFTJXW7d0TsGiIiIhBCuBk9ejQAW7dupVu3bhhGZMZnSPR53YEVuyPVLQVgyskCduDNL4jYNURERKCZ4ea7775j0KBBmEwmKioqWLPmwAsgDh48OGzFSXT4nIFw47dG6F5wwJ7bFViBubA0YtcQERGBZoaboUOHUlBQQFZWFkOHDsUwDPx+/377GYaB1+sNe5ESWd6GcOOzRq5bKqlbLwDi9lZH7BoiIiLQzHCzdetWMjMzg8+lffG5It9yk95jAC4gucyFz+fDZIpcF5iIiHRszfo06969e5PPpX0IdktFcEBxbp8hbAPiXFBWuJ30zj0jdi0REenYDmsSv3fffTf4/R/+8AdSU1M5/vjj2b59e1iLk+jwuV2BJ1ZrxK4RF59MWXLg123PhtURu46IiEjI4ebee+8lLi4OgKVLl/LYY4/xwAMPkJGRwU033RT2AiXy/K6G5TRskeuWAqjOSACgbMsPEb2OiIh0bCF/mu3cuZM+ffoAMH/+fM4991yuuuoqTjjhBMaMGRPu+iQK/K7It9wAuHLSYEsVNTs1bktERCIn5JabxMRE9u7dC8CHH37I+PHjAXA4HE2uOSWtn7+hW8qwRTbcmHI7A+DdtSei1xERkY4t5Jab8ePHc8UVVzBs2DA2bNjAGWecAcD3339Pjx49wl2fRENDt5Rhs0X0MvHdewBfY8nfG9HriIhIxxZyy83s2bMZNWoUxcXFvP7666SnpwOwcuVKLrzwwpALmD17Nj169MDhcDBy5EiWLVt20P3Ly8uZNm0anTt3xm63069fP957772Qrys/4/YAYFgi23KT2msAAIklmutGREQiJ+SWm9TUVB577LH9th/Oopnz5s1j+vTpzJkzh5EjRzJr1iwmTJjA+vXrm1xh3OVyMX78eLKysnjttdfo0qUL27dvJzU1NeRry8/sCzf2yLbcdO4zhFIgrdyLy1mLzR4f0euJiEjHdFi3x5SXl7Ns2TKKiorw+XzB7YZhcOmllzb7PI888ghXXnklU6dOBWDOnDm8++67PPvss9x666377f/ss89SWlrKl19+ibVh8Ku6wlrOaAg3Jps9otfJzOtPgQVsHsjfvIbuA0dG9HoiItIxhRxu3n77bS6++GKqq6tJTk5utIBmKOHG5XKxcuVKZsyYEdxmMpkYN24cS5cubfKY//znP4waNYpp06bx1ltvkZmZyUUXXcQf//hHzOamJ6BzOp04GyapA6isrGxWfR3JT+Emsi03JpOJsk42sotcFG76TuFGREQiIuQxN7///e+5/PLLqa6upry8nLKysuCjtLT5iyKWlJTg9XrJzs5utD07O5uCgqZXjt6yZQuvvfYaXq+X9957j9tvv52HH36Yv/71rwe8zsyZM0lJSQk+8vLyml1jRxEMN3ZHxK9Vm5UMQOW2TRG/loiIdEwhh5vdu3dz/fXXEx8f/fESPp+PrKwsnnrqKYYPH84FF1zAn/70J+bMmXPAY2bMmEFFRUXwsXPnzihW3DYY7sBip+YId0sB+DpnAODcqdmsRUQkMkLulpowYQIrVqygV69eLbpwRkYGZrOZwsLCRtsLCwvJyclp8pjOnTtjtVobdUEdccQRFBQU4HK5sDXRrWK327HbI/+h3ZaZPNELN9auXYEfYXfhIfcVERE5HCGHmzPPPJNbbrmFdevWcdRRRwUH9u7zi1/8olnnsdlsDB8+nIULF3LOOecAgZaZhQsXcu211zZ5zAknnMDcuXMbrSq9YcMGOnfu3GSwkeYxeQKDws1R6JZK6tEH+BhHUUXEryUiIh1TyOHmyiuvBODuu+/e7zXDMPB6vc0+1/Tp05kyZQojRozg2GOPZdasWdTU1ATvnpo8eTJdunRh5syZAFx99dU89thj3HDDDVx33XVs3LiRe++9l+uvvz7UH0N+JthyE4Vwk9H7SLxASkl9xK8lIiIdU8jh5ue3frfUBRdcQHFxMXfccQcFBQUMHTqUDz74IDjIeMeOHcEWGoC8vDwWLFjATTfdxODBg+nSpQs33HADf/zjH8NWU0dkbmi5sdjjIn6t3L7D2Akk1PspK95JWqYGeIuISHi1aBno+vp6HI6W/bV/7bXXHrAbatGiRfttGzVqFF999VWLrimN7Qs31iiEm8SUdCoSTaRU+9iz4RuFGxERCbuQ75byer385S9/oUuXLiQmJrJlyxYAbr/9dp555pmwFyiRZ/b4AbA4onMHXGVm4Dp7N6yNyvVERKRjCTnc3HPPPTz//PM88MADjQbxDho0iH/84x9hLU6iw9IQbqxRGHMD4OoSuB28esuGqFxPREQ6lpDDzYsvvshTTz3FxRdf3OiW7CFDhvDjjz+GtTiJDrN3X7iJTsuNuVtXAHw7dkfleiIi0rEc1iR+ffr02W+7z+fD7XaHpSiJLqun4WuUuqWSevcHwJHf/BmtRUREmivkcDNw4EA+++yz/ba/9tprDBs2LCxFSfR4vR4sDTfA2aIUbrL6DwUgtagurHffiYiIwGHcLXXHHXcwZcoUdu/ejc/n44033mD9+vW8+OKLvPPOO5GoUSLI5awNPrc5EqJyza4DRrCVwO3gpQVbycjtHZXriohIxxByy83ZZ5/N22+/zccff0xCQgJ33HEHP/zwA2+//Tbjx4+PRI0SQa66muDzaHVLxSemUp4SGK+164flUbmmiIh0HIc1z81JJ53ERx99FO5aJAZc9T+FG1uUBhQDVOUk0aminNINa+HUqF1WREQ6gJBbbnr16sXevXv3215eXt7ixTQl+tzOOgA8JjCbWzSnY0g8XTIBqNu6JWrXFBGRjiHkcLNt27Ym149yOp3s3q1be9sad31gzI07erkGAFuPHoEnO/dE98IiItLuNfsj7T//+U/w+YIFC0hJSQl+7/V6WbhwIT32fWBJm+FuGFDssRhRvW5ynwHAR8Tnl0f1uiIi0v41O9ycc845QGDl7ylTpjR6zWq10qNHDx5++OGwFieR56qrwSD64San/zDqgE4lTrxeT1S7xEREpH1r9ifKvvlIevbsyfLly8nIyIhYURI97rpabIDXEnIPZYt06TuMH01g80DhtnXk9h4c1euLiEj7FfIn2tatWxVs2hFPw4BirzW64cZqc1CabgVg9w8ronptERFp3w6rL2DhwoUsXLiQoqKi/WaYffbZZ8NSmESHu+FW8Gi33ADU5KRAcQnlG76P+rVFRKT9CvkT7a677uK0005j4cKFlJSUUFZW1ughbYu3vj7w1Wo+xJ7h5++eC4Bzy+aoX1tERNqvkFtu5syZw/PPP8+ll14aiXokyrzOQLjxWaM/oDe+b3/gO6zb86N+bRERab9CbrlxuVwcf/zxkahFYmDfmBt/DFpuMgceDUBKfnXUry0iIu1XyOHmiiuuYO7cuZGoRWLA19At5bdFv+Wmx+ATAUip9lFasD3q1xcRkfYp5E+0+vp6nnrqKT7++GMGDx6M1Wpt9PojjzwStuIk8nwuZ+CrzXqIPcMvMSWD0lQzncq97FjzJZ1yuke9BhERaX9CDjffffcdQ4cOBWDt2rWNXjOM6E4EJy3naxhzgyU2k+hV5qbQqbyUknWrYPyFMalBRETal5A/0T799NNI1CEx4nO6Ak/s0W+5AfB1z4V1pdRv1h1TIiISHtGf3ERaFb+rIdzYbDG5flzffgBYdMeUiIiESbNbbn71q181a7833njjsIuR6NsXbowYjLmBfXdMvUHKnsqYXF9ERNqfZoebn68CLu1IMNzYY3L57oNPYDeQWuWjvGQ3qRldYlKHiIi0H80ON88991wk65BYcbkBMOyx6ZZK7pTD2mQzaZVetn/7Bamnnh+TOkREpP3QmJuOriHcmGLUcgNQmZsMQMkP38SsBhERaT8Ubjo4k8sT+Gp3xKwGT4/AGlN1GzfErAYREWk/FG46OMMTCDdmR+zCTfCOqW17YlaDiIi0Hwo3HZyxr+Umht1SOUNGAtBpZwU+ny9mdYiISPugcNPBmdxeACyOuJjV0HPoaHwGJNX6Kdr5Y8zqEBGR9kHhpoNrDeEmPjGV4szA3VrbVi6KWR0iItI+KNx0cGZPoBvIbI9duAGo6Z4BQNla3TElIiIto3DTwZkbWm6scfGxraNfbwB8G7fEtA4REWn7FG46OLPHD4DVEdtwkzboaAAStxXHtA4REWn7FG46OEtDt5TVHttw0+Po0QBklLiprS6PaS0iItK2Kdx0cFZ3oOXGFpcQ0zoy8/pTmWBg8sOWbxbFtBYREWnbFG46OEtgyA22uMSY1mEymSjrGlictfDbr2Nai4iItG0KNx2Y1+vBui/cxHjMDYC3dx4AdT/+EONKRESkLWsV4Wb27Nn06NEDh8PByJEjWbZsWbOOe/nllzEMg3POOSeyBbZTzrrq4HN7fFIMKwmIP+JIAGxbtAyDiIgcvpiHm3nz5jF9+nTuvPNOVq1axZAhQ5gwYQJFRUUHPW7btm3cfPPNnHTSSVGqtP1x1dcEn9tj3C0F0GXYCQBk7KrC6/XEuBoREWmrYh5uHnnkEa688kqmTp3KwIEDmTNnDvHx8Tz77LMHPMbr9XLxxRdz11130atXryhW2764GlpufIDFGruFM/fpOfhEnFaIc8HW7z6PdTkiItJGxTTcuFwuVq5cybhx44LbTCYT48aNY+nSpQc87u677yYrK4vf/va3h7yG0+mksrKy0UMC9nVLuS2B9z3WrDYHRV0DLUg7l38a42pERKStiuknWklJCV6vl+zs7Ebbs7OzKSgoaPKYzz//nGeeeYann366WdeYOXMmKSkpwUdeXl6L624vXPW1AHgsRowr+Ymrf3cAatZ8F+NKRESkrYr9n+shqKqq4tJLL+Xpp58mIyOjWcfMmDGDioqK4GPnzp0RrrLtcNcFxty0pnCTeNQQAOwb9N9JREQOjyWWF8/IyMBsNlNYWNhoe2FhITk5Ofvtv3nzZrZt28akSZOC23y+wAy7FouF9evX07t370bH2O127HZ7BKpv+9x1NVgAj7X1hJvuI0+lnrlk7a7B5azFFuOZk0VEpO2JacuNzWZj+PDhLFy4MLjN5/OxcOFCRo0atd/+AwYMYM2aNaxevTr4+MUvfsHYsWNZvXq1upxC5HbWAeC1tJ4GvO4Dj6PWbmDzwOZVGncjIiKhi2nLDcD06dOZMmUKI0aM4Nhjj2XWrFnU1NQwdepUACZPnkyXLl2YOXMmDoeDQYMGNTo+NTUVYL/tcmiehjE3Xos5xpX8xGQyUdw9me4bKtiz4jOOGHVmrEsSEZE2Jubh5oILLqC4uJg77riDgoIChg4dygcffBAcZLxjx45WcSdPe+Spb2i5sbau99fbvydsWE3dmjWxLkVERNqgmIcbgGuvvZZrr722ydcWLVp00GOff/758BfUQXic9QD4rK2n5QYgZehweHs18Zs0U7GIiISudf3JLlHlaxhz47e2iowb1Ou40wDIyq+ntro8tsWIiEibo3DTgXnrG1pubK2r5San5yAqEk2Y/bBh6fuxLkdERNoYhZsOzOtyAuC3WmNcSWMmk4nSPpkAFHylO6ZERCQ0CjcdmK+h5aa1dUsBmIcEVgj3ffdDjCsREZG2RuGmA/M7Ay032FpXyw1A7qhTAMjctDc4UaOIiEhzKNx0YD63K/DEbottIU3oP3IiLgsk1vnZsuazWJcjIiJtiMJNR+YMhBujlY25AbDFxVPQPQmA7Z8viHE1IiLSlijcdGB+V+ttuQHwHNkHgLpvvolxJSIi0pYo3HRkLjcAJmvrDDedjgmsL5a0fneMKxERkbZE4aYja2i5MVrpqukDRp8NQFaxm735W2NcjYiItBUKNx2Y4Qy03Jjj4mNcSdPSsrpRmBVoVfpx8fzYFiMiIm2Gwk0HZtoXbuJbZ7gBqD6yGwBlSz+PcSUiItJWKNx0YCaXBwCLo/WGm+SRgXE38d9uBmc1+P0xrkhERFq71jc1rUSNeV+4iU+IcSUNvB7Yugi2fgY7v4aSjQwsL6OYbDoXOCm5qxsZiXGQ0hUy+0PuMMgbCV2PBbN+lUVEJECfCB2Y2eUFwBrrMTdVhfD1E7D631Bd0OilDBusyfCTU2KwriyBk22VUPxj4LHurcBOjhToNRYGnAkDzgJb622JEhGRyFO46cAsDeHGFp8cmwLc9fD5I/DF/4GnLrAtPh36T4RuoyBnMCTnUlN6FXz4A5X+IXDtLCjfDgVrYM+qQCtPXSmsmx942BJh4Dlw9GTIOxYMIzY/m4iIxIzCTQdmcQfWbLLFolsq/zt4/bdQsiHwfZcRcML10G8iWBrPu9PphNHw4Q8kfb8DMvoEHn1ODbzo88LuVbDhA1j7GpRtg9X/Cjy6DIfjroGBZ4O59c3CLCIikaEBxR2Y1R0YnGtLiHLLzXevwjPjA8EmIQvOex6u+DgQQiz7Tyg48NRz8RmB+W7yt65t/KLJDHnHwKm3w/WrYer7MPQSMNth98pAgHp0KHw1J9BSJCIi7Z7CTQdmawg3cQkp0bvoV0/AG1eApx76jIdpX8ORv2yy+6jG6WH1znKW7DbY2dkBwNsvPc/rK3fxxaYSdpbW4vX97O4pw4Dux8M5s+Gm72HM/0JCJlTugg/+CP83DJb/AzyuaP20IiISA+qW6qA8bhfWwJAb7PFJ0bno0tmw4H8Dz4+bBqf9FUyN8/Xa3RW8vzafj9cVsb6wKrj9ioxsuu/ZjmfZV/y++tvg9gSbmSF5qQzvnsZxvdI5tmcnrGYTJGbCmD/CCTfAt3NhycOBkPPu7+HzR2H0H2DoRYGWHxERaVcMv79jTRxSWVlJSkoKFRUVJCfHaCBtK1BdUcLOkScB0G35FyQkdYrsBb+dB29eFXg+ZgaM/mOwtcbv9/PJj0U8uXgLy7aVNjosM8lOz4wEehZ+zGVz51IRb/DYNU+zp8LNrtI6XF5fo/2THBbG9s/ijKNyOGVANjZLQ3jyOGHlC/DZQ1BdGNiWdSScfi/0GhPJn1xERMIglM9vhZsOqmTPZopPOQuAft+vwRzJeWJ2rYTnTgevK9BiM+GeYLDZWFjFbfPX8vXWQKixmg3GD8zmtIE5nNg3g4zEwLpXrrpa1o4cTpwLfM/cz5En/AKvz8/GoipWbS9nxfZSlmwopqT6py6nTgk2fjmsC+ePyKN/TkPrlKsWVjwDSx6C+vLAtn4TA61IGX0i9x6IiEiLKNwchMJNwK6N31A16SJcFhiy9ofIXaimBJ48GSp3B+agOf+fYDLh9/v511fb+cu7P+Dy+HBYTUwZ1YOpJ/QkJ8XR5Kne+81oeq4uYuv5x3HG3c/t97rX52f1zjI+/L6QN7/ZTVGVM/jaMT3SuOKkXow7IhuzyYDaUlh0X2AMjt8LJgscc2WgKysuLWJvh4iIHJ5QPr815qaDqq+tBMBtieA8MH4/vH1DINik94VzngCTCbfXx/++sYZXV+4CYHS/TP56ziDyOh188j37CaNg9VtYl61p8nWzyWB4904M796JWyb0Z8nGYuYt38nCH4pYvq2M5dtW0jMjgctP7Ml5w7viOOMBOOYK+PA22LggMJHgmlcDrThDfqM5ckRE2ijdLdVBuWoCg3Vdtgh+gH/7Mvz4DpiscO6z4Eim3u3lty+s4NWVuzAZcNuZR/D81GMOGWwAjjjzYgByt9VQWrD9oPtazCZOGZDNk5eO4PM/nsLVY3qT7LCwtaSG2+ev5eQHPuX5L7ZSn9obLn4FLnkDMvpBbQnM/x08dwYUrgvL2yAiItGlcNNB7Qs3HmuEfgVq9sIHtwaej50BnQdT7/Zy1T9XsmRDMXFWM89MOYYrTuqF0cwWktxeR1GQY8cErHnvn80uJSfFwR9PH8DSGady56SB5KY4KKpy8ue31zH6wU954ctt1HcfA7/7Asb9GazxsONLmHMiLPgTOKsOdQkREWlFFG46KFddNQAeW4RuhV7458CA3eyj4Pgb8Pv9/OG174LB5vmpxzB2QFbIp609ZgAAVUsWh3xsgt3C1BN68uktY/jrOYPITXFQWOnkzv98zykPLeK1b4vwHn8jTFsWGB/k98LSx+CxY2DtG1qRXESkjVC46aDctYFw47VGINzsXgmrXgw8P/MhMFt4dOFG/vPtHiwmg6cnj2Bkr/TDOnXu+EkAZH+7G5ez9rDOYbeYueS47nx6yxj+cs4gOqc42FNRz82vfsuZ//cZiwrt+C/4F1z8GqT1hKp8eG0q/POXsHfzYV1TRESiR+Gmg/LWBRaq9NkjMKb847sCXwdfAN2OY8mGYh5duBGAe345iBP7Zhz2qY8aex6VCQaJdX6+/ejlFpVpt5i59LjufHrzGGZMHECSw8KPBVVc9txyLnnma9bGHwvXfBWYl8dshy2fwuPHwaf3aikHEZFWTOGmg9rXcuOzh3lByc2fwtbFYLbB2D9RVFXP9FdW4/fDxSO7ccEx3Vp0eovVRvHwngAUvjc/DAWDw2rmf0b35rM/jOXKk3piM5v4YtNezvr759z4+g/kD7sBpn0FfcYF5upZfH8g5Gz6OCzXFxGR8FK46aC8tTUA+Oz7L1R52Px++PSewPMRl0Nad+5863tKql0MyEni9rMGhuUymRMDXVPpyzfj9XrCck6A1HgbfzpzIAt/P5pzhuYCMH/1HsY+tIhZqzzUnTcPznsBkjpD2Vb416/hlSlQuSdsNYiISMsp3HRQ3rrAeBV/nD18J92xFHYtD3ThnPR7PlhbwPtrCzCbDB4+fwiOMI3vGXb6ZGrtkFrlY+3iN8Jyzp/L6xTPrN8M4+1rT+SYHmnUu33M+ngjpz6ymLfcx+Cftiww07JhgnXz4bFjYenjEMagJSIih0/hpoPy1TQMxo1rejbgw/LF/wW+Dr0QlyODv7wTmCfmf07uxZG54Vt53BYXT/7QrgDsevvVsJ33vx3VNYVX/mcUj100jC6pceypqOeGl1dz7nNr+fbIP8BVi6HrMeCqggUz4OkxsHN5xOoREZHmUbjpoPwNA4qNuLjwnLB4PWx4HzBg1HW8smInu8vryEqyc/2pfcNzjZ9JPW0CAClf/YjP5zvE3ofPMAzOGpzLwt+P5vfj+xFnNbNyexlnz/6C33/mp+i8/8CkR8GRCgVr4JnxgVmZa0sPeW4REYkMhZuOqi5wt48pPkzh5su/B74OOBNnak8e/3QTANeM6R227qifG3rWVJxWSC/z8P1nb4X9/P/NYTVz3al9+fTmMfxqWBcAXl+1izEPL2F25YnU/24ZDL0Y8MPK5wNz46yeq7lxRERiQOGmgzLqA4tKmuIOvezBIdXshe/mBZ4ffz2vrNjFnop6spPt/ObYlt0ddSCJKensaggZ2197MSLXaEpOioNHLhjKm9ccz7BuqdS6vDy4YD3jnvye93rfjv+y9yDziIZlHK6G58+EogguTCoiIvtRuOmgjHoXAJaExJaf7Lt5gVukOw/BmTviZ602fSLSarNPxjm/AiDzy/WHPaHf4RrWLY03rj6eWRcMJSfZwa6yOq55aRUXLDCxZtI7MO6uwDIO278ILOPw0Z3gqolqjSIiHZXCTQdl3hdu4hNadiK//6fZiI+ezCvLd5JfUU9OsoMLjslrYZUHN/ysy6lMMEiu8bPqnecieq2mGIbBOcO68MnNo7n+1L44rCaWbS3lF098ze/3jKV4yhLofyb4PPDFLJh9HPz4XtTrFBHpaBRuOiizM3DbsjUxuWUn2r0Sin8AiwPnEb9i9qeB5QmuGRuZsTY/Z7U5KD4hsNZUyVtvRvRaBxNvszB9fD8++f0YfjmsC35/YDzOyU9u5tHMu3CeNxdSukHFDnj5Qvj3hVC+I2b1ioi0d60i3MyePZsePXrgcDgYOXIky5YtO+C+Tz/9NCeddBJpaWmkpaUxbty4g+4vTbPUB8KNLSGpZSda9ULg68CzmbemkoLK6LTa7NP915cC0HXVbqrKi6JyzQPJTY3jbxcMZf60ExjePY06t5e/fbyB0W85eOuE1/GfcBOYLLD+PZg9EhY/CO66mNYsItIexTzczJs3j+nTp3PnnXeyatUqhgwZwoQJEygqavqDatGiRVx44YV8+umnLF26lLy8PE477TR2794d5crbNqvLC4A9MfXwT+KsDqyWDTgHX8LjDa0208b2xm6JbKvNPkeedDbFGVbsHlj20qyoXPNQhual8trvfpofp6Cynhve2Mg568ex9hfvQfcTwV0Ln/41MAGgVhwXEQmrmIebRx55hCuvvJKpU6cycOBA5syZQ3x8PM8++2yT+7/00ktcc801DB06lAEDBvCPf/wDn8/HwoULo1x522ZzBuaGcbSkW2r9e+CqhrSevFyYR0FlPbkpDs6PUqsNgMlkovb0UQD431oQteseys/nx/nD6f1JsJn5dlcFZ71cwjTr3ZSc/gQkdw10Vb02FZ6bCHu+iXXZIiLtQkzDjcvlYuXKlYwbNy64zWQyMW7cOJYuXdqsc9TW1uJ2u+nUqVOTrzudTiorKxs9BGzuQEuBIyn18E/yfWCci+fIX/P44n1jbfpErdVmn+FTb8Fjgi47avnhq/ejeu1DcVjNXDOmD5/eMobfHJOHYcC7aws4/p00Hur3EvUn/jFwV9WOpfDUWJg/DaoKY122iEibFtNwU1JSgtfrJTs7u9H27OxsCgoKmnWOP/7xj+Tm5jYKSD83c+ZMUlJSgo+8vOi1KrRWHrcLW8MySPFJTYfCQ6qvCK6K/Y73OAorneSmODhvRNcwVdl8mV36sGNYZwA2v/hE1K/fHFlJDu779WDeve4kju+djsvj47HPd3PclyN46ZjX8Q46D/DD6n/B34+Gzx4Gd32syxYRaZNi3i3VEvfddx8vv/wyb775Jg5H02skzZgxg4qKiuBj586dUa6y9amt+mlpgLiktMM7yfr3wevCl9GPexuWU5p2SvRbbfbJuvASAHI/30h1xd6Y1NAcA3OTeemKkfxj8gj6ZiVSXuvmT5+UcdLGC/n4hJfwdxkR6OpbeDc8NgJW/xt83liXLSLSpsQ03GRkZGA2myksbNwMX1hYSE5OzkGPfeihh7jvvvv48MMPGTx48AH3s9vtJCcnN3p0dHVVZQD4AEf8Yb4fDV1Sq5PGUlTtoktqHOcNj12r2NETJ1OcbiHOBV//86GY1dEchmEwbmA2H9x4Mg+cO5jOKQ72VNRzxUKDCZW3sebYB/An5ULFTpj/O5hzEmz4UIOORUSaKabhxmazMXz48EaDgfcNDh41atQBj3vggQf4y1/+wgcffMCIESOiUWq7Ul1RAkC93cBkOoxfgbpy2BT4b3bv9sA8M9ee0gebJXa/TmazhbqzTgo8f/W9iC6mGS5mk8H5I/L49OYx/OmMI0iNt7KhuJZJS7pyUdzj7Bj+R3CkQNH3MPc8eP4s2LUi1mWLiLR6Me+Wmj59Ok8//TQvvPACP/zwA1dffTU1NTVMnToVgMmTJzNjxozg/vfffz+33347zz77LD169KCgoICCggKqq6tj9SO0OXUN3Tb1jsP8z7/+PfC5KYnvxYrabHplJHDe8OiPtflvI6/8E3U2yC50seI/T8e6nGZzWM1ceXIvFt8ylmlje+Owmli6o5aTvxjC7zKeo/Co/wGzHbZ/Dv84FeZdAsUbYl22iEirFfNwc8EFF/DQQw9xxx13MHToUFavXs0HH3wQHGS8Y8cO8vPzg/s/8cQTuFwuzj33XDp37hx8PPRQ6+6KaE3qKgJjbtyOwxwfsyFwy/UrNcMAuGVCfyzmmP8qkZrRhT1jBwJQ+vwLMa4mdClxVm6ZMIAlt4zl4pHdMJsMPthUz8jlo5me8yx7+50Phgl+eBsePw7evBr2bo512SIirY7h93esjvzKykpSUlKoqKjosONvvpj7CJ3ufpqdPRI47YMQuzl8XnigF9SX8yvnn/F2PZb51xyPYRiRKTZEO35cTtUvJ2Pyg+mfj9L/mNNiXdJh27G3lr9/spE3vtmN1xf4v+nFPWv4g/UVUnZ8FNjJMMOQ38DJN0OnXjGsVkQkskL5/I79n9sSda6qcgC88bbQD97zDdSXU+mP51t/b249fUCrCTYA3QYcw7ZhgcHoG594OMbVtEy39HgePG8IC6eP5tzhXTGbDF7amsCQDVP5S+fHqMw7BfxeWP0S/H1EYI6c0q2xLltEJOYUbjogd1VgIkNfXNO3zx+Mr2Eg8Re+IzlzSB6jeqeHtbZw6PY/1wPQY+kOtq/7OsbVtFyPjAQeagg5vzq6CyYDntnaicEbr+DOrP+jLHd0Q8j5F/x9OLw1DUq3xLpsEZGYUbjpgLwNszT7E+JCPnbPqvcAWG4eym1nHRHWusLlqNG/ZNvATpj9sObhP8e6nLDpkZHAI+cP5ePpo/nVsC6YTQYv7Mhg2Jb/4ZbURyjOPikQcr5pCDmvToX8b2NdtohI1CncdEC+mhoAjIT4kI5b9O0mciq+A+C4ceeRlRR6y0+0dL1+OgA9vtzWLlpvfq5XZiKPXDCURTePYfKo7tgtJl4tyOGY7VdzbfwD5GeeBH4ffP8GPHky/POXsGWx5skRkQ5D4aYD8tfUAmAkJjRrf5fHx3NfbOWVV+diMXyU2PM47cSRkSyxxY4a8+t22Xrzc3md4rn77EF8cespXDu2D0kOC++UdmXUzqu51PowG7Mn4jfMsPkTePEX8PRYWPeWZjwWkXZP4aYjqq0DwJyYdNDd/H4/b63ezdiHFnHX2+s4ntUApB11eqQrDIt9rTc9v9zGpm8+jXE1kZORaOfmCf358tZTmDFxAJlJdj6r6sz47Zcy3jOLrzJ+hc/sCAwGf2UyPHYMfP0UOKtiXbqISEQo3HRA5trAgozWpIPfSnffBz9yw8ur2V1eR1aSnbOT1geO73tqxGsMh6PG/JqtQ7Iw+WHjX2+LdTkRl+Sw8j+je/PZH8bywK8HMyAniU3udH6z61xG1MzirZSLcdtSoHQzvH8LPHwEvH+r5soRkXZH4aYDMtc4AbAmpRxwn39+tZ0nFwfuuLlxXF+W/LY7SXW7wGSFHidFpc5wOOL2mXhM0OP7Upa//Y9YlxMVDquZ84/J4/0bTmLulSMZd0Q2ZUYyNxSeyZDKv/F/jv+hIqEHuKrg6ycCg49fOj+wpIbG5YhIO6Bw0wFZ6t0A2FOaXhH8kx8LufOttQD8fnw/bhzXD8eORYEX80aCPTEaZYZFz0HHs31c4K6uqkcew+N2xbii6DEMg+N7Z/CPKSNYdPMYpp7QA5M9kUfKRzN071+50jeDH5OOA/ywcQH861cw+1j4+kmoK4t1+SIih03hpgOy13kAiEvutN9rX24q4dq53+Dzw/kjunLtKX0CL2z+JPC1zynRKjNsTrhtFjUOg875Tj79+62xLicmuqcncOekI1k64xTuOGsgPTOT+Mh1FKcXX88Y58P8x/EL3JYEKNkA7/8BHh4Ab/wPbP9SrTki0uYo3HRAcbWBu2WSMnOD23w+P7M/3cQlz3xNrcvLiX0yuOeXRwVmH/a6YeuSwI692164ScvqRtnkiQCkP/8+BdvXxbii2ElyWLn8xJ4snD6al686jl8MyWWPqQvXl/+GYdWPco//cvIdvcFTD9+9DM9NDLTmfPkY1OyNdfkiIs2itaU6GFddLZuHDQcgZ8kC0rK64ff7+ePr3/HKil1AoMXm7rMH4bA2LKy5/cvAh1x8Oty8CUxtLxN73C4+PXMUXXfUsuXoHM6c237vngrV3monr6/axb+X7WRrSQ3gZ4ixmd8lfsY43+dYvYG76zDbYMBZMPQi6DUWzJaY1i0iHYvWlpIDKt8bCDA+ICktsAbTvOU7eWXFLswmgwd+PZgHzh3yU7CBwEBTCHygtcFgA2Cx2sj76714Dei1qoAv5z0a65JajfREO1ed3JuF00cz94qRTBrShR/N/bi6airDav7On9y/ZautL3hdgYkBXzoXHjkCPpgBe1ar20pEWh396dXBVBbvAaDOYWCx2qh2enhgQeAW7z9M6M/5x+Ttf9C+8TZtsEvq5wYcO4F3zxpCr7e/xfzAkxSfeCaZXfrEuqxWw2QyOL5PBsf3yaCy3s273+Xz+spdvLT9VF6qPJUjja1cZPuMsy1LSawpgq8eDzwyB8DgC2Dw+ZDSNdY/hoiIWm46muqSfABqEwItM68s30lpjYueGQlcfmLP/Q+o2RuY/A3afLgBOOWupyjIsZNc42f5TVPx+XyxLqlVSnZYufDYbrx29fEsvmUM15/al4rUgfzJOZmhNX/nctfNfGgcj9uwQfGPsPAu+NsgeO6MwASBVQWx/hFEpANTuOlgakuLAHAl2PD6/Dz7xVYArjipJ1ZzE78OWxcBfsgaCMmdo1dohMTFJ9P5gftxm6HndyV88tiMWJfU6nVPT2D6+H4suWUsL191HBeM7MXquOO4qu5ahtfN5o/uK1llDAT8sP2LhgkCB8CzExV0RCQm1C3VwdSXlQDgTrTz4fcF7CqrIy3eyq+GHaA7YVP76JL6uQHHTuCDi8bQ/Z+LyHzyP6wbcRIDjz8r1mW1eiaTwXG90jmuVzp3/eJIvty8l3e+28P7a1OYVzeWXEqYaP6ac2zLOcq/AXZ8GXi8/wfoNgqOPAf6T4TUbrH+UUSknVO46WDcZaUAeBPjef7zQKvNJcd1J85m3n9nv7/djLf5b+Nv/TsffjOGHmv3svf3t1L65lF0yuke67LaDIvZxMn9Mjm5XyZ/PecoPttYzDvf5TNvXQ7P1J0ZDDqTLMsYamxsHHSyj4L+pweCTudhbXaQuoi0Xgo3HYynvByAOkccK7aXYTObuHTUAT7Ui9dD1R6wOKD78dErMgrMZgvHPfFv1p59BhmlHpb97kJOfeUTrDZHrEtrc2wWE6cekc2pR2Tj9Hj5akspH60r4J11XXimcl/QWcYE8wpGmDZgKlwDhWtgyYOQmAP9JkD/M6DXaLDGxfrHEZF2QOGmg/FXVgKwyxv4T3/20Fyykg7wgb654Rbw7se3yw+dtMw8Mmc9RP3lN9L9xzIWXH8eZzz+Fia1JBw2u8XM6H6ZjO6Xyd2/GMSa3RV8uK6Aj9b14JnCM0ijkjGmbxlnXslY83fEVxfAqhcCD0sc9Dgx0ErY+xTI7A+GEesfSUTaIIWbDsZUFgg3W70OTAZcM/Ygt0IHu6Taxirgh2PAsRP44k9XYr3raXov2sSH9/yO029/KtZltQsmk8GQvFSG5KVyy4QBbCup4aN1hSze0Iubto4Gt5ORph8YZ1rJOPM3dPGUwKaPAg+A5C7Qe2wg6PQaC/H7LxciItIUzVDcwXw0YQRdt9dw7+ixZJ5yFY9cMLTpHd31cH8P8NTB1Ushe2A0y4y6Dx+6kbx/LABgz7SzOfW6+2JcUftW6/Lw1Za9LF5fzOINxWzbW0N/YycnmdZwsuk7jjX/iAN3cH8/BkbuMOh5cmBV+m4jwZ4Uw59ARKItlM9vtdx0MI6KegBKbencdcpBWm12LA0Em6TOkHVElKqLndNunsW7+RfQ693vyJn9Fp9YrZzyu7/Euqx2K95m4ZQB2ZwyIBuAbSU1LNlYzKL1I/j3lr146us41vRjMOwMMO2EPasCjy9m4TfMGLlDofsJga6sbseBIyW2P5SItBoKNx2Iz+cjuTqwaGa/fkfQKzPxwDvvG2/T+5QOM+5h4oP/5j3Xr+n90Y9kz3qNhR4Pp147M9ZldQg9MhLokZHA5FE9cHt9rNldwdLNR7Fk8yk8sr2U5Pq9nGRaw3GmdYw0/UA3UzHsXhl4fPl/+A0TRs7gn4JO12MhKTvWP5aIxIi6pTqQHzZvgTPPBKDu7Q85um8TSy3s88QJULgWfv0MHHVulCqMPZ/Px3vXnkPvTzYCsO38UUz48z80yDiGnB4vq3eUs3TLXpZu3ss3O8vJ8BQx0vRD8NHTVLj/gandAiEn71joOgJyBoPZGv0fQETCIpTPb4WbDuTB5+Zy1v1/ocYOI7794cA7Vu4JLIyIAbdshoT0qNXYGvh8Pt6fcSm93loFwOaxfTj9/17HYrXFuDKBQNhZu7uSldtLWbGtjJXby7DUFDDS9APHmX5gmGkj/Y1dmIzG/7T5LY7AuJ2ux0CX4dB5CKT16DAtkyJtncbcyH58Pj9r163jLKAq8RD/2Tc23K3SdUSHCzYAJpOJM+9/iY+yp5P71Pv0/nQTH587mhFP/IuM3N6xLq/Ds1vMDO+exvDuaVx1Mvj9frbvrWXF9jJWbi/luW1l5BcVMcS0maONjRxt2sgw0yZSPTWBsWQ7lgbP5XekYHQeAp2HBsJO7jBI66mJBUXaOIWbDmLF9jIsZYE1flyph5izZuOHga99T4twVa3b+OmP8HlWZxLvf5bu68vZcM7Z7Hngzwwe03G66doCwzCCY3bOHR5YRqSy3s3a3RV8t6uC13ZVcPvOMmwVWwJBx9jEUaYt9Dd2Yq+vgK1LAo8GPlsSRufBGJ2HQvaRgTsFMwe0y7meRNorhZsO4s1vdpFTVwyAO/sg84V4nLBlUeB53/GRL6yVO/GSW9h4xNHk33ATmSVuPNfczvu/WcC4W/+u2YxbsWSHleN7Z3B874zgttKak1izu4Lvdpbz990VrNtZTGr1Fo40beUoYyuDTNs4wtiOw1UVWAB0+xfBY/2GCV9qD8w5R0LWkYE7CLOPDLTymPXPqEhro/9XdgD1bi/vfJfPVTVlAJi65Bx45x1LwVUNidmQMyRKFbZufYefSvZ/PuSzay+k16oCesz9nMWfnUCPBx6iz7CxsS5PmqlTgi04e/I+JdVOfsyv4of8Sv5ZUMn6PeVQ/CNHsIUjjW30N3bS37STdKowl22Bsi3ww9vB430mG96M/lhyjsBI7wcZfQOPTr3BqvArEisKNx3AJz8WUVXvoXNNDQBx3XoeeOd1/wl87Tte4w5+JrlTDhP/tZDFT/+Z5Mdfo8vOWmovuYZ3Jx3N6BmPkpiSceiTSKuTkWjnxL52Tuz7038/t/dkNhdX82N+FYvzK5mTX8newl2kVm9kgLGTfsYu+pt20M/YTbzPialoDRStaXRePwbuxC4Ymf2wZvWHjD6Q3hB8kjprELNIhCncdABvrNoNQHalE4BOvQ4wKZ/XAz80hJuBv4xGaW2KyWRi7P/cTf5p57P6lt/RY+1ees1fxZqFo6m/8lxO/u3tmNVF0eZZzSYG5CQzICeZc4Z1adg6kmqnh81F1WwqqmZBcTWPF1ZSW7iZxIoN9GI3vUz59Db20MvYQ4pRi616F1Tvgq2fNDq/x+zAnZSHuVNPrJm9MNJ6Bu7aSusBad01tkckDHQreDtXWuPi2Hs+Bk8db719GyY/pH80n6y8/vvvvGURvHg2xHWCmzdoTpCD8Pl8LH15Fr7HniOj1ANAYZYN09QLOP6Sm3XbeAfi9HjZvreWTUXVbC6qZvveGsqK92Aq3UR6/XZ6Gfn0MvbQy8inm1GExfAd9Hx1jiw8Kd2wdOqFI7MHRmoepHSF5K6Q0gVsCVH6yURaF90KLkHzv9mNx+fn5ITdmPxQZ4OMLn2b3nntG4GvA3+hYHMIJpOJEy6ajvOXV/HpQ9PJfO1zsotccP8/+eLZl3GfO4HjLvujuqs6ALvFTL/sJPpl/3ytq6EA1Dg9bN9by/a9NSzYW8vOkgpqirbiL9tGUu0u8owiugUfhSQbdcTVF0F9ERSugCamo6q3puJO6Iw/uSuWTnk40rtjSu0KKXmQ3DkwXs5ij8rPLtJaqeWmHfP7/UyYtYQNhdXMSPyUk//1Ljt7JnLa+8v339lVE5i4r74CJv8Heo2OfsFtWHnJbr78v9vI+s/XJNQH/i9Va4f80UdwxBU30XvwSTGuUFqbereXPeV17C6vY3dZHbvLaikrKcRbuhVr5Q6S63bRmRJyjRI6G6V0MUpIMuqade46SwquuCx8idmYkjpjTe2MIy0XU3JnSMoJBKCkHHWBSZuilhsBYNWOcjYUVuOwmsgp3gaAq0/Xpnf+9uVAsEnrGVh1WUKSmtGFM+5+jsobC1j61F+Je3sxmXs99P7wB1wfXsXHefF4TzmOwb+5ms49B8W6XGkFHFYzvTIT/2uNtwFA4A8Lj9dHYZWTXaW1rCuv4+PyOsrKSvCU7sSo3I2jZg9JroJg8MllL1lGGXbDQ5yngriqCqjaCPkHrqHOnESdPQOPIx0SMjAlZmBLziIuNQdrUiYkZEBCJsRnQHwnMJkj+p6IhIvCTTs29+sdAJw1OBfHizsBiB945P47+nzw9ZzA85G/011SLZDcKYcJtz6G9xYPK99+hpKX/kW3tSV02VkLL3xC6QufsKZnIt6RQ+hx+q/pf+wErVslTbKYTXRJjaNLo0k3+wKjgt95vD6Kq50UVjr5vqKeTyrqqCgtor5sN97KfEzVhcQ5i0lyB4JPllFOFuVkG2U4DDdx3iriaqugdiuUHrweHwZ15hTqbWm47J3wxqVjxKdhiu+ELTEdR3LgYY7vBHFpDY9UsMbr7jCJOnVLtVO7y+sY8+CnuL1+/j1lIPHnnYHNA9Z/P77/3CwbFsDc88GWBNPXgaP9vi+xULx7E6vnPYH/oyXkba1u9Fp5kom9A3NxDBtKtxMn0HvYGN1xJWHn9vooq3FRXO1kb7WLkqp6qspLcZbvxltZgK+6BHNdCdb6UuLcZaRRQSejinQqSTcqSTOqD32RA10bK3WWJJyWZFy2FDy2VPyOFHCkYo5LwRKfii0hGVtiGnGJqVjiUsGeFHg4ksGaoD+4BNDCmQfVUcLNza9+y2srd3F873Su77SSlD89RmmKmVFLv2vcUuB1w5MnQ9E6OP46OO2vsSu6A9iz+TvWvfNPXF98Re4PJdjdjV+vcRgU90rD17cHSUcOosvQE+l+xEjdfSVR4/f7qazzUFbroqzWRXmtm4qaWurKi3FXFuGpLsGoLcZctxezsxyrqxKHp5IEXxUpRg2pVJNiVJNKDVbD2+J6fBjUm+JxmhJwWhJxmxPwWBPx2ZICS2XYEzBsiZgdiZjtiVjjErHGJWGLS8SRkIzVkQi2RLDFB+40syZoVuk2qs2Fm9mzZ/Pggw9SUFDAkCFD+Pvf/86xxx57wP1fffVVbr/9drZt20bfvn25//77OeOMM5p1rY4Qbj7fWMIlz3wNwBvXHM+eP/+G3l/uYPOYPpw15+3GO386ExbfF2hCvv6bwFeJirraStYufIXirz7DtGY9OVsr9gs7AE4rlHSOpz43HVNeLvE9epPR7yi6DBhOWmZe9AsXaYLL46O8LhCGymvdVNW5qK2pxFW1F3dNGd6aUqgrw6gvbwhFFVjc1di8Ndi91cT7a0mkjiRqSTTqSKIuLOGoyVqx4jQcOE1xuE1xuM2Bh9cSh8/sAIsdvyUOrA4MSxyGLQ6TNQ6zzYHZFofZHo9l38MWj8Ueh9Uej9Uej8kWFxiobXEEvmqcUti0qXAzb948Jk+ezJw5cxg5ciSzZs3i1VdfZf369WRlZe23/5dffsnJJ5/MzJkzOeuss5g7dy73338/q1atYtCgQw/UbO/hZkNhFb956itKa1xcPLIb04bA3rPOx+ID1+N3MeSU83/a+btX4Y0rAT/86h8w+LyY1S3gctaycflH7Fm2GOeP63FsKyBjTy12z4GPqbNBVYqVutR4POnJGJnpWHNyiM/pQnxGDkkZnUnJ6kpqVh42e3z0fhiREHm8PqqdHqrqPVTWu6msdVNfV4OrtgJPTTnuugp8dZX4nZXgrMLkrMTkqsLkqcPsqcHiqcPqrcXqq8fur8PhryceJ/GGkwTqiaf+kHMMReTnwowTGx7Dituw4jFseA0LXsOGz2TBa7LhM1nxmWz4zDb8JiuY7WC24jfbwWzDb7aBxQamwFfDYsMw2zEsdgyLDZPVjsliw2SxY7JYMVtsmCwWzBYbZqsNs9mKxRp4brFYsDbsj8kMJmtg6g+TpdWPjWpT4WbkyJEcc8wxPPbYY0BgcrS8vDyuu+46br311v32v+CCC6ipqeGdd94JbjvuuOMYOnQoc+bMOeT12mu4Ka918caq3Tzy0QaqnR6O6pLCM+f14Jvf/opum6vY2SuJ095bFti5Yjd8+X/w9ZOAH465Es54sNX/YndEHreL7T98zZ5vl1K9dSPeHbuw5u8luaiG1KrQ/qGus0Ftghlngg13gh2fw4Yvzg7xDoz4OEzxCZgTEzEnJGJNSsIWn4zZbsfqSMDiiMPqiMfqiMcel9jwNQlbXAJ2R6IGRUur4/b6qHV5qXV5qHF6qHd5cTrrcNVV46mrxl1fjddZhc9Zg99Zjd9Zg99di99dj+GpA3c9hqcew+vE5K3H7K3H4nP+9PC7sPlc2HHiwIXDcOPAhR03dqOJJtg2wIMJL2a8mPFgwWeY8WDGawSee7Hg2/e84Wvgewt+kxl/w/d+w4wrtTcjLn8krPW1mVvBXS4XK1euZMaMGcFtJpOJcePGsXTp0iaPWbp0KdOnT2+0bcKECcyfPz+SpR7Sd1+8zbqn74WfRUXD7wf8P23zB/+n4fufP//pifGzw4z/3m/fjv7Aa36/H58PfH4fDuB//WAxGSSu8bPzHy66OaHeCr0m9YB5l0DJJij+2cxgI6+GCfco2LRSFquN3oNPanKenJqqUgq3raNs52Yqd2/DWbAbT1ExpuIyrGXV2KudxNd4iav3YwLiXBDn8kJZHdC8+VJ+zgc4Gx7/zW0Gjxl8JgOf6aevfpOBz2QEv/rMged+kwm/ef+vYIDJwI8R+AU3jIYH+Pc9h8AA059vMwgeCw3bTPvv/9P5jKZ/55v7/4PmHtvkpuYe27zzNV1zC64hjf/JBrwYuIkDmpoXyI/PH/i32O8HP358Pn/ge58Xv9+H3+cLfPX7oeE5+77/2dfAP/wNz3+2zQh+DXw4GAReMxqeG/6GrwT+4DH2fY7sez3w/6jAcQT+PWjYoZl8DY/mhzZn4jZGXB7CJcIspuGmpKQEr9dLdnZ2o+3Z2dn8+OOPTR5TUFDQ5P4FBQVN7u90OnE6f/rnuLKysoVVNy1//TcM+ao8IuduieI0P51GVdCncAEU7ttqQLdRcPLN0OfUWJYnLZCQ1IleR50IR5140P08bhcVJbspL95FdXE+NXsLcFaU4a2pxlNTha+mBl9tHdTWYdTWY6p3YqpzYXZ6MHt8mN0+zB4fFo8PiwcsHj+2/xoKYfUGHvt/LIhI7DSE/RjYfoAp1aKl3Q8ZnzlzJnfddVfEr5PV+yjWHN0wWNf4+T/tP/sL8ee/Yz//i+lnr/sbdjKMnx2wb3vDH6j+4P4GJgMsJhMWiwmr2RTcbk1wkNUjl+P79cFitgZOaHFAajfoekxgci7pECxWG+mde5Le+SCrwYfI5/PhdtbirKvGWVeNu74Wt7MOr9eNz+PG43bh87jxut34Grb5PB68nsB2v9cb3Ob3ePB63Pi9noa/Vv34fYG/XH/6S7dhe/Av2p/2CT7n588BX8Ox+/4a9vn33+fnDpTHmuq5P2Bvfgj7NrX5gPvuv93f5LUOVFYoP4NIy1m7dDn0ThEU03CTkZGB2WymsLCw0fbCwkJycnKaPCYnJyek/WfMmNGoG6uyspK8vPDfYTJs9C8ZNloraUvHYDKZsMclYo9LPPTOIiJRFtNRgDabjeHDh7Nw4cLgNp/Px8KFCxk1alSTx4waNarR/gAfffTRAfe32+0kJyc3eoiIiEj7FfNuqenTpzNlyhRGjBjBsccey6xZs6ipqWHq1KkATJ48mS5dujBz5kwAbrjhBkaPHs3DDz/MmWeeycsvv8yKFSt46qmnYvljiIiISCsR83BzwQUXUFxczB133EFBQQFDhw7lgw8+CA4a3rFjR6PbTI8//njmzp3Lbbfdxv/+7//St29f5s+f36w5bkRERKT9i/k8N9HWXue5ERERac9C+fzWzFsiIiLSrijciIiISLuicCMiIiLtisKNiIiItCsKNyIiItKuKNyIiIhIu6JwIyIiIu2Kwo2IiIi0Kwo3IiIi0q7EfPmFaNs3IXNlZWWMKxEREZHm2ve53ZyFFTpcuKmqqgIgLy8vxpWIiIhIqKqqqkhJSTnoPh1ubSmfz8eePXtISkrCMIxYl9OqVFZWkpeXx86dO7Xu1mHSe9gyev9aTu9hy+j9a7lIvYd+v5+qqipyc3MbLajdlA7XcmMymejatWusy2jVkpOT9X/qFtJ72DJ6/1pO72HL6P1ruUi8h4dqsdlHA4pFRESkXVG4ERERkXZF4UaC7HY7d955J3a7PdaltFl6D1tG71/L6T1sGb1/Ldca3sMON6BYRERE2je13IiIiEi7onAjIiIi7YrCjYiIiLQrCjciIiLSrijcSNDs2bPp0aMHDoeDkSNHsmzZsliX1GYsWbKESZMmkZubi2EYzJ8/P9YltSkzZ87kmGOOISkpiaysLM455xzWr18f67LajCeeeILBgwcHJ00bNWoU77//fqzLatPuu+8+DMPgxhtvjHUpbcKf//xnDMNo9BgwYEDM6lG4EQDmzZvH9OnTufPOO1m1ahVDhgxhwoQJFBUVxbq0NqGmpoYhQ4Ywe/bsWJfSJi1evJhp06bx1Vdf8dFHH+F2uznttNOoqamJdWltQteuXbnvvvtYuXIlK1as4JRTTuHss8/m+++/j3VpbdLy5ct58sknGTx4cKxLaVOOPPJI8vPzg4/PP/88ZrXoVnABYOTIkRxzzDE89thjQGANrry8PK677jpuvfXWGFfXthiGwZtvvsk555wT61LarOLiYrKysli8eDEnn3xyrMtpkzp16sSDDz7Ib3/721iX0qZUV1dz9NFH8/jjj/PXv/6VoUOHMmvWrFiX1er9+c9/Zv78+axevTrWpQBquRHA5XKxcuVKxo0bF9xmMpkYN24cS5cujWFl0lFVVFQAgQ9oCY3X6+Xll1+mpqaGUaNGxbqcNmfatGmceeaZjf49lObZuHEjubm59OrVi4svvpgdO3bErJYOt3Cm7K+kpASv10t2dnaj7dnZ2fz4448xqko6Kp/Px4033sgJJ5zAoEGDYl1Om7FmzRpGjRpFfX09iYmJvPnmmwwcODDWZbUpL7/8MqtWrWL58uWxLqXNGTlyJM8//zz9+/cnPz+fu+66i5NOOom1a9eSlJQU9XoUbkSkVZk2bRpr166NaX99W9S/f39Wr15NRUUFr732GlOmTGHx4sUKOM20c+dObrjhBj766CMcDkesy2lzJk6cGHw+ePBgRo4cSffu3XnllVdi0jWqcCNkZGRgNpspLCxstL2wsJCcnJwYVSUd0bXXXss777zDkiVL6Nq1a6zLaVNsNht9+vQBYPjw4SxfvpxHH32UJ598MsaVtQ0rV66kqKiIo48+OrjN6/WyZMkSHnvsMZxOJ2azOYYVti2pqan069ePTZs2xeT6GnMj2Gw2hg8fzsKFC4PbfD4fCxcuVJ+9RIXf7+faa6/lzTff5JNPPqFnz56xLqnN8/l8OJ3OWJfRZpx66qmsWbOG1atXBx8jRozg4osvZvXq1Qo2Iaqurmbz5s107tw5JtdXy40AMH36dKZMmcKIESM49thjmTVrFjU1NUydOjXWpbUJ1dXVjf5C2bp1K6tXr6ZTp05069YthpW1DdOmTWPu3Lm89dZbJCUlUVBQAEBKSgpxcXExrq71mzFjBhMnTqRbt25UVVUxd+5cFi1axIIFC2JdWpuRlJS03xivhIQE0tPTNfarGW6++WYmTZpE9+7d2bNnD3feeSdms5kLL7wwJvUo3AgAF1xwAcXFxdxxxx0UFBQwdOhQPvjgg/0GGUvTVqxYwdixY4PfT58+HYApU6bw/PPPx6iqtuOJJ54AYMyYMY22P/fcc1x22WXRL6iNKSoqYvLkyeTn55OSksLgwYNZsGAB48ePj3Vp0kHs2rWLCy+8kL1795KZmcmJJ57IV199RWZmZkzq0Tw3IiIi0q5ozI2IiIi0Kwo3IiIi0q4o3IiIiEi7onAjIiIi7YrCjYiIiLQrCjciIiLSrijciIiISLuicCMiIiLtisKNiIiItCsKNyISEWPGjOHGG2+MdRkh27t3L1lZWWzbtq3F5/rNb37Dww8/3PKiRCQkWn5BREJmGMZBX7/zzju5/vrrsVqtJCUlRamqAxszZgxDhw5l1qxZh9x3+vTpVFVV8fTTT7NgwQJOP/30g+6/YMECTjvttCZfW7t2LSeffDJbt24lJSXlcEoXkcOghTNFJGT5+fnB5/PmzeOOO+5g/fr1wW2JiYkkJibGorQWqa2t5Zlnngmupn3yySc3+lkHDRrENddcwzXXXBPcdrCFAQcNGkTv3r3517/+xbRp0yJXuIg0om4pEQlZTk5O8JGSkoJhGI22JSYm7tctNWbMGK677jpuvPFG0tLSyM7O5umnn6ampoapU6eSlJREnz59eP/994PH+Hw+Zs6cSc+ePYmLi2PIkCG89tprIdV62WWXsXjxYh599FEMw8AwjAN2Ob333nvY7XaOO+44AOLi4oI/k9frZe/evZx00kmNflaz2XzQ60+aNImXX345pJpFpGUUbkQkal544QUyMjJYtmwZ1113HVdffTXnnXcexx9/PKtWreK0007j0ksvpba2FoCZM2fy4osvMmfOHL7//ntuuukmLrnkEhYvXtzsaz766KOMGjWKK6+8kvz8fPLz88nLy2ty388++4zhw4c3+do333wDwNFHHx3Sz3zssceybNkynE5nSMeJyOFTuBGRqBkyZAi33XYbffv2ZcaMGTgcDjIyMrjyyivp27cvd9xxB3v37uW7777D6XRy77338uyzzzJhwgR69erFZZddxiWXXMKTTz7Z7GumpKRgs9mIj48/ZGvL9u3byc3NbfK1VatWkZeXR3p6eqPtv/zlL0lLS+Pcc89t8rjc3FxcLhcFBQXNrllEWkZjbkQkagYPHhx8bjabSU9P56ijjgpuy87OBqCoqIhNmzZRW1vL+PHjG53D5XIxbNiwiNRXV1eHw+Fo8rVVq1Y12Wpzww03cPnll/PCCy80eVxcXBxAsDVKRCJP4UZEosZqtTb63jCMRtv23YXl8/morq4G4N1336VLly6NjrPb7RGpLyMjg7KysiZfW7VqFVdcccV+28eMGcOiRYsOeM7S0lLg4AOPRSS8FG5EpFUaOHAgdrudHTt2MHr06Bady2az4fV6D7nfsGHD+Ne//rXf9pKSEnbu3BnyeBsI3A7etWtXMjIyQj5WRA6Pwo2ItEpJSUncfPPN3HTTTfh8Pk488UQqKir44osvSE5OZsqUKc0+V48ePfj666/Ztm0biYmJdOrUCZNp/yGHEyZMYMaMGZSVlZGWlhbcvmrVKiD0wcQQGKR8oHlwRCQyNKBYRFqtv/zlL9x+++3MnDmTI444gtNPP513332Xnj17Bvd5/vnnDzmp4M0334zZbGbgwIFkZmayY8eOJvc76qijOProo3nllVcabf/mm2/Izs4+4GDjA6mvr2f+/PlceeWVIR0nIi2jGYpFpE278847Wbx48UHHvYTi3Xff5ZZbbmHt2rVNtu40ZdGiRTz22GP7zcHzxBNP8Oabb/Lhhx+GpTYRaR51S4lIm/b+++/z2GOPhe18Z555Jhs3bmT37t0HnA/n58aNG8e3335LTU0NXbt25dVXX2XUqFFAYAD13//+97DVJiLNo5YbERERaVc05kZERETaFYUbERERaVcUbkRERKRdUbgRERGRdkXhRkRERNoVhRsRERFpVxRuREREpF1RuBEREZF2ReFGRERE2hWFGxEREWlXFG5ERESkXVG4ERERkXbl/wHuDr65oAnlqgAAAABJRU5ErkJggg==" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "source = Source.biexciton(pulse=Pulse.gaussian(parameters={'width': 0.1, 'detuning': -50, 'area': 4 * np.pi}))\n", "for i in range(4):\n", " source.plot_lifetime(i, end=5)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:19:44.817648Z", "start_time": "2024-02-09T09:19:44.458918Z" } } }, { "cell_type": "markdown", "source": [ "From this lifetime, we can see that the TPE brings the QD into the biexciton state quite quickly, which then relaxes down to the exciton state. Both the modes 2 and 3 are producing light (the red curve overlaps the green curve). As the exciton becomes populated by the decaying biexciton state, it too begins to produce light in modes 0 and 1. Interestingly, these are not identical, and the reason is that the excitation pulse is polarized along the mode 0 (H) polarization. This means that the $|x\\rangle$ exciton state is populated by the excitation pulse directly, leading to a small initial emission around $t=0$." ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "This cascade of biexciton to exciton has been historically very promising for generating polarization-entangled Bell pairs. This is because a photon emitted into mode 3 will imply a second photon emitted into mode 1 (both with V polarization). Likewise, a photon emitted into mode 2 will imply a second photon emitted into mode 0 (both with H polarization). Let's take a look at these correlations using the probs() method of the Processor class." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 34, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Pattern | Probability\n", "0 0 0 0 | 0.00333\n", "0 0 1 0 | 0.01760\n", "0 1 0 1 | 0.48503\n", "0 1 1 1 | 0.01128\n", "1 0 0 0 | 0.00987\n", "1 0 1 0 | 0.46364\n", "1 1 0 1 | 0.00726\n", "1 1 1 1 | 0.00199\n", "\n" ] } ], "source": [ "qpu = Processor() // Source.biexciton(pulse=Pulse.gaussian(parameters={'width': 0.1}))\n", "qpu.add([0, 1, 2, 3], Detector.threshold()) # adds a threshold detector to monitor modes 0, 1, 2, 3\n", "\n", "qpu.probs(parameters={'detuning': -50, 'area': 4*np.pi}).display()" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:19:45.368941Z", "start_time": "2024-02-09T09:19:44.816225Z" } } }, { "cell_type": "markdown", "source": [ "Recall the modes are ordered by default such that 1010 represents the detection of an H-polarised photon from the X to ground transition and an H-polarised photon from the XX to X transition. Similarly, 0101 represents the detection of a V-polarised photon from the X to ground transition and a V-polarised photon from the XX to X transiton. In other words, these statistics show that the photonic state we are producing may be of the form $(|HH\\rangle + |VV\\rangle)/\\sqrt{2}$, which is a polarisation encoded-Bell state. However, to be sure we have $(|HH\\rangle + |VV\\rangle)/\\sqrt{2}$ and not a classical mixture $(|HH\\rangle\\langle HH| + |VV\\rangle\\langle VV|)/2$, we must check to see if these correlations remain regardless of the polarisation basis." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 35, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Pattern | Probability\n", "0 0 0 0 | 0.00333\n", "0 0 0 1 | 0.00871\n", "0 0 1 0 | 0.00871\n", "0 0 1 1 | 0.00017\n", "0 1 0 0 | 0.00448\n", "0 1 0 1 | 0.04665\n", "0 1 1 0 | 0.42781\n", "0 1 1 1 | 0.00567\n", "1 0 0 0 | 0.00448\n", "1 0 0 1 | 0.42781\n", "1 0 1 0 | 0.04665\n", "1 0 1 1 | 0.00567\n", "1 1 0 0 | 0.00091\n", "1 1 0 1 | 0.00364\n", "1 1 1 0 | 0.00364\n", "1 1 1 1 | 0.00165\n", "\n" ] } ], "source": [ "qpu.probs(parameters={'detuning': -50, 'area': 4*np.pi,\n", " 'theta_c': np.pi/4, 'phi_c': np.pi/2, # let's rotate our X collection polarisation to R = H + V\n", " 'theta_bc': np.pi/4, 'phi_bc': np.pi/2} # same for the XX collection\n", " ).display()" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:19:45.865372Z", "start_time": "2024-02-09T09:19:45.364488Z" } } }, { "cell_type": "markdown", "source": [ "After rotating the collection polarisation, we indeed see that we still have correlations, but now it is anti-correlated 0110 = LR and 1001 = RL! This is exactly expected when applying the change of basis to the HH+VV Bell state.\n", "\n", "One big issue facing the experimental implementation of determinstic Bell state generation is the fine structure splitting. Recall from the previous section that the exciton state can have a small splitting between $|x\\rangle$ and $|y\\rangle$. If this splitting is too large, then the frequency of the H and V polarisations will no longer be identical and this gives \"which path\" information about the biexction cascade, degrading the polarisation correlations. To see this in action, let's look at the four correlations 1010, 0110, 1001, and 0101 as a function of the fine structure splitting." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 36, "outputs": [], "source": [ "qpu.update_default_parameters(parameters={'detuning': -50, 'area': 4*np.pi,\n", " 'theta_c': np.pi/4, 'phi_c': np.pi/2, # let's rotate our collection polarisation to R\n", " 'theta_bc': np.pi/4, 'phi_bc': np.pi/2})\n", "\n", "fss_set = np.linspace(-5, 5, 100)\n", "correlation_set = [[], [], [], []]\n", "labels = [[(1,0,1,0), 'RR', 'solid'], [(0,1,1,0), 'LR', 'solid'], [(1,0,0,1), 'RL', 'dashed'], [(0,1,0,1), 'LL', 'dashed']]\n", "for fss in fss_set:\n", " pn = qpu.probs(parameters={'fss': fss})\n", " for i in range(0, 4):\n", " correlation_set[i].append(pn[labels[i][0]])" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:20:35.377443Z", "start_time": "2024-02-09T09:19:45.871904Z" } } }, { "cell_type": "markdown", "source": [ "Plotting this, we see:" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 37, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAG5CAYAAABm74t6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB+j0lEQVR4nO3dd1xV9R/H8de9l71BNqLg3uAC90TRzDS1zIYjs20WlWk/00wLUytLTc00taW2tLQoJXGkuck9cIHsIRsucO/5/WFRJJogcBif5+NxH3XP+J73uah87jnf8/1qFEVREEIIIYSoQ7RqBxBCCCGEqGpSAAkhhBCizpECSAghhBB1jhRAQgghhKhzpAASQgghRJ0jBZAQQggh6hwpgIQQQghR50gBJIQQQog6RwogIYQQQtQ5UgAJIYQQos6pFgXQ0qVL8fHxwcLCgsDAQA4cOHBb+61fvx6NRsPw4cNLLB8/fjwajabEa9CgQZWQXAghhBA1keoF0IYNGwgJCWHWrFkcOXIEPz8/goODSUpKuuV+ly9f5qWXXqJnz56lrh80aBDx8fHFry+//LIy4gshhBCiBtKoPRlqYGAgnTt3ZsmSJQAYjUa8vb2ZPHky06ZNK3Ufg8FAr169ePTRR9m9ezfp6els2rSpeP348eNvWFYWRqORuLg4bG1t0Wg05WpDCCGEEFVLURSysrLw9PREq731NR6TKspUqoKCAg4fPsz06dOLl2m1WoKCgti3b99N93vjjTdwdXVl4sSJ7N69u9RtIiIicHV1xdHRkX79+jF37lzq1atX6rZ6vR69Xl/8PjY2llatWpXzrIQQQgihppiYGOrXr3/LbVQtgFJSUjAYDLi5uZVY7ubmxpkzZ0rdZ8+ePaxatYrIyMibtjto0CBGjBiBr68vFy5c4NVXX2Xw4MHs27cPnU53w/ahoaHMnj37huUxMTHY2dmV7aSEEEIIoYrMzEy8vb2xtbX9z21VLYDKKisri0ceeYSVK1fi7Ox80+0eeOCB4v9v27Yt7dq1o3HjxkRERNC/f/8btp8+fTohISHF7//6AO3s7KQAEkIIIWqY2+m+omoB5OzsjE6nIzExscTyxMRE3N3db9j+woULXL58maFDhxYvMxqNAJiYmHD27FkaN258w36NGjXC2dmZqKioUgsgc3NzzM3N7/R0hBBCCFFDqPoUmJmZGR07diQ8PLx4mdFoJDw8nK5du96wfYsWLTh+/DiRkZHFr3vuuYe+ffsSGRmJt7d3qce5evUqqampeHh4VNq5CCGEEKLmUP0WWEhICOPGjaNTp04EBASwaNEicnJymDBhAgBjx47Fy8uL0NBQLCwsaNOmTYn9HRwcAIqXZ2dnM3v2bEaOHIm7uzsXLlxg6tSpNGnShODg4Co9NyGEEEJUT6oXQKNHjyY5OZmZM2eSkJCAv78/YWFhxR2jo6Oj//NRtn/S6XQcO3aMtWvXkp6ejqenJwMHDmTOnDlym0sIIUSNZTAYKCwsVDuGqkxNTUt9mKk8VB8HqDrKzMzE3t6ejIwM6QQthBBCVYqikJCQQHp6utpRqgUHBwfc3d1L7ehclt/fql8BEkIIIcTN/VX8uLq6YmVlVWcH6FUUhdzc3OKZIu60X68UQEIIIUQ1ZTAYioufmw3mW5dYWloCkJSUhKur6x3dDlN9LjAhhBBClO6vPj9WVlYqJ6k+/vos7rQ/lBRAQgghRDVXV297laaiPgspgIQQQghR50gBJIQQQog6RwogIYQQQlS48ePHo9Fo0Gg0mJqa4uvry9SpU8nPzy/e5q/1Go0GOzs7OnfuzObNm6sknxRAQgjxp7zcNIoK8/97QyHEbRk0aBDx8fFcvHiR9957jxUrVjBr1qwS23zyySfEx8dz6NAhunfvzqhRozh+/HilZ5MCSAhRdykKxB/jhx+f4pE1HeiysRf9P+vEB9/eT0JCpNrphKjxzM3NcXd3x9vbm+HDhxMUFMS2bdtKbPPXwIbNmjVjzpw5FBUVsWPHjkrPJuMACSHqpiOfwo43ISueWAc7Ih0dAA1pGliZdZrVYQ/TT+fIQ+0eo6PfOLXTCgFcHwwwr9CgyrEtTXV39ATWiRMn2Lt3Lw0bNix1fVFREatWrQKuT5Ze2aQAEkLUOd9te5FmB9fRuqAATK0Y5NoZJ+cGdGv1AKcubefLC5s4pNGzzZjOjqML+Cb+BI0GLVA7thDkFRpoNfNnVY596o1grMzKVjZs2bIFGxsbioqK0Ov1aLValixZUmKbMWPGoNPpyMvLw2g04uPjw/3331+R0UslBZAQok7Z/Os0ZsX+jLWHK1+5DqD+wHn4mFrg8+f6+vW7MLDnDM6d/5HPD73HgOhjNLr8EVi5Qq+X1YwuRI3Tt29fli1bRk5ODu+99x4mJiaMHDmyxDbvvfceQUFBXLx4kRdeeIEPPvgAJyenSs8mBZAQos74aefrzIzegqLRcI+VD16D3wVt6V0hmzW9i9lN74K9i+GXGfDrXHK1Jlj1eKGKUwvxN0tTHafeCFbt2GVlbW1NkyZNAFi9ejV+fn6sWrWKiRMnFm/j7u5OkyZNaNKkCZ988gl33XUXp06dwtXVtcKyl0Y6QQsh6oTw3+Yx/dLXGDUaRpl7Mm3U92huUvyU0G0y9P0fV0xMGHb2Izb8/FzlhxXiJjQaDVZmJqq87nQEZq1Wy6uvvsqMGTPIy8srdZuAgAA6duzIm2++eUfHuq08lX4EIYRQ2ckz3/LS+c8waDTcY+rKa/dtvb3i5y+9XmZb64EkmJgwN2EHm8JfqbywQtRi9913HzqdjqVLl950m+eff54VK1YQGxtbqVmkABJC1GpGQxFv7ZtLkUZDX40db9z/E1pdGe/+azRMHPY5D1v6ADA7Zitnz22p+LBC1HImJiY8++yzzJ8/n5ycnFK3GTRoEL6+vpV+FUijKIpSqUeogTIzM7G3tycjIwM7Ozu14wgh7kDGodVMPfgWkRYW/HDXelzd2pS7LcVo5PnPe/KrMZOWRh2fP7wXU1OZpVtUnvz8fC5duoSvry8WFhZqx6kWbvWZlOX3t1wBEkLUXvos7CPmsTwxma997ruj4gdAo9Xy2uBV2BsVTmsNrP7xiQoKKoSoalIACSFqr10LIDsRjVMjvHtOq5AmnZ1bML3R9cd4l187yrmonyqkXSFE1ZICSAhRK12+vJM3z3xGulYLg+aBiXmFtX1Xz1n00djSIzcPh/C3wFBUYW0LIaqGFEBCiFpp/q5XWG9nzZs+LaFZxY6botFqmT/0Cz7ILMI1/hjsfb9C2xdCVD4pgIQQtc6u/e+xW8nBRFF4uldopRzD0tEHzeD5199EzCM37milHEcIUTmkABJC1CpGQxHvnPwEgEdsmuLr07vyDtbufjKaDuRVR1ue2/Y4itFYeccSQlQoKYCEELXKnkNLuahTsDYqTBq45L93uBMaDdl9pxJmY8V+8tlzqJKPJ4SoMFIACSFqlXVnPgNgpE1jbO28Kv14Xp6decimKQDvnlyFoaig0o8phLhzUgAJIWqNs+e3sp98tIrCQ91fq7LjPjbgfeyMClFaI5sjXq2y4wohyk8KICFEreFw/FsezshkuIkznp6dquy49vYNeNy1GwBLosPIzU2psmMLIcpHCiAhRO2QlYDbic28kpbO7N4LqvzwY4LewcsAyToNn257ocqPL0R1M378eIYPH17qOh8fHzQazfXZ7a2saNu2LR9//HGV5pMCSAhROxz8GIyFUD8AvDtX+eHNzG15rvEIADalHKYoM77KMwhRk7zxxhvEx8dz4sQJHn74YSZNmsRPP1XdyOpSAAkharz8vGu8eu4zDpubo3R5WrUcg3q8xvRCK766GofJrqq/CiVETWJra4u7uzuNGjXilVdewcnJiW3btlXZ8U2q7EhCCFFJtux+gx8sTTli5sbW5nehUymHVmfCg0HvwJohcHgNdH0G6jVWKY2olRQFCnPVObapFWg0Fd6s0Wjku+++49q1a5iZmVV4+zcjBZAQokYzGor49Go46OAh927oTCtuzq9y8ekBTQagRG3j7I5ZtBj1mbp5RO1SmAtveapz7FfjwMy6wpp75ZVXmDFjBnq9nqKiIpycnHjssccqrP3/Ui1ugS1duhQfHx8sLCwIDAzkwIEDt7Xf+vXr0Wg0N3SyUhSFmTNn4uHhgaWlJUFBQZw/f74Skgsh1Lb38LLigQ/v7fm62nEAyOsZwoOebozOjuTKld1qxxGiWnr55ZeJjIzk119/JTAwkPfee48mTZpU2fFVvwK0YcMGQkJCWL58OYGBgSxatIjg4GDOnj2Lq6vrTfe7fPkyL730Ej179rxh3fz58/nggw9Yu3Ytvr6+vPbaawQHB3Pq1CksLCwq83SEEFXsm7MbALjX2hcbWw+V01xn2bAbThb1MCrZrNgzi7ca/qp2JFFbmFpdvxKj1rErkLOzM02aNKFJkyZ89dVXtG3blk6dOtGqVasKPc7NqH4F6N1332XSpElMmDCBVq1asXz5cqysrFi9evVN9zEYDDz00EPMnj2bRo0alVinKAqLFi1ixowZDBs2jHbt2rFu3Tri4uLYtGlTJZ+NEKIqpaVFEWFIB2BEh2fUDfMvT3d+CYCthUlcuhyhbhhRe2g0129DqfGqhP4/f/H29mb06NFMnz690o7xb6oWQAUFBRw+fJigoKDiZVqtlqCgIPbt23fT/d544w1cXV2ZOHHiDesuXbpEQkJCiTbt7e0JDAy8aZt6vZ7MzMwSLyFE9ffD7/Mp0mhoYzShaZNBascpoXXLkfTR2GLUaFjx22y14wihioyMDCIjI0u8YmJiSt12ypQp/PDDDxw6dKhKsqlaAKWkpGAwGHBzcyux3M3NjYSEhFL32bNnD6tWrWLlypWlrv9rv7K0GRoair29ffHL29u7rKcihKhqioJTzGF8Cgq517OX2mlK9VTAVAB+Kkzm4iW5DSbqnoiICNq3b1/iNXt26V8IWrVqxcCBA5k5c2aVZFO9D1BZZGVl8cgjj7By5UqcnZ0rrN3p06cTEhJS/D4zM1OKICGqu7gjDI2P4m4TCwwPVt28X2XRqsVw+h5YwA4yWfHbG7zt20/tSEJUmTVr1rBmzZoy7RMWFlY5YUqhagHk7OyMTqcjMTGxxPLExETc3d1v2P7ChQtcvnyZoUOHFi8zGo0AmJiYcPbs2eL9EhMT8fD4u0NkYmIi/v7+peYwNzfH3FzlR2eFEGVz5FMANC3vwcS64r4QVbSnAqey4/cZXMiNpyD+OGYebdWOJIRA5VtgZmZmdOzYkfDw8OJlRqOR8PBwunbtesP2LVq04Pjx4yXuJd5zzz307duXyMhIvL298fX1xd3dvUSbmZmZ7N+/v9Q2hRA1T15uGlsufE++RgPtH1Y7zi21bD6MtaaN2RiXgNlv76kdRwjxJ9VvgYWEhDBu3Dg6depEQEAAixYtIicnhwkTJgAwduxYvLy8CA0NxcLCgjZt2pTY38HBAaDE8ueff565c+fStGnT4sfgPT09bzopmxCiZtm+/11edbRmna01G31uHAqjuunQbw6c6wEnvoXe08ClmdqRhKjzVC+ARo8eTXJyMjNnziQhIQF/f3/CwsKKOzFHR0ej1ZbtQtXUqVPJycnh8ccfJz09nR49ehAWFiZjAAlRS2y6EgYa6OfsB2X890EV7m2h+V3knfuJQztm0PP+jWonEqLO0yiKoqgdorrJzMzE3t6ejIwM7Ozs1I4jhPiHmJh93PXr42gUhZ8HrsXDs6PakW5L+qVdDNvxJOlaLT/0W06DBj3UjiRqgPz8fC5duoSvr698if/TrT6Tsvz+rgFfnYQQ4m+bD70PQFeNVY0pfgAcfHvR2sQOo0bDx7+9rnYcIeo8KYCEEDWG0VDE5msnALjXd4jKacruiQ7PA/CDPoHY2Nub81AIUTmkABJC1BiHjq0hQafB1qjQN+B5teOUmV+bB+iKJUUaDat2V81gb0KI0kkBJISoMSLPbQZgoIUn5hb2Kqcpnyf8nwXgu/yrJMQfVTmNEHWXFEBCiJqhMI/HL0byY0wcE/2fVjtNuXX0G0tnxZwijYbVu2aoHUeIOksKICFEzXAuDPSZeFt74N38HrXT3JEn2j0BQEbqWZSMOJXTCFE5xo8fj0ajQaPRYGpqiq+vL1OnTiU/P794G41Gw6ZNm1TJJwWQEKJGyP1j/fX/aXtfzRj75xYC/CeyxeDG20nJaPZ+oHYcISrNoEGDiI+P5+LFi7z33nusWLGCWbNmqR0LkAJICFEDpKddpI/+BJNdnclvPVztOHdMo9XSsPf/rr85/AlkJagbSIhKYm5ujru7O97e3gwfPpygoCC2bdumdiygGowELYQQ/+WXg4vI02pJtLTFwsNP7TgVo1Ef8O5CbPxBjm+fyqB716mdSNQguYW5N12n0+ow15nf1rZajRYLE4v/3NbK1KocKUs6ceIEe/fupWHDhnfcVkWQAkgIUe39EL8HNHC3a4DaUSqORsPFgPGMPByLLv0IHZNO4uLaWu1UooYI/CLwput6evXkw6APi9/32diHvKK8Urft5NaJTwZ9Uvx+0DeDuKa/dsN2x8cdL1fOLVu2YGNjQ1FREXq9Hq1Wy5IlS8rVVkWTW2BCiGotJmYfkZpCtIrC4M5T1I5ToXxbj6YNZui1GlbvnK52HCEqXN++fYmMjGT//v2MGzeOCRMmMHLkSLVjAXIFSAhRzW09shSALhqrWneFRKPV8lSbx3ji5DK+yr7Io3IVSNym/Q/uv+k6nVZX4n3E/RE33VarKXkdJGxk2B3l+jdra2uaNGkCwOrVq/Hz82PVqlVMnDixQo9THnIFSAhRbSlGI1tT/wDg7gYDVE5TObp2eBI/o6lcBRJlYmVqddPXP/v//Ne2/+z/c6ttK4JWq+XVV19lxowZ5OWVfkuuKkkBJISotk6e+YbLOrA0KvSvZbe//qLRanm6zfVvw19lXyQ56ZTKiYSoPPfddx86nY6lS5cWL7t06RKRkZElXjk5OZWeRQogIUS15X3xN6anpDHBvD5WNq5qx6k0XTs+Rbviq0DT1I4jRKUxMTHh2WefZf78+cVFTkhICO3bty/xOnq08qeJkQJICFE9GQqxP/UDD2Zl81TnF9VOU6muXwV6FCujEae4Y5ARq3YkIe7YmjVrSh3ledq0aSQlJWFtbY2iKKW+evToUen5pAASQlRPFyMgNwWsnKFRX7XTVLpuHZ/mF8WLSdeuwa4FascRotaTAkgIUS2tPPQuX9lak9XqHtDV/gdWNVot9v1fv/7m6KeQdlHVPELUdlIACSGqnZzsBD7Kj+EN53pc9u2mdpyq07AbNO7PfjMdK39+Vu00QtRqUgAJIaqdXw8uJl+roaEB2rSsHoOmVZVLXR7jMQ83FuujiYr6We04QtRaUgAJIaqdLdHbARji1A5NDZ/5vax8m97FAK09ikbDkn1vqB1HiFqrbv3LIoSo9lKST/O7cv3x2Ls7PKVyGnU8020WWkUh3JjJiVNfqR1HiFpJCiAhRLXy08FFGDUa2hlN8W5Q+Y/CVkeNGw/gbrPr4x4tPihPhAlRGaQAEkJUK1sSr89xdLdHHer8XIone76JiaKwlzwOHP1Y7ThC1DpSAAkhqo38hOM45mdjpigEBzyvdhxVeXt3ZaRlAwAWRi7BaChSOZEQtYsUQEKIasPi1GaWJyYTYdIcJ6cmasdR3VP9F9G8oIhHUxLRHP9a7ThC1CpSAAkhqgdFgWMbAbD1G6NymOqhnnMzvmo+kUE5uWh+nQOF6s+gLcTtGj9+PMOHDy91nY+PD4sWLarSPP8mBZAQolqIPfsDCVlXwcwGmt+ldpxqQ9P1GbCrD5lXMe5b+t87CCFuixRAQohqYcXRDxjo7cmaxh3BzErtONWHqSWGfjPYaGvD0POrSU05p3YiIWoFKYCEEKrLzU3h5/wEFI2Gti3q1sjPt0PT9j6+cXIh2kTHsu1T1I4jqgFjbu7NX3r97W+bn39b29ZGtX+GQSFEtRe+fxG5Wg31DdCh7SNqx6l2tDoTXvKfzKPHFvF1fgwPXgqnkW9/tWMJFZ3t0PGm66x796LBihXF789174GSV3r/MavOnWn46bri91H9gzBcu3bDdi3PnL6DtNWTXAESQqhuc/T1Oa/uqYNTX9yuzu0n0kdji0Gj4Z3dM9SOI0SNVy2uAC1dupQFCxaQkJCAn58fixcvJiAgoNRtv/32W9566y2ioqIoLCykadOmvPjiizzyyN/fGsePH8/atWtL7BccHExYWFilnocQouzi4g5xQMkDjYZ7OsvtnVsJ6fUWeyKeZRfZ7Pz9XXp3CVE7klBJ8yOHb75Spyvxttlve26+7b++cDQJ334nsWoU1QugDRs2EBISwvLlywkMDGTRokUEBwdz9uxZXF1db9jeycmJ//3vf7Ro0QIzMzO2bNnChAkTcHV1JTg4uHi7QYMG8cknnxS/Nzc3r5LzEUKUzQ8H30fRaOismOPlVfoXH3Gdr08fHrFpyic5UYSe+oRAvwlYWDqqHUuoQGt1+w8KVNa2NZ3qBdC7777LpEmTmDBhAgDLly9n69atrF69mmnTpt2wfZ8+fUq8nzJlCmvXrmXPnj0lCiBzc3Pc3d0rNbsQ4g4pCttSI0EHwxoEqZ2mRnhy0HK2buxPnBZ+3/Eafe5aonYkIW4qIyODyMjIEsvq1asHQGxs7A3rGjZsiKNj1RT1qt5sLygo4PDhwwQF/f0Pn1arJSgoiH379v3n/oqiEB4eztmzZ+nVq1eJdREREbi6utK8eXOeeuopUlNTb9qOXq8nMzOzxEsIUQViDrA2JoY30rIZECC3c26HlY0bc1uM44u4RPoc3ghpl9SOJMRNRURE0L59+xKv2bNnA7Bw4cIb1m3durXKsql6BSglJQWDwYCbm1uJ5W5ubpw5c+am+2VkZODl5YVer0en0/Hhhx8yYMCA4vWDBg1ixIgR+Pr6cuHCBV599VUGDx7Mvn370P3r3ihAaGho8Q9ECFGFIj/HWlG413cw2Nx4y1uUrmvXl+D8bri0E8KmwYMb1I4kxA3WrFnDmjVr1I5xU6rfAisPW1tbIiMjyc7OJjw8nJCQEBo1alR8e+yBBx4o3rZt27a0a9eOxo0bExERQf/+Nz46On36dEJC/v72mZmZibe3d6WfhxB1mVKQi+bkd9ffyNQXZaPRwF0LYVk3Ll/czrVDy2jf6Sm1UwlRo6h6C8zZ2RmdTkdiYmKJ5YmJibfsv6PVamnSpAn+/v68+OKLjBo1itDQ0Jtu36hRI5ydnYmKiip1vbm5OXZ2diVeQojK9eO+t7mvnhU/uDaAht3VjlPzuDRjb/tRjKjvwfRjH5Kfd+PYLUKIm1O1ADIzM6Njx46Eh4cXLzMajYSHh9O1a9fbbsdoNKL/18iX/3T16lVSU1Px8PC4o7xCiIrz3eUfOWNuRrRHmxsexRW3x7//XOoZIVYHy358TO04QtQoqv+rExISwsqVK1m7di2nT5/mqaeeIicnp/ipsLFjxzJ9+vTi7UNDQ9m2bRsXL17k9OnTvPPOO3z66ac8/PDDAGRnZ/Pyyy/z+++/c/nyZcLDwxk2bBhNmjQp8ZSYEEI9V67sZj/5aBSFewNfVDtOjWVl5cy0FtfHQFubdZaTp79ROZEQNYfqfYBGjx5NcnIyM2fOJCEhAX9/f8LCwoo7RkdHR6P9x7fDnJwcnn76aa5evYqlpSUtWrTgs88+Y/To0QDodDqOHTvG2rVrSU9Px9PTk4EDBzJnzhwZC0iIauLrg+8C0ENrg6dnJ5XT1Gz9u73CoItbCTNc47Xf32BDo0GYmlurHUtUMEVR1I5QbVTUZ6FR5FO9QWZmJvb29mRkZEh/ICEqWIE+i6AvunJNq+GDZuPo2/UltSPVeGlpUQzfPJxrWg1P27flqeFfqB1JVBCDwcC5c+dwdXUtHj+nrktNTSUpKYlmzZrd8GR3WX5/q34FSAhRt2z/fSHXtBpcDQo9Oz2rdpxawcmpCdMbjWLq5W/4KP0YA6PCaNxkkNqxRAXQ6XQ4ODiQlJQEgJWVFRqNRuVU6lAUhdzcXJKSknBwcCh1WJuykAJICFGlvrq0FTQw0rEtJqYWasepNQb1nMmv0dtpnnKFhuFvgW8Q6OSf+Nrgr6ei/yqC6joHB4cKmelB/nYIIapO8jkmJsZgZ2vLiIGvqJ2mVtFotcwf9hWaDwMh4w/Y+wH0lNG1awONRoOHhweurq4UFhaqHUdVpqamd3zl5y9SAAkhqs7hNfTIy6eHd1/w8Fc7Ta2jsfOAQfNg01Pk7Qwl1bMd9RvLHGu1hU6nq7Bf/qIaPAYvhKgjCvPhjz8753aaoG6W2sxvDFea9mOMmxPP7AwhLzdN7URCVEtSAAkhqkT43vkssjBy1dEbmshViUqj0WA3eCGZOlMu6hQWfC/TjAhRGimAhBBVYt2lzaxysGerjz9o5TJ+ZXJ0asxbfs+iURS+0sexfc/NpwoSoq6SAkgIUenOR4VxRFOATlG4t8s0tePUCV06Psl422YAzDr/OQkJR1VOJET1IgWQEKLSfXpwIQD9dI64urVROU3dMfnuT2lt1JGp1TA9bBKGogK1IwlRbUgBJISoVCkpZ9iiTwBgbPunVE5Tt5iaW/N2v8VYGhUOafSs3TpR7UhCVBtSAAkhKtXG3bMp1GhoZzTFv82Dasepcxo27MmMhvfQPj+foce2wtkwtSMJUS1IASSEqDT5eelsSD8OwCONh6sbpg67p99bfOJ5Ny4GA3z7OKReUDuSEKqTAkgIUWn0JzYyOCubJkUKQV2nqh2nTtMNfhu8A0Gfwa9f3U9OdqLakYRQlRRAQojKoSjYH1jFtLRrfNPicZn3S20mZnD/Ola6ejLFsoDXvhuFYjSqnUoI1UgBJISoHBfCIfkMmNmg7ThO7TQCwNadzj1nYKIobDOms1o6RYs6TAogIUSlWLF3LkfMzVH8HwYLe7XjiD/5t32I6R79AXg/9SDhe99WOZEQ6pACSAhR4c5f+JklSioTPFxJ9BuldhzxL/cNeI/7zL1QNBqmnf2UYyc3qB1JiConBZAQosJ9emABAP11Drh7dVY5jfg3jVbLqyM30VNjTb5Ww+QDc4iJ+U3tWEJUKSmAhBAVKjb2AD/8NfCh/9MqpxE3Y2JqwcIR39PSqCNNq2Hf1qchJ1XtWEJUGSmAhBAVauWuGRRpNHTBEv+2MvBhdWZl48rSIV+wIBvuT7gM68dAYZ7asYSoElIACSEqTFzcITbr4wB4yv9ZldOI2+Hi2opB9399vaN6zH4yvxpHYWGu2rGEqHRSAAkhKszKXf+jSKMhEAs6+I1VO464XS7N4YEvSTOzZGL2H0zbEExRYb7aqYSoVFIACSEqRnoM7WJP4VVYJFd/aiKf7kQNnMUFM1N+MaQzY+NgmT1e1GpSAAkhKsaed7k3K5Mtpo3p6CcDH9ZEAZ2eYmGzsZgoCluLUnjjqyEYDUVqxxKiUkgBJIS4c+kxcORTAEx6T1c5jLgT/bpNZV7j0WgVhW8LEnjr63tkygxRK0kBJIS4Yyt+mcx3VmYU+vQAn+5qxxF3KLjna8xtOByNorAhP4bXNwTL7TBR60gBJIS4I/Fxh1meG8VMl3ocb3+f2nFEBRnady5veA9Bqyjsy73KtW/GgxRBohaRAkgIcUfe3/ESRRoNnRVzOviNVzuOqEDD+7/Nu00fYmViGs6nt8KXD0BBjtqxhKgQUgAJIcrt+Mmv2FqUgkZReLHLq2rHEZWgf/fpNLz/CzC1ggvh7P3sLjIzYtSOJcQdkwJICFEuitHIgoPzABhq5kbrFiNUTiQqTZP+8Mgm9trV4xltKuO+vZu4uENqpxLijkgBJIQol5/3zOWopgBLo8KU/ovUjiMqW4NA6t39AQ5GiNIaGfPzeJlFXtRoUgAJIcqsSJ/NoqivAJjg6IerW1uVE4mq0LzZ3Xw5+FOaG7WkaTU8emAOYbveUDuWEOUiBZAQosxMDq5kfmICQXoj4wa+r3YcUYXcPdqz9r6f6a2xQa/V8PKlr1ix+REZK0jUONWiAFq6dCk+Pj5YWFgQGBjIgQMHbrrtt99+S6dOnXBwcMDa2hp/f38+/fTTEtsoisLMmTPx8PDA0tKSoKAgzp8/X9mnIUTdkJ0Eu96hnb6A9wJmYGXlrHYiUcWsbdx5/8GdPGLVCIAl6ZFErB8G+RkqJxPi9qleAG3YsIGQkBBmzZrFkSNH8PPzIzg4mKSkpFK3d3Jy4n//+x/79u3j2LFjTJgwgQkTJvDzzz8XbzN//nw++OADli9fzv79+7G2tiY4OJj8fJncT4g7lbJ9JhRkgWd7aDda7ThCJToTM6bet5mZHkHcnZ1Ln3O74KM+kHBC7WhC3BaNoiiKmgECAwPp3LkzS5YsAcBoNOLt7c3kyZOZNm3abbXRoUMHhgwZwpw5c1AUBU9PT1588UVeeuklADIyMnBzc2PNmjU88MAD/9leZmYm9vb2ZGRkYGdnV/6TE6KWOfzHWiYdXcBj6Zk8NfxLNDLqswCUmENovh4PGTFkm1qxp/tjDOozR+1Yog4qy+9vVa8AFRQUcPjwYYKCgoqXabVagoKC2Ldv33/urygK4eHhnD17ll69egFw6dIlEhISSrRpb29PYGDgTdvU6/VkZmaWeAkhStLnZ/D64YUUajQkuTWX4kcU03h3gid2oTTuz0xHK16+solZXw4gN7v0K/lCVAeqFkApKSkYDAbc3NxKLHdzcyMhIeGm+2VkZGBjY4OZmRlDhgxh8eLFDBgwAKB4v7K0GRoair29ffHL29v7Tk5LiFpp+daJXNaBi0Eh5K7VascR1Y2VE8qDG2nq2QXNnxOp3rexP3+cWK92MiFKpXofoPKwtbUlMjKSgwcP8uabbxISEkJERES525s+fToZGRnFr5gYGeVUiH86c/Z7Psk6A8D/WjyCnb18SRA30upMeGr456zyewF3g0K0DsYdmsuH342hsDBX7XhClKBqAeTs7IxOpyMxMbHE8sTERNzd3W+6n1arpUmTJvj7+/Piiy8yatQoQkNDAYr3K0ub5ubm2NnZlXgJIa4rKsxn5t6ZGDQaBmgd6N/tFbUjiWquc/uJfDPyJ4aYOGPQaFiWeYJxn3UnPnqP2tGEKKZqAWRmZkbHjh0JDw8vXmY0GgkPD6dr16633Y7RaESv1wPg6+uLu7t7iTYzMzPZv39/mdoUQly3LuxpTmsN2BkVXh30kdpxRA1hZ+/NvId2MN9nJLZGhURjPjbrRkDEPCjSqx1PCEzUDhASEsK4cePo1KkTAQEBLFq0iJycHCZMmADA2LFj8fLyKr7CExoaSqdOnWjcuDF6vZ4ff/yRTz/9lGXLlgGg0Wh4/vnnmTt3Lk2bNsXX15fXXnsNT09Phg8frtZpClEzpZzH4sKvWNhb83KDu3F2aal2IlHDDO79Ou2bDyd++2vYFsVBRCjKyW8513cqzVuNUjueqMNUL4BGjx5NcnIyM2fOJCEhAX9/f8LCwoo7MUdHR6PV/n2hKicnh6effpqrV69iaWlJixYt+Oyzzxg9+u/xSKZOnUpOTg6PP/446enp9OjRg7CwMCwsLKr8/ISosQrz4esJPJh+jX6ObXDrG6p2IlFDubv74/7Q93DyW/jpFTblXWXWgde579jHTA5ehoOjr9oRRR2k+jhA1ZGMAyQE6Le8gPmh1WBVD57cA3aeakcStUFuGvM3P8inBbEA2BsVnvXoy6j+CzAxlS+p4s7UmHGAhBDV0y+75zIsIYxj5mZw70dS/IiKY+XE1DFhrG73PE2NWjK0Gt5MjOD+zwI5eHSV2ulEHSIFkBCihJiYfcyKWk+sqQm/NusFTYP+eychyqhz+4lsfHg/r7r1xs6ocF5r5NFji1j6aT9IOq12PFEHSAEkhChWqM9h6vanydZq8FdMeeaeT/97JyHKycTUgjGDlrB1+A+MtvBGpyh0v3oclnWDTU9DerTaEUUtJn2ASiF9gERd9fZX9/BZ7iXsjApfB6/Fw7Oj2pFEHZIQvQ/3fR/C6e8BWOLkRI57Gx7tMw8X19YqpxM1QVl+f6v+FJgQonr4ZtuLfJZ7CYC5LcZL8SOqnHuDrtCgK1w9TOr2GaxRotHnXWbjj6MZadmQR3vNxd2jvdoxRS0ht8CEEBw+8jFzY38G4Em7NvTt+pLKiUSdVr8jTmO38kGbp/FXTCnQaPgyP5rBPz/C7PXBxMT8pnZCUQvILbBSyC0wUacknSFn9UBetjfD1q4+88b8ikYr341E9aAYjRyI/JgVxz7ioOb6CNIaReFNs4YM7TkLvANUTiiqk7L8/pYCqBRSAIk6IzsJPu4P6dEUNeiC8aGvMTO3VTuVEKU6/MdaVkZ+yAElh7CYOFwNBqgfQHKncTi2HiXjCAkpgO6UFECiLsjPu0bYF0MYFnMSjVNjeGw7WDmpHUuI/5QcvReXo5/DsY1gKOBxdxcumFlwXz1/RnadLh2m6zApgO6QFECittPnZzBlw0B+I5exOQW8PPpHqNdY7VhClE1WIln7l3J39Lek6TQAmCgK/U2cuK/Vw3T2exStTp71qUukALpDUgCJ2qxAn8WU9QPYQw6WRoXlHV+hQ7tH1I4lRLkV6LPYtm8B6y9vIVJTWLzcywDPuHVnaPf/gYO3iglFVZEC6A5JASRqqwJ9Fi9sGMguJRsLo8KH/i/Quf1EtWMJUWHOnPuBjUeW8lPeVbK1GuYmpzIsOxca9SG79XA0zQdhbeOudkxRSaQAukNSAInaqFCfQ8iGAUQoWVgYFZb4PUdgh8fVjiVEpcjLTWP7/nfof+UoVpevPza/xs6WpY4O9DF1YkiTYXRv/ySm5tYqJxUVqdILoB07dtC3b99yB6zupAAStU5hHi+uD+IXYybmRoUl7SbTpeMTaqcSomqkXYRjG3kh6gu2m/79K8/WqNDP3I2Bje+mi/9j8gRkLVDpBZC5uTn169dnwoQJjBs3Dm/v2nVvVQogUavkpMKXD/DjtRPMcq7H+22fplunp9VOJUSVU4xGTp75hq0nPyUs6yIpf3acBnAxGPnFvhsmLe+Gxv1AiqEaqdILoJSUFD799FPWrl3LyZMn6devHxMnTmT48OGYmZmVO3h1IQWQqC2UlCg0X9x3/RuwhT0J9y7FvflQtWMJoTpDUQFHT3zBL2e/YnvOFfzz83g3KeX6Sp0ZrzdsTiu3jvT2n4ibWzt1w4rbVqV9gI4cOcInn3zCl19+CcCDDz7IxIkT8fPzu5NmVSUFkKgNIk98Qejvc1kcn4CrrRc89DW4NFc7lhDVjtFQRNblndifD4ezP3I5K4ah3p7F65sZtfSwa0KPxkPwb/0ApqZWKqYVt1LlnaDj4uL46KOPmDdvHiYmJuTn59O1a1eWL19O69Y1b0AqKYBETffjzlnMvPgNeq2G4UVmzLn/R7B1UzuWENWfopBydT+bIpexI+U4xzUFKJq/b5XZGBVeMPXi/qYjoXFfqNcE/rFeqKtKCqDCwkI2b97M6tWr2bZtG506dWLixImMGTOG5ORkZsyYwZEjRzh16lS5TkJNUgCJmkqfn8H8TaPZqI8FoLfGhvmjfsDKylnlZELUTNfSLrD32Fr2xO7mt4Jkrmk1LEpMpn9uHgDHnbxY7+xBZ7dOdG4xEi8vmZtMTZVeAE2ePJkvv/wSRVF45JFHeOyxx2jTpk2JbRISEvD09MRoNJa1edVJASRqopiY33hx+zOc1hoAmGTbkqeHrpP5kYSoIEZDEafPbcY3Ker6o/XRv7PE1oIVjvbF23gaFDpZuNHRpT3tmwzBp2FvmVy4ClV6AdS/f38ee+wxRowYgbm5eanbFBUV8dtvv9G7d++yNq86KYBETXPswFKeOLmMbK0GB6NCaOsn6BEwWe1YQtRuhXkcP7meXy9s5WDmRU5qCij61+2wr1PzaO4RAA0CSXFtgU39ACwsHVUKXPtVegG0a9cuunXrholJyTlWioqK2Lt3L7169Sprk9WKFECixshNg7Bp5B7fyIOebtiZ2jB/0Crc3f3VTiZEnZObm0LkqY0cit7BkcxLXDbmEh4di+7P9a861+MnGyuaKya0s/Kiras/rX3649Ogl8xZVkEqvQDS6XTEx8fj6upaYnlqaiqurq4YDIayNlmtSAEkaoLf9i0kcM9yTHKSQaMlMXASTv1flydUhKgmDAW56BJPQPQ+iDnA2KxIjprdeDvMxqjQRmPJcs9B6Dzbg4cfOPqC3Dors7L8/i5XyakoCppSer2npqZibS3DigtRmVKST/NW2ONsM6YTYpLPBJcWMOxD3Op3VDuaEOIfdGZW4B1w/QWsNRqJTzjCsait/JFwiBO5sZxRCsjWakgpyES394PifZ/08EBvbkMLKw+a1WtJc69uNPbpi7mF/c0OJ8qoTAXQiBEjANBoNIwfP75E/x+DwcCxY8fo1q1bxSYUQgDXn/D6bNvzrEw5SI5Wg05RKPDpCUPXgEnpffGEENWHRqvF07MTnp6dGPTnsqLCfC5c2k5WQiS4p0DCMYoSTnDYTEe+Rs+hvMtw9TJc/Qnd7wq+Ri3dzF152XsQuLYCt1Yodt5odLqbH1iUqkwFkL399cpTURRsbW2xtLQsXmdmZkaXLl2YNGlSxSYUoo5TjEa2753HO+e+JFYHaDW0MZows9vrtGw+TO14Qog7YGJqQfNmd0Ozu4uXaYv0fH75V05H7+RM6inO5cRxVsknQ6shSqfQIOMSnJ8DgAIM8PbCRWtGI/N6NLZtSBPXtvh6BuDp0RmdSc2fnaGylKsP0OzZs3nppZdq7e0u6QMkqo3Lv/HhjpdZps0CwNWg8LzvMIb0mi2dJoWoQxSjkcSkY5y7sgPrzAQ6ZqZB0ikS084TVL/0QU7NFIV7i0yZYdcWnJuhODXmpJmOBl5dsbOvXXN4/qXKR4KubaQAEmpSFIWCizsw3/UOXNlDlKkpD3q6Mc6hHROCF8ughkKIYobCfK5c3cvF2P1cSD3FhaxoLhSmc1ljoECjYWxGJi+npQOQptXSu2F9AJyMCg00ZjQwc6CBtRcNHBrTyjOAhvW7Qg1+TL9SCqAOHToQHh6Oo6Mj7du3L7UT9F+OHDlStsTVjBRAQg2K0cjewx+y8uQavLNTmZOSBlpT6PAIGYGPY+/SUu2IQogawlBUQHzCEUyuXcE9KwlSozifeponjXEk6Ur//f1wRiavpKWDhT0Zjg15wxrqW7riZetNfcemeLm2w9O9A6bm1ffuT6U8BTZs2LDiTs/Dhw+/o4BCiL/lZifxw29z+Tw2gks6BTRwytqKlxsOxa7XVLCvjzz3IYQoC52JGfXrd4H6XYqXNQXCgZzsBK5c/Z3opGPEpEdxJTuOmIJrNNdYAumQn8GVtDP8YuEO2emQfQ7iw+EUaBQFFyNMwJ6H7VuBgze5Nm4c1Rbi4dwSdze/GnOVWm6BlUKuAImqcOVyBF8dXMS32VFkaa9/I7M2Ktxr7cu4XnNkMEMhRNUryIFrV0hIiOTnqxHEZscSq08jtiiHWI2R/D//rXol9RoPZ17vm3jczIwHvdyLm7A3Krijw11nhbuZA0FOrejiFgB2nhTZuFFk41Jpo2FLH6A7JAWQqDT5GXDiW4j8nHWZZ1hQ7/o/At4GeMijB8N6zMTG1kPlkEIIcSPFaCQ17RzxicdxLcjFLTcd0qM5eu0ccwqjScBQ/GXun6amXuORfxVLk7ILeK71o9DnlQrNWCm3wBwdHW/Z7+ef0tLSbrdZAJYuXcqCBQtISEjAz8+PxYsXExBQ+oy6K1euZN26dZw4cQKAjh078tZbb5XYfvz48axdu7bEfsHBwYSFhZUplxAVIS83jT1HlvPL5TD6JF1mSGYGAEN0phx0tmFUs/vo2fk5eapLCFGtabRanJ1b4OzcosTy9sC3f/5/VmYs8UnHSEg9R0LGJRKz42hvbQo5mZAZR1JBCgAO+hy4zZqistz2v7iLFi2qlAAbNmwgJCSE5cuXExgYyKJFiwgODubs2bM3TLUBEBERwZgxY+jWrRsWFha8/fbbDBw4kJMnT+Ll5VW83aBBg/jkk0+K399s0lYhKkNOdgK/Hf2YX678wq7CNPL+/FaUbGXOELPm0P4h6rUbzWJb9/9oSQghag5bOy9s7bxo1mRwqev7GY38lhWLNjsRbD2rOF1Jqt8CCwwMpHPnzixZsgQAo9GIt7c3kydPZtq0af+5v8FgwNHRkSVLljB27Fjg+hWg9PR0Nm3aVK5McgtMlJmiQGoUytkwnon6lH1KbolZoT0NMMC2MYNaP0SblqNU/+YjhBC1UaXcAsvMzCxuLDMz85bb3m7RUFBQwOHDh5k+fXrxMq1WS1BQEPv27butNnJzcyksLMTJyanE8oiICFxdXXF0dKRfv37MnTuXevXqldqGXq9Hr9cXv/+v8xMCIDHxGAdObeRS4hGeS4iB9Gg0QKG7C0WWlngboL9dE4JbPUjrFiPRyMSGQghRbZSpD9BfM8A7ODiU2h/or0lSb3c2+JSUFAwGA25uJUexdHNz48yZM7fVxiuvvIKnpydBQUHFywYNGsSIESPw9fXlwoULvPrqqwwePJh9+/ahK2W+lNDQUGbPnn1bxxN1k9FQxKUrEfxxMYzI5EiO5iVy+R9/lB7MvIqzzgwadifEuz1WjfrRsGFP9QILIYS4pdsugH799dfiqyw7duyotEBlMW/ePNavX09ERAQWFhbFyx944IHi/2/bti3t2rWjcePGRERE0L9//xvamT59OiEhIcXvMzMz8fauncOEi/+mGI0kJBzBOS0a08STEB/J/MzjfG79j35kOtAqCi0VEwJsG6GMfB2aBIO5DTJcoRBCVH+3XQD17t271P+/E87Ozuh0OhITE0ssT0xMxN391p1DFy5cyLx589i+fTvt2rW75baNGjXC2dmZqKioUgsgc3Nz6SRdR+XmpnDx8g7Oxx3g3LWznM+N55wxj2taDZ/GJeCvLwCgpY01FpZmtNFY4G/rg59XVzq0vL/WzqcjhBC1Xbmfu7127RqrVq3i9OnTALRq1YoJEybc0BfnVszMzOjYsSPh4eHFo0sbjUbCw8N59tlnb7rf/PnzefPNN/n555/p1KnTfx7n6tWrpKam4uEh46vURYaiAhISI4lOOEITvR6XjDhIOcf3mVH8z6aUHbQaTBSFq86++LsGgIcfg9zbcpdHO0xNrao8vxBCiIpXrgJo165dDB06FHt7++IC5IMPPuCNN97ghx9+oFevXrfdVkhICOPGjaNTp04EBASwaNEicnJymDBhAgBjx47Fy8uL0NBQAN5++21mzpzJF198gY+PDwkJCQDY2NhgY2NDdnY2s2fPZuTIkbi7u3PhwgWmTp1KkyZNCA4OLs/piurOaIDsJMi4SkxSJL/E7SU+J4FY/TWuGnK4qlWKn8iak5zK8OwcANwtzMHGDSejQlOtJU2tPGjm2JymngE0bTQQc4u/J6CQ64NCCFG7lKsAeuaZZxg9ejTLli0r7lRsMBh4+umneeaZZzh+/PhttzV69GiSk5OZOXMmCQkJ+Pv7ExYWVtwxOjo6Gu0/np5ZtmwZBQUFjBo1qkQ7s2bN4vXXX0en03Hs2DHWrl1Leno6np6eDBw4kDlz5shtrprGUAS5qWSkX+REwmGSM2NIyU0kJS+V5IJ0EgtzSFQKeOZaOsOzro8yGmthziKPf3Sq1wFoMFUUvIxaFLc20C4AnJvh7+TLLjtPHJ0aq3J6Qggh1FOucYAsLS2JjIykefPmJZafPXsWf39/8vLyKiygGmQcoIqlGI3k5aagLczBoiAP8q6RnBnNnuSjZOZfIyM/nWsFmaQXZXPNkM81YyETs/K451oSAActzHnUw+2m7T99LZ2nMnLA1oMEB0/eNy/Cw9IFT9v6eNdrgbd7B9xc26EzMauqUxZCCKGCShkH6J86dOjA6dOnbyiATp8+jZ+fX3maFNWIUlSIxpAPBbnk5qUSmxlNnj6DPH0GufpM8gqyyCvIJqcwi0BTJ5orplCQw+m8RD7Mu0S2sYAcpYgsxUC2RiFLAwaNhukpaTyYlQ3AFQtzZpZW1GgAHcQq+X++1+JiZk9ToxYXrTnOpra4mDviYuWCm20D3Byb4O3aDuo1Aa0OdyC0yj4pIYQQNdVtF0DHjh0r/v/nnnuOKVOmEBUVRZcuXQD4/fffWbp0KfPmzav4lLXE1wcucmzdenod24FRp0X5x8toogWdhotdemPwbIiZzoBV3HkcTx8FnQbFRINiomA0AeXPl0vTZrjWc8ZUYyA+M5aohIsUmioU6YooNFEo1BnRmxjI1xm4z8wZP8UUivQcLErnfSWNAozoFSN6FPJR0GsgXwOzUtKK+8kcsrTgGfcbpyT5y/SUNJr/WdTkWJgT4eF2vYgpHibq7/GiskxMwKoeWDriZmlLD/KxM7HA0dQWB3N7HMwdcbBywcHaDV/n1lCvOVg54aPVFc8zI4QQQlSE274FptVq0Wg0/NfmZRkIsbqqrFtgv6+ZTubO9Xjvs7jpNlkDswhwut6fZXusA167b/7UUVq/bLq7Xh+1OiLBHrcI65tum9grhz6e1yfh/C3DluxDtuSbQoGpBr0J5JuB3vT6f5t5ZjPUKgMFDQc0dnyZY4PRTINirgEzLVpzE7QWpphZmXO3dQN62jQEMxtSdFoi9EnYmNtjbeGIjYUjttau2Nq4Y2vriaWFk4yGLIQQotJUyi2wS5cu3XGwuq6FpyPbGxQyz8sKnRFMDGBmUDAzgJkBTA0wwMmMHLN6GDChqJ6OnR01mPy5ztQAJkWa6/81gNHGm/1mthRgwjVtJuZ2aZgUKZgUgYlBweQfdegJgz/bChtTgAmu12K5O/non2tuLGhXtL+Plxr2QI8pHRPPMnffx//YzgAUAtf7ea3y78FL7fpia2FK45wkhu47SoF1OnqbNK7Z2mFin4ipYwyW9ZywbN4M+0YNcLQyw8HKDJ1W5sMSQgihjtsugBo2bFiZOeoEh37PM7z3UwxDi87EHK3u1h//oDs8nqHIQH5OHvnZuYwwMUWvMyOvwEBecjKZ589TkJ1LYU4ORbl5GHJzMeTmYczLxbdlAMNdGpJdUITjhXQuRzfDVJ+HqT4f84I8LArzMTcWAZCJCYmZehIz9dglxtD44h83zbOy9d1827QPAE3Tr/LmvpXkWNiQb2NPka09RgcntE5OmDrXw8y/PY5tWuJqZ4GLjTlmJnLlSAghRMUp90CIAKdOnSI6OpqCgoISy++55547ClVrmZhhUoVPIulMdFjb22Bt/6/R/jztwO92H/3uAK89fMNSfV4+WakZvIqO5zSmZOYXknO1AVfb2FKYnklRZgZKZiaa7Cx02VmY5mRhdPPAzsKEzPwi7PTZ2OpzsNXnQEbiDe1/fHgI3zTtC0Dj9Ku8tW8lWbZO5Ns7Yajngs7VDXMvTxx8vHFt2xJPX09MdVIkCSGEuD3lKoAuXrzIvffey/Hjx0v0C/prgtSa3gdI/DdzSwvM61vg/M+FjZ2hd9ub7jPwz/8WGoxcS+vOtQv9yYxPJicphbykZIpSUjGmpaHNSEPTuCleDpYkZeVTLz8TO30OdvocSImBCyXbXdx6CN8064u7nQXttNncFfkTOq/6WPk0wLlFExr4tcDB5fZHKBdCCFH7lasAmjJlCr6+voSHh+Pr68uBAwdITU3lxRdfZOHChRWdUdQypjotri4OuLr433SboX/+V1EUrqV2J/Fcf9IuXyXnajz6+ASMSYmYpCRhfS2ZJDsXFAXiM/JpGH+GZkd3wtG/24oHzljYcq2eBxf7DsO8dx+audnS1MUaN3uLEgNtCiGEqBvKVQDt27ePX3/9FWdnZ7RaLVqtlh49ehAaGspzzz3H0aNH/7sRIW6DRqPBydkeJ+cO0K1Dqdv0VhRSsgu4ei2XhOOOXHApxBAXi1liHPZpCTjmZWKfn4V9bBZfnI1nd/b1+es6J5zmlcOfk+Lijd6nMZYtW+LR0Y/GAW2xspE5v4QQojYrVwFkMBiwtbUFrs/oHhcXR/PmzWnYsCFnz56t0IBC/BeNRoOLrTkutubQoBsM6VZifUbKNaKPnSP59Dm6uDbBOt+M80lZNIxKxLowH+u48xB3HvaGwSq4oNGS4Fyfk/dOxLNXV/zqO9DE1UaeWhNCiFqkXAVQmzZt+OOPP/D19SUwMJD58+djZmbGRx99RKNGjSo6oxB3xN7Zkbb9AqFfIP3+sTw/N5BLRx4g7shxsk+exvRSFM6JV7DV51A/OZrQc+lcTLo+AOighD+4OzES2vrj0bMLLft2katEQghRg5VrLrCff/6ZnJwcRowYQVRUFHfffTfnzp2jXr16bNiwgX79+v13I9WYzAVWdxmNRq6eucTFPQf43bMNkXHZHL+awZP7PiMo5nDxdoVaHVe9mmLsEECDAb1p1TsAE9M7eqhSCCHEHSrL7+9yFUClSUtLw9HRsfhJsJpMCiDxTwajwul9kcRs30lh5FFcLp3GIT+rxDaT7n0TvzY+BLVypXfjejjZWaqUVggh6q5Knwz1n2JiYgDw9va+06aEqJZ0Wg1turenTff2wPWrRBePniLqpx0UHthPfnoGVxVzrh6PZ+vxeObuXUk9UwVj1x60eWA4Dds0VfkMhBBC/Fu5rgAVFRUxe/ZsPvjgA7Kzr0+EaWNjw+TJk5k1axampqYVHrQqyRUgURZFBiN/XM1gx5kkdh27wtzVIZgqf4+FFe3WCEOfIPwfHoln0wYqJhVCiNqt0m+BPfXUU3z77be88cYbdO3aFbj+aPzrr7/O8OHDWbZsWfmSVxNSAIk7ceVkFKe++RFlTwQNos+g+3MeNSMaDvn3w/6V6Qxq446FqU7lpEIIUbtUegFkb2/P+vXrGTx4cInlP/74I2PGjCEjI6OsTVYrUgCJipJw6SpHP/sWza/baBgfxQf+o/jJpwt2Fibc38KBEV46WvXspHZMIYSoFSq9D5C5uTk+Pj43LPf19cXMrOrmuhKiunP3rc/g156D154j+tQF2lzK4djxFGLT80j4djOaY98R5tEEywcfpvv4kfIkmRBCVJFyXQF64403OHPmDJ988gnm5uYA6PV6Jk6cSNOmTZk1a1aFB61KcgVIVCajUeG3Cylcfvsd/H7bUtxfKNmmHtl3j6THc49i52SvckohhKh5KuUW2IgRI0q83759O+bm5vj5+QHwxx9/UFBQQP/+/fn222/LGb16kAJIVJWES1c5uGglbhFbsdXnAJBjakH8gHvpNfcV7K3MVU4ohBA1R6XcArO3L/mNdOTIkSXey2PwQpSdu299hr4/m5yMl9mz7DPMvluPe0YiqYcj6bVgJ4/3asT4bj5Ym8utMSGEqEgVNhBibSJXgIRaDEUGdn28gTUxCjsNDgA01uTyotlVgqY/jZmFXBESQoibqbKRoJOTk4snP23evDkuLi7lbapakQJIqM1gVNhyLI5F288zKPxT7rm0lwQHdyyef4muDwxRO54QQlRLlV4A5eTkMHnyZNatW4fRaARAp9MxduxYFi9ejJVVzZ4kUgogUV0UGYyEL1qN/boV2OuvDzp6oUl7Ws2dSSP/FiqnE0KIkvR5+aReTSItNoGsxGRyE5PRp6SSUM+L896tSMspwJCQSL2LJ2n58H2M7+5bocev9MfgQ0JC2LlzJz/88APdu3cHYM+ePTz33HO8+OKLNX4gRCGqCxOdluAXH+PaI/eya8Y8Gu3+kcZRR8l+cBRbhj5E8BsvYmouQ08IISqPochAalwSyZevkn41ntz4JPRJyVytV5/j9VuTnKWHuFhe/i4Um4JcAHSAw58vgFM+XfnS3xYAm4JchsVdJTY9T4Wz+Vu5rgA5Ozvz9ddf06dPnxLLd+zYwf33309ycnJF5VOFXAES1dX5A8c499obNLpyEoDtne9m0MKZNHWzVTmZEKImys/NIyEqhuRL0WRGx5Fg6ch510bEZ+SRfzWOSV/Pwz43AxPFeMO+W326sMR/FADWBXl8/eNrABg0WrIsbMi1tEVvY0+RnT1pLfzJ6DMYJxsznCxNqZeegLdfS7wcKnbi6Eq/ApSbm4ubm9sNy11dXcnNzS1Pk0KI29A0oB2Nf9rIrx+sxfjFOla4BLD4gz28MKAZk3r6YqLTqh1RCFGNpCenEZucyVXFgthreaTEJNBiwzIs0pKwy0zDPj8LAJs/X5E+XVjzZ1FjWVjItJxrwPWpfLIsbMi2tiffzhGDgxMerfyZ2bcVzrbmOFubohu9nnr1PXBwq4fO5L+m+vGsvJO+TeW6AtS/f3/q1avHunXrsLCwACAvL49x48aRlpbG9u3bKzxoVZIrQKImiE/L4X/fn+LXM0mgKIQk7WPk9El4NfNRO5oQoooYjApxyRnE7/6da1GXyY++gjYuFovURBwyUrApyC1xpcaiSM93W/5Xog291oR0Gydy7Z1IbNWJpMEjcbezwM3OAo+Eizg38MSlgUeNeAq10jtBHz9+nEGDBqHX60sMhGhhYcHPP/9M69aty5e8mpACSNQUiqLwzZFY9ry3kicObSTT3BpmzCXwvkFqRxNCVBCj0UhqbCLRkadJOXWO/MtXuGLhxPfeAUSn5mKSn8M3W1+76f4HvP34ZtizeDlY4uVgSYfIX7HxcsfJtwHuTRri5OmCVls7rh5XyWPwubm5fP7555w5cwaAli1b8tBDD2FpWbH389QgBZCoaS7/cZaoZybjlRKDEQ0X7x7DXfNevY3L0EKI6kJRFBIz9ZxLzOL81TScV72PeVwMTqlx2BaU7F5y2LUZM7o9DoCpTsOi3UtQbGwxuHti6t0AW9+GODfzwatF4zo1tU6lFkCFhYW0aNGCLVu20LJlyzsKWl1JASRqotysHLY9NZVmh34F4EKjdnRf/SGO7vVUTiaE+Lesa5lE/R5J0h8nyD9zDvPoi0Sb2vFW+zHXN1AUNvw4C7vC64WPEQ1pNk5kunhS5FkfXas22A0diq+zNZ4Olui0GhXPpvqo1E7Qpqam5OfnlzucEKJyWNlaM+yzpWx7dxUuHy+i8cVjHB0+iqZrVuHdopHa8YSos9JzCzgem8HJuExcly3A6dJpXDKSsUChwT+2M7NyQqfV4FPPimZutlyxfhQXFwfc2jTHp10LWtvbqHYOtVG5boG99dZbnDt3jo8//hgTkzufo2jp0qUsWLCAhIQE/Pz8WLx4MQEBAaVuu3LlStatW8eJEycA6NixI2+99VaJ7RVFYdasWaxcuZL09HS6d+/OsmXLaNq06W3lkStAoqY7uesg6c8/h31uBov6PUHIjAm08pQ/y0JUttysHE7vPEDi/iMUnT5JbkY20zqOK17/3s73aXEtBoBrlvakuTfA4NsYm5Yt8WzfmkZd/DGXW9flVul9gO69917Cw8OxsbGhbdu2WFtbl1hfltngN2zYwNixY1m+fDmBgYEsWrSIr776irNnz+Lq6nrD9g899BDdu3enW7duWFhY8Pbbb/Pdd99x8uRJvLy8AHj77bcJDQ1l7dq1+Pr68tprr3H8+HFOnTpV/NTarUgBJGqDq2cv8cHib9lo0wIbcxNWPNKR7k2c1Y4lRK0Sl57HqU1h5Ozeg+X5k3gkx5QYM8eg0TJyyFzc3Rxo42lPz/QoGtazpnG3Drg28FAxee1U6QXQhAkTbrn+k08+ue22AgMD6dy5M0uWLAGu93b39vZm8uTJTJs27T/3NxgMODo6smTJEsaOHYuiKHh6evLiiy/y0ksvAZCRkYGbmxtr1qzhgQce+M82pQAStUVGXiFPfHqI3y+mUT8vjdnNNfR/+mG1YwlRIxmNRi4ePc2FHXv52asj+6+kE5uex9RDn9P36tHi7dIt7UjxboKmeSucO/nTYlBfHOxr9hRRNUWl9QEyGo0sWLCAc+fOUVBQQL9+/Xj99dfL/eRXQUEBhw8fZvr06cXLtFotQUFB7Nu377bayM3NpbCwECcnJwAuXbpEQkICQUFBxdvY29sTGBjIvn37Si2A9Ho9er2++H1mZma5zkeI6sbe0pS1jwYwfd1eBi+dh/vPqWzTFzDghUfVjiZEjRBz5iJnftxB3u+/43z+OI55GTQADvV7iVg7d3RaDbFtAjnX0B3bDu1p3KcrzVs2qjWPlddmZSqA3nzzTV5//XWCgoKwtLTkgw8+IDk5mdWrV5fr4CkpKRgMhhtGlXZzcyt+vP6/vPLKK3h6ehYXPAkJCcVt/LvNv9b9W2hoKLNnzy5rfCFqBHMTHQvGdmPL7o5o9/2M54qF/GpqQr9nx6odTYhqJ7egiP0X04j65geabl6HW2YS9f+xvkBrQpxHI8a2d6V5nwA6NHDE2vwu1fKK8itTAbRu3To+/PBDnnjiCQC2b9/OkCFD+Pjjj1WpdufNm8f69euJiIi4rb49NzN9+nRCQkKK32dmZuLt7V0REYWoFnQmOoauepcfxk+h2YHtuC6Zxw4TE/o++aDa0YRQ3eVj5zj17VZ+NfPi+1xbCoqMdExMp0dmEgaNllg3H/TtOuLeuzttgnviZyO3s2qDMhVA0dHR3HXX35VuUFAQGo2GuLg46tevf4s9S+fs7IxOpyMxMbHE8sTERNzd3W+578KFC5k3bx7bt2+nXbt2xcv/2i8xMREPj787mCUmJuLv719qW+bm5pibV/8hvoW4E1qtlrtXL2LL2GdpdiQCl/ffZKepKb0n3qd2NCGqlNFo5Hj4Pq58/xPWh/fhmRaHL2DXtA8Fre/Gy8GSVh36kNyzIe2G9qONi5PakUUlKFMBVFRUdMOVFlNTUwoLC8t1cDMzMzp27Eh4eDjDhw8Hrv/BDA8P59lnn73pfvPnz+fNN9/k559/plOnTiXW+fr64u7uTnh4eHHBk5mZyf79+3nqqafKlVOI2kJnomPI2sX8+PDTNP1jN04LX+c3Swu6PzhU7WhCVCqjUeHo2atcfe8D6h3+jXo51/hrYBSDRku0VzP8enVi+7jeNHaxRqPRAB3VjCwqWZkKIEVRGD9+fImrJfn5+Tz55JMlHoUvy2PwISEhjBs3jk6dOhEQEMCiRYvIyckpftJs7NixeHl5ERoaClx/xH3mzJl88cUX+Pj4FPfrsbGxwcbGBo1Gw/PPP8/cuXNp2rRp8WPwnp6exUWWEHWZiakJd332IT+OeRzTKxd5+3AWH/bJlHGCRK1jNBo5dfIym67ks+VYPEkZuXy6fydO+izyTMy52swfm379aD9qCG1kxPQ6p0wF0Lhx425Y9vDDd/ZI7ejRo0lOTmbmzJkkJCTg7+9PWFhYcSfm6OjoEv2Lli1bRkFBAaNGjSrRzqxZs3j99dcBmDp1Kjk5OTz++OOkp6fTo0cPwsLC7qifkBC1iYmpCcGfLuPxj/dyOTaXiWsPsvmZ7rjayd8RUfNdORnF8bUbsdq1DdP8XFYHz8Co0WJjYcYfgx+iTXMvOo0aTAdb6/9uTNRa5Z4MtTaTcYBEXZGRW8i9y37jYnIOI5RY5rz6INYy3L6ogXKzc/l93bfkb/oO3+hTxcv1WhO+nTSHHgO70Lu5i4yyXMtVyWzwtZkUQKIuuZySw9Ln5zH+0DdcbNGJu77+RGaRFzXG+cQsdq1cT9uNy4tnTDei4Yp3c0wHDaHz2BE4SCfmOqNSJ0MVQtQuPs7WjL6/L4bD39HkzEG2TpnJPUvfVDuWEDdVVFjEr0cvs+aPFPZeSKXZtSK6FeSSZuVAaq9g/CY9zF2tm6gdU1RzUgAJIeh0Tz+2X3wRr+XzaRr+LTtX+cvj8aLauZaUyt5Fq7D7eTPHXZqx138UWg34dOtEWtB7BA4PwsRUfq2J2yN/UoQQAAQ9P4HNp8/QbOf3WC0KJbprBxq0aqx2LCGIvxDNwQUf4rUnjEZF16ctClDO8FSPhjzUvRH1HWVgQlF20geoFNIHSNRV+rx8IgaNoEHiJa54NKbfT99gZiGDhAp1RB0+ycl3l+J7ZBemigGAOCdPjCMeoPsTD2IlT3GJfynL72+ZrU0IUczc0oLmixeRa2pBw/gLbHz3U7UjiTrockoOIRsi+fL1JTQ7vANTxcBlr2akzQil755tDHhpkhQ/4o7JLTAhRAk+7ZpxafIrLNtxhvBMdxqeT6ZnUxe1Y4k64MrJKD7beY7VV8FgVLBr0pe22hwaPjGRwXf1VjueqGWkABJC3KDv4w/wi/NxlAPRvLDhD36a0hMXW7kVJipHamwSe2a+je/en2lUzwdDj6fo29yFFwZ0p139+9WOJ2opuQUmhCjVzLtb0czNhvy0a2ycNh+j0ah2JFHL5Ofm8eOMhVwcNIhmv/2IqWLAztqCb8b788mEANrVd1A7oqjF5AqQEKJUlmY6Fo9sTeKwabjkpROx3Jd+T9/Z1DdCwPU5unav+grNR0vwzUoBILZefWxfeJEhowapnE7UFXIFSAhxU80bOJPR7y4ArFa8T2psksqJRE13OSWHedOW4vrO67hkpXDN0o6rk16kT8RPBErxI6qQFEBCiFsaOPdl4h09sddns+fF19SOI2oofZGB97efZ+CiXayiIeccGxAVfD9tf93GgBcfkwEMRZWTAkgIcUvmlhY4znodIxqaRe7i9w1b1Y4kapgDm7azefAYlvx8ioIiI92au9F201cMfX82to4y1ppQhxRAQoj/1H5QT6K6DwagcEEo2emZKicSNUFORjabJ76I7bTJtI05zoOx+/hgTHvWPRpAIzcpfIS6pAASQtyWvgtmkmrtiHN2Kr/8b77acUQ1d/THnRwcMIRmv/0IwLnO/Xnh/anc4+eJRqNROZ0Q8hSYEOI22TnZo3lxGr+s+ZpVFn40i82gjZe92rFENaPPyyfsxTdo/Osm3FBIs3JA8/KrDBszVO1oQpQgV4CEELet+4P3cH7882SaWvHm1tPIVILin2LScvny4Sk0+/U7dCic8+9Jq7AtdJPiR1RDUgAJIcpk2uAWmJlo2XcxlR0HzqsdR1QTYScSuOuD3Szz7E6idT2SXn6DYes/wtG1ntrRhCiV3AITQpRJfUcrnmlji9OHC9HuuEbBzl9kxvg6LD83j7WLvyL02vVCp0nLxjSeuRVvF7k9Kqo3uQIkhCiz8UGtaZoRi1tGEuELVqgdR6gk4WIMOwePotcnoXRIPMvjvRqx8YmuUvyIGkEKICFEmdk7O5I+egIA9b5ex7WEVJUTiap2/Nf9XBh1Pw0SL5JtaklIUBNevaslpjr5tSJqBvmTKoQol/4vPka8owe2+hx2zZLH4uuSHcs+xzB5Ek656SQ4uOO07nN6PHSP2rGEKBMpgIQQ5WJqbob55OcB8N29lUt/nFU3kKh0hiID30+Zifv7czE3FHKhUTva//ANjdu3VDuaEGUmBZAQoty6PnA3F33aYGo0cHx2qNpxRCUqNBhZ/NYamv78FQDn+wxj0ObPcXBxUjmZEOUjBZAQoty0Wi2NZkwDwObyec5cTFQ5kagMuQVFPL7uEIty3PimaR+uTnqRe5bPkwlMRY0mf3qFEHekZY+OhD40jVVZDgT/HsvSRm5qRxIVKC0+mafX/8HviXoszHR0W/A6/VrIz1jUfHIFSAhxx4Y/di9FWhN+PB7P+cQsteOIChJ77jKRI0Yz7Jv3cTKFzx8LlOJH1BpSAAkh7lhLDzuCW7uhNRj4ZtVmteOIChB96gIXH3wYj2vxNMxJ5ot7G9OxofT3EbWH3AITQlSI57p6Mvq953HLTeP8AH+adm6jdiRRTlfPXuLy2HG4ZKeSZOeC75pPaNCqsdqxhKhQcgVICFEhWjfxJMerIVoUTi14X+04opxiz13m4sNjrxc/ti40+WydFD+iVpICSAhRYXxDngOg8bHfiDp8UuU0oqzizkcT9fBYXLJSSLZ1pvFna/Fq5qN2LCEqhRRAQogK06ZvIBca+6ND4aRcBapRkrLymb4qAsu8bJJt6uH76VrqN/dVO5YQlUb1Amjp0qX4+PhgYWFBYGAgBw4cuOm2J0+eZOTIkfj4+KDRaFi0aNEN27z++utoNJoSrxYtWlTiGQgh/qnhX1eB/viNi5FnVE4jbkdWfiHjVx9kJ/V4d9AUGq5di3eLRmrHEqJSqVoAbdiwgZCQEGbNmsWRI0fw8/MjODiYpKSkUrfPzc2lUaNGzJs3D3d395u227p1a+Lj44tfe/bsqaxTEEL8S9v+XbnQqB06xcjx95erHUf8B31ePq9+sIVT8Zk425jx9rRRNGwtfX5E7adqAfTuu+8yadIkJkyYQKtWrVi+fDlWVlasXr261O07d+7MggULeOCBBzA3N79puyYmJri7uxe/nJ2dK+sUhBClcJ34KABZl6JJzylQOY24GUORgZ8feYZx694gIP0in4wPoGE9a7VjCVElVCuACgoKOHz4MEFBQX+H0WoJCgpi3759d9T2+fPn8fT0pFGjRjz00ENER0ffcnu9Xk9mZmaJlxCi/DrdO4AFo2Ywo8tE1h+KUTuOuImtz75K0xN7MTcU8ELfRrStb692JCGqjGoFUEpKCgaDATe3kqOKurm5kZCQUO52AwMDWbNmDWFhYSxbtoxLly7Rs2dPsrJuPjptaGgo9vb2xS9vb+9yH18Icf3LzODhvQBYu/cyhQajyonEv/046z2aRnwPQOKTL9F19BCVEwlRtVTvBF3RBg8ezH333Ue7du0IDg7mxx9/JD09nY0bN950n+nTp5ORkVH8iomRb6xC3Kl7/D1xtjEjJymV8B/v7KquqFi/ffY9DTesBODCveMJmjJB5URCVD3VRoJ2dnZGp9ORmFhy9ujExMRbdnAuKwcHB5o1a0ZUVNRNtzE3N79lnyIhRNmZm+h4wTqJ1l/MI+lwfYxDtqLV1rrvXDVO1OGTmL89Cy0K5zr3Z+ibL6sdSQhVqPavkZmZGR07diQ8PLx4mdFoJDw8nK5du1bYcbKzs7lw4QIeHh4V1qYQ4vYMGNkPDeCddJk/wnarHafOy8ovZNfsd7AuzOeKRxMGfbRQilJRZ6n6Jz8kJISVK1eydu1aTp8+zVNPPUVOTg4TJly/HDt27FimT59evH1BQQGRkZFERkZSUFBAbGwskZGRJa7uvPTSS+zcuZPLly+zd+9e7r33XnQ6HWPGjKny8xOirnNt4MHl9j0BiFlZ+tOdomoYjQovbIjkrRbD2Np6AP6rl2FuaaF2LCFUo+pkqKNHjyY5OZmZM2eSkJCAv78/YWFhxR2jo6OjS3w7iYuLo3379sXvFy5cyMKFC+nduzcREREAXL16lTFjxpCamoqLiws9evTg999/x8XFpUrPTQhxXbNnHoNHd9Do9EGunIyiYesmakeqk97bfo7tp5MwNzNj4Ptv4F7fQe1IQqhKoyiKonaI6iYzMxN7e3syMjKws7NTO44QNd7W4FE0unKSc72GMuyj+WrHqXN2rvqK3d+Fs7rVXbwzpgP3tq+vdiQhKkVZfn/LzV8hRKVzeGQsAF77tpGTka1ymrol+tQFrBaFMjJqJ3NMLkjxI8SfpAASQlS6Lg8MIdnWGbOiQnZu3qF2nDqjIF/PqaenYFOYR7RbI+6b+bTakYSoNlTtAySEqBt0Jjqin3qFycezaZTtxF1qB6ojwl6eQ9OEC+SaWtBi6SLMLGS4DyH+IleAhBBVYuB9QeRY2nE0Op3T8TLdTGXb/3UYjbd9C0DWs1Np2KapyomEqF6kABJCVAlXWwsGtr7+hOc3O06qnKZ2S4qOx/jm34Md9nlChgER4t+kABJCVJkHm9vx9u4PGRT6NDnpN5+fT5Sfoigs/fgnzAvyiXf0IGjJPLUjCVEtSQEkhKgyXf0b4VGQiXVhPntXbVA7Tq30xYFo1ha48WJQCJ7vvYe1vY3akYSolqQAEkJUGZ2Jjsyg67OOG7//TuU0tU9MWi5vbT0NwEOjetKii5/KiYSovqQAEkJUqc5PjKVIo6VB4kVO7z6kdpxaw2g0svuJF2gUd45ODR2Z0N1X7UhCVGtSAAkhqpSbjyeXWnQC4Nyqz1ROU3tsm7+c9sd3MXvfKuYPbIhOq1E7khDVmhRAQogq5/bg9aeS6h/eSXa6PBJ/p66cjMLls48AiB81jkaNvVROJET1JwWQEKLKdbp3AMm2zlgV5rNv1Ua149RoRqORky+8gmWRnsueTQl+bYrakYSoEWQkaCFEldOZ6Egc/Sirj16l0LwJA9QOVINtm/8RvtGn0OtMafbO25iY6NSOJESNIFeAhBCq6DHpAXY26MBvV3OITs1VO06NlHg5jnqfrwAgbuQ4GrdvqXIiIWoOKYCEEKrwsLekRxNnAL45clXlNDXTT+98jHVhPledvRkot76EKBO5BSaEUM2olk64b91I/YOrMfTdiE5u39y23y+m8rpVB3p11hEytg8mpvLPuRBlIVeAhBCqCWrtwQPnwmkTe4qjW3eoHafGKDQYeW3TCdBoqD/iHvwHdFc7khA1jhRAQgjVWNvbcNWvGwCxG75ROU3N8e1H3xJ/NYl61mZMDW6udhwhaiQpgIQQqqr/wCgAvI/tkzGBbkPMmYs0WzKHldvfZmYnBxyszNSOJESNJAWQEEJV7Yf0IdnWGcsiPfvXfat2nGov8pVZWBgKSHfxYmhwR7XjCFFjSQEkhFCVVqslo9dAAPRbflA5TfW2b8OPNDl7CINGi++c2Wi18k+4EOUlf3uEEKpr9+j1qTEaRp/m6tlLKqepngr1BeS+/w4AF3rcRYtu/uoGEqKGkwJICKG6hq2bcN6nLTvr+/NLZIzacaqlX99bjWdaHFlmVvSaM03tOELUeFIACSGqhfw5C5nf6SE+izGiKIracaqVjJRr2K9fDUDqyEdwdK+nciIhaj4pgIQQ1cJd7TyxNNVxMSWHY1cz1I5TrazaeZ7fXVuSYO9O/1eeUjuOELWCFEBCiGrBxtyEAa3c8MmIZ//nm9WOU23EpOWy/GgqizrcT9HytZhZmKsdSYhaQQogIUS1MVqXyLId79Bu/VIK9QVqx6kW5v98loIiI90a1yPI31vtOELUGlIACSGqjc739CXT3Br7/CwOfvuz2nFUdzRsN/4r3qR+djL/G9ISjUajdiQhag0pgIQQ1YaZhTkJHXoAkPLd9yqnUZfRaCTx7fl0SzjJS9cO0trTXu1IQtQqUgAJIaqVhqNHAFD/1IE6PTXG3k830zA+Cr3OlMA3XlE7jhC1jhRAQohqpd3AHn9OjVHAgc82qR1HFYYiA/oVSwGI7n03Ho0bqJxIiNpHCiAhRLWi1WrJ6NYPgNwff1Q5jToiln2OZ1osOaYW9Jz5otpxhKiVVC+Ali5dio+PDxYWFgQGBnLgwIGbbnvy5ElGjhyJj48PGo2GRYsW3XGbQojqp+XY+wBwir1ISmrdug2mz8vHdN1KABIG3yeDHgpRSVQtgDZs2EBISAizZs3iyJEj+Pn5ERwcTFJSUqnb5+bm0qhRI+bNm4e7u3uFtCmEqH6adGzDiuEvMjb4f2w9m6Z2nCr16wdrcMlKId3Clj6vPqt2HCFqLVULoHfffZdJkyYxYcIEWrVqxfLly7GysmL16tWlbt+5c2cWLFjAAw88gLl56YOBlbVNIUT11Pbu/hRpTdgUGat2lCqTV2Bgbn4DVre6i7Qxj2HjYKd2JCFqLdUKoIKCAg4fPkxQUNDfYbRagoKC2LdvX5W2qdfryczMLPESQqhrqJ8HWg1EXknjclzduAr0yd5LxOYp7AscwoAXH1M7jhC1mmoFUEpKCgaDATc3txLL3dzcSEhIqNI2Q0NDsbe3L355e8toq0KozdXWgifyz7J6WyjH31mqdpxKl56ezYod5wEIGdAMMxPVu2gKUavJ3zBg+vTpZGRkFL9iYmLUjiSEADr6OOKeew3bPdsxGo1qx6lUu2ctIPSnBdxliGWYv5facYSo9VQrgJydndHpdCQmJpZYnpiYeNMOzpXVprm5OXZ2diVeQgj1BTwyAr3OFLeMJE78+rvacSpNWnwynuGb8c2MZ3Qze3RamfJCiMqmWgFkZmZGx44dCQ8PL15mNBoJDw+na9eu1aZNIYR67JzsiW7ZGYBLX36jcprKsyd0MVZFemLr1afHhFFqxxGiTjBR8+AhISGMGzeOTp06ERAQwKJFi8jJyWHChAkAjB07Fi8vL0JDQ4HrnZxPnTpV/P+xsbFERkZiY2NDkyZNbqtNIUTNUm/4MDixF7fDuynUF2BqbqZ2pAqVejWR+r9en/fM9NHH0ZnoVE4kRN2gagE0evRokpOTmTlzJgkJCfj7+xMWFlbciTk6Ohqt9u+LVHFxcbRv3774/cKFC1m4cCG9e/cmIiLittoUQtQsnUcFc3TBG8UzxHcbM1TtSBXqt9APaFqkJ9bZm34TRqodR4g6Q6MoiqJ2iOomMzMTe3t7MjIypD+QENXA5kdfoNneMM637c49X32sdpwKkxwTT8zgQVgWFZAy7U16jh+hdiQharSy/P6Wp8CEENVewwfvY6tPF1a5dCJHX6R2nAqzY+mnWBYVcNWlId3HDlc7jhB1iqq3wIQQ4nb49e/KlKN6rqTmsu1UIsPb1/zHxFOy9cwyaUu7wAk8O9S/xO1+IUTlk79xQohqT6PRMPzPsXG+O1o7psb4aNdF8oqM5HfuRo+RA9SOI0SdIwWQEKJGGN7eixZpl2nz9QoSL8epHeeOJMUns3HXGQCeD2qGRiPj/ghR1aQAEkLUCL7O1rxw9kfuvriXI2s3qh3njvw++x1WbJ3L+OxT9GnuonYcIeokKYCEEDWGsf9AAHThP6ucpPySo+Px3v0TdoW5DOjSVK7+CKESKYCEEDVGx/H3Y9Bo8U66zPmDJ9SOUy775i3GwlBAjGtDuj54j9pxhKizpAASQtQYrg08uNyoHQCnP/lC5TRll3I1kfq7tgJgNfEJefJLCBXJ3z4hRI1iO+L6YIEu+8Ip1BeonKZs9oZ+8Oe4Pw3o9sgwteMIUadJASSEqFG6PDiUDHMbHPIy2b9hq9pxbltqbBL1d17Pa/7oJLn6I4TK5G+gEKJGMbe0IDGwD8mW9hw4VXPGBApb9wPmRQXEOnvTY5xMeSGE2mQkaCFEjdN82ovctaIXWq2Ocdl66tmYqx3pltJzCwjNr49D/5d5I8hHrv4IUQ3I30IhRI3TopE7bbwdKTIqNWJk6I93XyJbX4Rtsyb0GdZH7ThCCKQAEkLUUPd18kZnNHBs0y8YjUa149xUSlwyYWH7AZjSvylarYz7I0R1ILfAhBA10tDWrng//TZuuWmcvMuPtv27qh2pVHvnvseiXzfxS8A9BLe+S+04Qog/yRUgIUSN5GBrSWajFgBc/HS9ymlKl3g5Du+dW9GhEBAUKKM+C1GNSAEkhKix3EbfB4Dn4d3kZuWonOZGv7+1CAtDAdFuvnR7WMb9EaI6kQJICFFjdbp3AKnWjtgU5vH7um/VjlNCwoVoGu75CQC7p56RJ7+EqGbkb6QQosbSmehI63l9glT9t1+rnKak/W8twtxYxBWPJgTeP1jtOEKIf5ECSAhRo3V8ejxFGi0+sec4EXFA7TgAxJ67hO++XwBwekau/ghRHcnfSiFEjebVzIdLrbsAcHTjFpXTXLf5u93k68y4XL85nUYMVDuOEKIU8hi8EKLGaxjyHJPXBXDF0ZvgzHxc7SxUy3IpJYd3M5wxG/gqa0Y0k6s/QlRT8jdTCFHj+XXzw8GvLYUGhXX7rqia5e2fzlBkVAhs04CA7u1UzSKEuDkpgIQQtcLEHr4AfL/zpGqPxB/6aTfXtoejReHVu1qqkkEIcXukABJC1AoDW7vz1OVf+WDTLHYvXVflxzcUGUgLfYvX93/C7IJjNHWzrfIMQojbJwWQEKJW0Gk1tG3mibmxCLNNGzEaDFV6/J0rvsA76TJ5JuYMfG58lR5bCFF2UgAJIWqN7s89Sq6JOe7pCfy+YWuVHTc3OxfT1csBiBt8H24+nlV2bCFE+UgBJISoNeydHbnadQAA19ZW3W2wHW8txjknjTQrB/rOmFJlxxVClJ8UQEKIWsV/yuMY0NDoyklO7Nhf6cdLuZqI+w/XJ2PNG/s41vY2lX5MIcSdkwJICFGrNGzTlIttuwIQM/ctjEZjpR7vt6mvY1WYT6yzN32fHVupxxJCVBwpgIQQtU6HuTPQ60xxTbzCtl8OVtpxfj2TyMdWLYmzrofjtOnoTHSVdiwhRMWSkaCFELVO/ea+7Jo4lQXROiyPZtOrnwFLs4otTjJyC5n2zXGSnBvz+8xl/O/uthXavhCicskVICFErXTvs2OwcncjLiOfFbsuVHj7b3+5l6QsPY1crHnxrlYV3r4QonJViwJo6dKl+Pj4YGFhQWBgIAcO3HpG56+++ooWLVpgYWFB27Zt+fHHH0usHz9+PBqNpsRr0KBBlXkKQohqxtJMx/S7WgCwb+OPxJy5WGFt7179Nfe9O5m7L+1l4X1+WJjKrS8hahrVC6ANGzYQEhLCrFmzOHLkCH5+fgQHB5OUlFTq9nv37mXMmDFMnDiRo0ePMnz4cIYPH86JEydKbDdo0CDi4+OLX19++WVVnI4QohoZ0taDV+J38fquFRz935wKaTPlaiKmH8zHwlDIAGfo0MCxQtoVQlQtjaIoipoBAgMD6dy5M0uWLAHAaDTi7e3N5MmTmTZt2g3bjx49mpycHLZs2VK8rEuXLvj7+7N8+fWByMaPH096ejqbNm0qV6bMzEzs7e3JyMjAzs6uXG0IIaqHk7sOwuPj0KKQu2ApHYf2K3dbRqORLaMepemp/cQ7etItfAsWVpYVmFYIcSfK8vtb1StABQUFHD58mKCgoOJlWq2WoKAg9u3bV+o++/btK7E9QHBw8A3bR0RE4OrqSvPmzXnqqadITU29aQ69Xk9mZmaJlxCidmjdqzNRnfsDkDN7JvEXosvVjtFo5Icnp9H01H4MGi0uc+dK8SNEDaZqAZSSkoLBYMDNza3Ecjc3NxISEkrdJyEh4T+3HzRoEOvWrSM8PJy3336bnTt3MnjwYAw3mRsoNDQUe3v74pe3t/cdnpkQojrpHjqDZFtnXLJTOf3QOJJj4su0v9FoZMuzM2i26wcA4sZPpm3/rpURVQhRRVTvA1QZHnjgAe655x7atm3L8OHD2bJlCwcPHiQiIqLU7adPn05GRkbxKyYmpmoDCyEqlXN9Nxqu+YQ0Kwc80hP4Y8w4riXe/KrwPymKwroPNtL01+8AuPLIMwx85cnKjCuEqAKqFkDOzs7odDoSExNLLE9MTMTd3b3Ufdzd3cu0PUCjRo1wdnYmKiqq1PXm5ubY2dmVeAkhapeGrZvgtnIlGRa2uKdc5e2FG8nWF/3nfu+Hn+f1eBu+bNafy2OeYND/nq2CtEKIyqZqAWRmZkbHjh0JDw8vXmY0GgkPD6dr19IvL3ft2rXE9gDbtm276fYAV69eJTU1FQ8Pj4oJLoSokZp0bIP9h8tZ1GMC63UNeHTNQSIvJmMoKnl73FBkYN+Grcye8ymLtp8HjYYGL4cweNbz6gQXQlQ41UeCDgkJYdy4cXTq1ImAgAAWLVpETk4OEyZMAGDs2LF4eXkRGhoKwJQpU+jduzfvvPMOQ4YMYf369Rw6dIiPPvoIgOzsbGbPns3IkSNxd3fnwoULTJ06lSZNmhAcHKzaeQohqoeW3Tow2bsRv3+8nwOX0lg17V3GnN9BctvO1AvqR/rpc9ht34JLVgqtnXyg17NMH9yCx3o2Uju6EKICqV4AjR49muTkZGbOnElCQgL+/v6EhYUVd3SOjo5Gq/37QlW3bt344osvmDFjBq+++ipNmzZl06ZNtGnTBgCdTsexY8dYu3Yt6enpeHp6MnDgQObMmYO5ubkq5yiEqF78vB1Y/3gXlkVcIGD/ORzzMnA8sB0ObKfen9vkmFpg2qIlYc92o0V9GetHiNpG9XGAqiMZB0iIuiM/N4/Dm7eT8tMvOJ46Sq6NA7qhw+n22ANY29uoHU8IUQZl+f0tBVAppAASQgghap4aMxCiEEIIIYQapAASQgghRJ0jBZAQQggh6hwpgIQQQghR50gBJIQQQog6RwogIYQQQtQ5UgAJIYQQos6RAkgIIYQQdY4UQEIIIYSoc6QAEkIIIUSdIwWQEEIIIeocKYCEEEIIUedIASSEEEKIOkcKICGEEELUOSZqB6iOFEUBIDMzU+UkQgghhLhdf/3e/uv3+K1IAVSKrKwsALy9vVVOIoQQQoiyysrKwt7e/pbbaJTbKZPqGKPRSFxcHLa2tmg0GrXjqC4zMxNvb29iYmKws7NTO06tJZ9z1ZDPuWrI51w15HMuSVEUsrKy8PT0RKu9dS8fuQJUCq1WS/369dWOUe3Y2dnJX7AqIJ9z1ZDPuWrI51w15HP+239d+fmLdIIWQgghRJ0jBZAQQggh6hwpgMR/Mjc3Z9asWZibm6sdpVaTz7lqyOdcNeRzrhryOZefdIIWQgghRJ0jV4CEEEIIUedIASSEEEKIOkcKICGEEELUOVIACSGEEKLOkQJIlIter8ff3x+NRkNkZKTacWqVy5cvM3HiRHx9fbG0tKRx48bMmjWLgoICtaPVCkuXLsXHxwcLCwsCAwM5cOCA2pFqldDQUDp37oytrS2urq4MHz6cs2fPqh2r1ps3bx4ajYbnn39e7Sg1hhRAolymTp2Kp6en2jFqpTNnzmA0GlmxYgUnT57kvffeY/ny5bz66qtqR6vxNmzYQEhICLNmzeLIkSP4+fkRHBxMUlKS2tFqjZ07d/LMM8/w+++/s23bNgoLCxk4cCA5OTlqR6u1Dh48yIoVK2jXrp3aUWoUeQxelNlPP/1ESEgI33zzDa1bt+bo0aP4+/urHatWW7BgAcuWLePixYtqR6nRAgMD6dy5M0uWLAGuz/vn7e3N5MmTmTZtmsrpaqfk5GRcXV3ZuXMnvXr1UjtOrZOdnU2HDh348MMPmTt3Lv7+/ixatEjtWDWCXAESZZKYmMikSZP49NNPsbKyUjtOnZGRkYGTk5PaMWq0goICDh8+TFBQUPEyrVZLUFAQ+/btUzFZ7ZaRkQEgf34ryTPPPMOQIUNK/LkWt0cmQxW3TVEUxo8fz5NPPkmnTp24fPmy2pHqhKioKBYvXszChQvVjlKjpaSkYDAYcHNzK7Hczc2NM2fOqJSqdjMajTz//PN0796dNm3aqB2n1lm/fj1Hjhzh4MGDakepkeQKkGDatGloNJpbvs6cOcPixYvJyspi+vTpakeukW73c/6n2NhYBg0axH333cekSZNUSi5E+TzzzDOcOHGC9evXqx2l1omJiWHKlCl8/vnnWFhYqB2nRpI+QILk5GRSU1NvuU2jRo24//77+eGHH9BoNMXLDQYDOp2Ohx56iLVr11Z21Brtdj9nMzMzAOLi4ujTpw9dunRhzZo1aLXyfeVOFBQUYGVlxddff83w4cOLl48bN4709HQ2b96sXrha6Nlnn2Xz5s3s2rULX19ftePUOps2beLee+9Fp9MVLzMYDGg0GrRaLXq9vsQ6cSMpgMRti46OJjMzs/h9XFwcwcHBfP311wQGBlK/fn0V09UusbGx9O3bl44dO/LZZ5/JP2QVJDAwkICAABYvXgxcv0XToEEDnn32WekEXUEURWHy5Ml89913RERE0LRpU7Uj1UpZWVlcuXKlxLIJEybQokULXnnlFbnleBukD5C4bQ0aNCjx3sbGBoDGjRtL8VOBYmNj6dOnDw0bNmThwoUkJycXr3N3d1cxWc0XEhLCuHHj6NSpEwEBASxatIicnBwmTJigdrRa45lnnuGLL75g8+bN2NrakpCQAIC9vT2WlpYqp6s9bG1tbyhyrK2tqVevnhQ/t0kKICGqmW3bthEVFUVUVNQNhaVcsL0zo0ePJjk5mZkzZ5KQkIC/vz9hYWE3dIwW5bds2TIA+vTpU2L5J598wvjx46s+kBA3IbfAhBBCCFHnSK9KIYQQQtQ5UgAJIYQQos6RAkgIIYQQdY4UQEIIIYSoc6QAEkIIIUSdIwWQEEIIIeocKYCEEEIIUedIASSEEEKIOkcKICGEEELUOVIACVEN9OnTh+eff17tGKKM/v1zK+/PsSp//qmpqbi6unL58uUqOV5pHnjgAd555x3Vji8ESAEkRJUZP348Go3mhldUVBTffvstc+bMUTVfVRdhtbHo+/fPsbRzLG1ZVf7833zzTYYNG4aPj0/xsl27djF06FA8PT3RaDRs2rSp1H0nTJjAjBkz+Pnnn0v9s/zP1y+//HLTDDNmzODNN98kIyOjgs9OiNsnBZAQVWjQoEHEx8eXePn6+uLk5IStra3a8W5LQUGB2hFKqE55yvtzrKqff25uLqtWrWLixIkllufk5ODn58fSpUtvuq/BYGDLli3cc8899OrVq8Sf4Xr16vHaa6+VWNa/f/+bttWmTRsaN27MZ599VmHnJkSZKUKIKjFu3Dhl2LBhpa7r3bu3MmXKlBLvJ0+erLz88suKo6Oj4ubmpsyaNavEPgaDQXnrrbcUHx8fxcLCQmnXrp3y1Vdf3TLDV199pbRp00axsLBQnJyclP79+yvZ2dnKuHHjFKDE69KlS8VZnnnmGWXKlClKvXr1lD59+igNGzZU3nvvvRJt+/n5lchoMBiUt99+W2ncuLFiZmameHt7K3Pnzi3+LEo73u20W1qeiv48/nmcZ555RrGzs1Pq1aunzJgxQzEajSWy/Pvn9tf70s7xZuddnp9/Zmam8uCDDypWVlaKu7u78u67797QTmnn6+LicsvPBFC+++67G5bv2rVL8fDwKHH+iqIoV69eVQDll19+uWW7/zZ79mylR48eZdpHiIokV4CEqKbWrl2LtbU1+/fvZ/78+bzxxhts27ateH1oaCjr1q1j+fLlnDx5khdeeIGHH36YnTt3ltpefHw8Y8aM4dFHH+X06dNEREQwYsQIFEXh/fffp2vXrkyaNKn4G7y3t3eJLGZmZvz2228sX778tvJPnz6defPm8dprr3Hq1Cm++OIL3NzcAP7zeLfz2fw7T0V+Hv88jomJCQcOHOD999/n3Xff5eOPP76tjKWdY1nO+79+/iEhIfz22298//33bNu2jd27d3PkyJFbZtq9ezcdO3a8rfz/9v333zN06FA0Gk2J5UePHgWgQ4cOZWovICCAAwcOoNfry5VHiDtlonYAIeqSLVu2YGNjU/x+8ODBfPXVV6Vu265dO2bNmgVA06ZNWbJkCeHh4QwYMAC9Xs9bb73F9u3b6dq1KwCNGjViz549rFixgt69e9/QXnx8PEVFRYwYMYKGDRsC0LZt2+L1ZmZmWFlZ4e7ufsO+TZs2Zf78+bd9nllZWbz//vssWbKEcePGAdC4cWN69OgBgL29/S2P91/+nacyPg8Ab29v3nvvPTQaDc2bN+f48eO89957TJo06T8z3uwcb/e8b/Xzz8rKYu3atXzxxRfFt5o++eQTPD09b9nmlStX/nObm9m8eTPvvffeDcuPHDmCt7c39erVu2HdvffeS0REBP379+frr78usc7T05OCggISEhKKP38hqpIUQEJUob59+7Js2bLi99bW1jfdtl27diXee3h4kJSUBEBUVBS5ubkMGDCgxDYFBQW0b9++1Pb8/Pzo378/bdu2JTg4mIEDBzJq1CgcHR3/M3dZrxqcPn0avV5/y34gd+LfeSrr8+jSpUuJKx5du3blnXfewWAwoNPpKvCMbnSrn//FixcpLCwkICCgeL29vT3Nmze/ZZt5eXlYWFiUOcvp06eJi4sr9ed55MiRm179mTJlCo8++ihr1669YZ2lpSVwvV+SEGqQAkiIKmRtbU2TJk1ua1tTU9MS7zUaDUajEYDs7GwAtm7dipeXV4ntzM3NS21Pp9Oxbds29u7dyy+//MLixYv53//+x/79+/H19f3P3P+k1WpL3CoCKCwsLP7/v365ldV/tXuzPFX9eVSFW/38y8vZ2Zlr166Veb/vv/+eAQMGlFo8HTlyhMcee6zU/fr06UNERESp69LS0gBwcXEpcx4hKoL0ARKiBmrVqhXm5uZER0fTpEmTEq9b9aXRaDR0796d2bNnc/ToUczMzPjuu++A67dmDAbDbR3fxcWF+Pj44veZmZlcunSp+H3Tpk2xtLQkPDz8pm2Udrz/avdmKuPzANi/f3+J7X///XeaNm1621d/SjvHsnzON9OoUSNMTU05ePBg8bKMjAzOnTt3y/3at2/PqVOnyny8zZs3M2zYsBuWp6SkEBMTU+b+PwAnTpygfv36ODs7l3lfISqCXAESogaytbXlpZde4oUXXsBoNNKjRw8yMjL47bffsLOzK+5380/79+8nPDycgQMH4urqyv79+0lOTqZly5YA+Pj4sH//fi5fvoyNjQ1OTk5otaV/R+rXrx9r1qxh6NChODg4MHPmzBJFgYWFBa+88gpTp07FzMyM7t27k5yczMmTJ4sfwS7teP/VblV+HgDR0dGEhITwxBNPcOTIERYvXlymAfxKO8fSlpWVra0t48aN4+WXX8bJyQlXV1dmzZqFVqu9oZPyPwUHBzN9+nSuXbtW4lZfdnY2UVFRxe8vXbpEZGQkTk5OWFhYcOjQIb7//vsb2vur03V5CqDdu3czcODAMu8nREWRAkiIGmrOnDm4uLgQGhrKxYsXcXBwoEOHDrz66qulbm9nZ8euXbtYtGgRmZmZNGzYkHfeeYfBgwcD8NJLLzFu3DhatWpFXl4ely5dKjFY3j9Nnz6dS5cucffdd2Nvb8+cOXNuuFLz2muvYWJiwsyZM4mLi8PDw4Mnn3yyeH1px7uddqvq8wAYO3YseXl5BAQEoNPpmDJlCo8//vht5bnZOZa2rDzeffddnnzySe6++27s7OyYOnUqMTExt+zj07ZtWzp06MDGjRt54oknipcfOnSIvn37Fr8PCQkBYNy4cfTs2ZOAgIBSr9QcPXoUNze3Mneszs/PZ9OmTYSFhZVpPyEqkkb59w13IYQQ9OnTB39/fxYtWqR2lNuSk5ODl5cX77zzzg0DHf7T1q1befnllzlx4sRNr/D90z333EOPHj2YOnVquXJFRESwZMmSEk+BLVu2jO++++6Wo0ULUdnkCpAQQtRAR48e5cyZMwQEBJCRkcEbb7wBUGpfnX8aMmQI58+fJzY29rbGXurRowdjxowpV8agoCD++OMPcnJyqF+/Pl999RVdu3bF1NSUxYsXl6tNISqKXAESQohSVPcrQEePHuWxxx7j7NmzmJmZ0bFjR959990bxjISQpROCiAhhBBC1DnyGLwQQggh6hwpgIQQQghR50gBJIQQQog6RwogIYQQQtQ5UgAJIYQQos6RAkgIIYQQdY4UQEIIIYSoc6QAEkIIIUSdIwWQEEIIIeocKYCEEEIIUedIASSEEEKIOuf/0ajZrgTjticAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "for i in range(0, 4):\n", " plt.plot(fss_set, correlation_set[i], label=labels[i][1], linestyle=labels[i][2])\n", "plt.xlabel(\"Fine structure splitting ($1/T_1$)\")\n", "plt.ylabel(\"Probability\")\n", "plt.legend()\n", "plt.show()" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:20:35.462938Z", "start_time": "2024-02-09T09:20:35.391329Z" } } }, { "cell_type": "markdown", "source": [ "The correlations in the circular-polarisation basis only exist when the fine structure splitting is small. Interestingly, we can also see that the shape is not symmetric about zero, which is because the excitation pulse is H-polarised and so changing the FSS effectively also changes the detuning between the exciton $|x\\rangle$ state and the laser.\n", "\n", "As a final demonstration with the biexciton source, we will look into the infamous 'crux' of using a biexciton cascade to produce entangled pairs. In this paper [[E. Schöll, Phys. Rev. Lett. 125, 233605 2020](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.233605)], the authors detail how it is extremely difficult to obtain highly-indistinguishable photons from a biexciton cascade. This is due to the time jitter. In other words, if the XX photon is emitted early, then the X photon will also likely be emitted early. Similarly, if the XX photon is emitted late, then the X photon will also likely be emitted late. This correlation in time between the XX and X photons restricts the indistinguishability of two photons subsequently emitted from XX or two photons subsequently emitted from X." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 38, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Figure of Merit | Value\n", "First order number coherence | 0.0206\n", "Second order number coherence | 0.0008\n", "Hong-Ou-Mandel visibility | 0.6438\n", "Mean wavepacket overlap | 0.7225\n", "\n", "Figure of Merit | Value\n", "First order number coherence | 0.0000\n", "Second order number coherence | 0.0000\n", "Hong-Ou-Mandel visibility | 0.7804\n", "Mean wavepacket overlap | 0.7891\n", "\n", "Figure of Merit | Value\n", "First order number coherence | 0.0259\n", "Second order number coherence | 0.0021\n", "Hong-Ou-Mandel visibility | 0.5625\n", "Mean wavepacket overlap | 0.6592\n", "\n", "Figure of Merit | Value\n", "First order number coherence | 0.0000\n", "Second order number coherence | 0.0000\n", "Hong-Ou-Mandel visibility | 0.7676\n", "Mean wavepacket overlap | 0.7764\n", "\n" ] } ], "source": [ "source = Source.biexciton(pulse=Pulse.gaussian(parameters={'width': 0.1, 'detuning': -50, 'area': 4 * np.pi}))\n", "for i in range(4):\n", " source.display_hom(i)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:20:40.699955Z", "start_time": "2024-02-09T09:20:35.482708Z" } } }, { "cell_type": "markdown", "source": [ "Looking above, we can clearly see that the mean wavepacket overlaps of photons from all 4 transitions are quite limited compared to what we would expect from resonant excitation. In the 'crux' paper, they discuss how the only regime where this effect is eliminated is when the XX to X transition is much faster than the X to ground transition. Let's explore that by looking at the average mean wavepacket overlap of the 4 transitions as a function of the biexciton decay parameter 'decay_b'. For this, let's turn off the excitation pulse and artificially prepare our quantum dot in the biexciton state to be sure that our laser pulse parameters are not influencing the phenomenon we are replicating." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 39, "outputs": [], "source": [ "source = Source.biexciton(pulse=Pulse.dirac(parameters={'area': 0}), gate=[0, 20])\n", "source.initial_state = source.states['|b>']\n", "\n", "M_set = []\n", "decays = np.linspace(-1.5, 1.5, 20) # decay rate of the biexciton state in logscale\n", "for decay in decays:\n", " for i in range(4):\n", " source.hom(i, parameters={'decay_b': 10**-decay})\n", " M_set.append(sum(source.quality[str(i)]['M'] for i in range(0, 4))/4)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:21:17.953644Z", "start_time": "2024-02-09T09:20:40.752371Z" } } }, { "cell_type": "code", "execution_count": 40, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAG6CAYAAADkjinpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABU3klEQVR4nO3deVhU5QIG8HdmGIZ9l01BWRRcQVERNZdEMUul1bQUTa3MzCUtqdSr5Zq2W5aVtlia5lJqmpFLKrmAqCC4I6gsguw7M9/9g+vcSFTAgcPMvL/nmeeJM+fMeT8G5O2cb86RCSEEiIiIiIyQXOoARERERFJhESIiIiKjxSJERERERotFiIiIiIwWixAREREZLRYhIiIiMlosQkRERGS0WISIiIjIaLEIERERkdFiESIiIiKjJWkROnDgAIYOHQp3d3fIZDJs3br1ntvs27cPXbp0gUqlgq+vL9auXdvgOYmIiMgwSVqEioqKEBAQgJUrV9Zq/cuXL+Phhx9G//79ERcXh2nTpmHChAnYvXt3AyclIiIiQyRrKjddlclk2LJlC8LDw++4zuuvv44dO3YgPj5eu+zpp59Gbm4udu3a1QgpiYiIyJCYSB2gLqKjoxEaGlptWVhYGKZNm3bHbcrKylBWVqb9WqPR4ObNm3B0dIRMJmuoqERERKRDQggUFBTA3d0dcrnuTmjpVRFKT0+Hi4tLtWUuLi7Iz89HSUkJzM3Nb9tm8eLFmD9/fmNFJCIiogaUmpqKFi1a6Oz19KoI1UdkZCRmzJih/TovLw+enp5ITU2FjY2NhMmIiIiotvLz8+Hh4QFra2udvq5eFSFXV1dkZGRUW5aRkQEbG5sajwYBgEqlgkqlum25jY0NixAREZGe0fW0Fr26jlBISAiioqKqLduzZw9CQkIkSkRERET6TNIiVFhYiLi4OMTFxQGo+nh8XFwcUlJSAFSd1hozZox2/RdffBGXLl3Ca6+9hqSkJHz66af46aefMH36dCni65VjyTdx+GIWruYUQ61pEh8UJCIikpykp8aOHz+O/v37a7++NZcnIiICa9euRVpamrYUAYCXlxd27NiB6dOn48MPP0SLFi3w5ZdfIiwsrNGz65v395zD4YvZAAATuQzN7c3h6WCBFvYW8HT4/8PDwRy25kp+oo6IiIxCk7mOUGPJz8+Hra0t8vLyjGqO0MyNJxFzJQdXc4pRob77W25tZlJViuwt4OloAQ8HC3j8rzg1tzeHykTRSKmJiIiqNNTfbxYhI6PWCGTklyLlZjFSbz1ySpBysxgpN4txo6DsrtvLZICrjRk8HCzg08wSfi7W8Hezgb+rNewsTBtpFEREZGxYhHTE2IvQvZSUq3E1p1hblFJuVpWkW8uKy9V33NbFRgV/16pS5Pe/h6+zFY8gERHRfWMR0hEWofoTQiC7qPx/BakY5zMKkZRegKT0fFzNKalxG4VcBm8nS/i5WsPf1Rr+rjbwc7VGC3tzzkMiIqJaYxHSERahhlFQWoFzGYVISs/H2fSCqoKUlo/80soa17dSmWiPGvm7WqOtmw06NreFmZJHj4iI6HYsQjrCItR4hBBIzy9FUnpBVTlKy0dSegEu3iisccK2qYkcnT3sEOLjiB7ejujsacfTakREBIBFSGdYhKRXodbg0o0i7dGjs+kFOHUt77aJ2ioTObp42qOHtyNCfBwR4GHLYkREZKRYhHSERahpEkLgclYRoi9l4+9LN/H3pewai1FQS3uEeDuih48jAlrYwdREry6OTkRE9cQipCMsQvpBCIGLN4rw96Vs7SOrsLzaOmZKObq2dEAPbweE+DiiY3MWIyIiQ8UipCMsQvqpqhgVIvri/48YZRdVL0bmSgW6tqo6ldandTN0aG7DT6YRERkIFiEdYREyDEIInM8s/McRo5u4+a9i5OVkiWEB7hgW6A6fZlYSJSUiIl1gEdIRFiHDpNFUFaPoi1k4fDEbB87fQGmFRvt8h+Y2GB7QHI8EuMHN1lzCpEREVB8sQjrCImQcisoqsedMBrbFXcOB81lQa6p+zGUyINjLAcMCmmNIR1feFoSISE+wCOkIi5DxyS4sw874dPwadx1Hk29qlysVMvRt0wzDApsjtK0zLExNJExJRER3wyKkIyxCxu1abgl+PXkd2+KuIzEtX7vcwlSBQe1cMCzQHQ+0bgalgp8+IyJqSliEdIRFiG45l1GAX+Ku45eT15Fys1i73N5CiSEd3TA8sDm6trSHXM5PnhERSY1FSEdYhOjfhBCIS83Ftrjr2H4qDVmF/7+Qo7utGYYGuGNUsCdaOlpKmJKIyLixCOkIixDdTaVag+hL2dgWdx2749NRUFZ101i5DBga4I5J/Xzg78qfGyKixsYipCMsQlRbpRVq7DubiR+PpmL/uRva5aFtXTC5vw86e9pLmI6IyLiwCOkIixDVR/y1PHy67wJ+i0/Hrd+YXr6OmNzPFyE+jryCNRFRA2MR0hEWIbofFzILsWr/RWw9cQ2V/7s2UaCHHSb398UAf2dOrCYiaiAsQjrCIkS6cDWnGKsPXML6Y6koq6y6grW/qzUm9fPBwx3dYMKP3xMR6RSLkI6wCJEu3Sgow1cHL+P7v6+g8H8Tq1s6WuDFvj54rEtzqEwUEickIjIMLEI6wiJEDSGvuALfRifj60OXkVNcAQBwtTHDxD7eGNndg1etJiK6TyxCOsIiRA2puLwSPx5NxRcHLiIjv+p6RPYWSjzXywtjeraCrblS4oRERPqJRUhHWISoMZRVqrE59ho+23dRe9VqK5UJRoe0xHO9vNDMWiVxQiIi/cIipCMsQtSYKtUa7Didhk/3XsTZjAIAgLlSgVlhfojo2QoKfsqMiKhWWIR0hEWIpKDRCPyZlImP917AydRcAEBnTzsse7wTWrtYSxuOiEgPNNTfb37Gl6gRyOUyhLZzwZZJPbHw0Q6wUpngREouhnz0Fz784zzK//cRfCIialwsQkSNSC6X4Zngltgzow8G+DujQi3w/h/nMPTjg9ojRURE1HhYhIgk4GZrji8juuKjkZ3hYGmKsxkFePTTQ1i44wxKytVSxyMiMhosQkQSkclkGBbgjj9m9EV4oDs0Alj912WEfXAAhy9kSR2PiMgosAgRSczB0hQfPN0Za8Z2g5utGVJuFmPUl0cw++dTyCupkDoeEZFBYxEiaiL6+zvj9+l9MLpHSwDA+mOpGPjefvyekC5xMiIiw8UiRNSEWJsp8XZ4B2x4vge8nCyRWVCG57+LweQfYnGjoEzqeEREBodFiKgJCvZ2xG9TH8Ckfj5QyGXYcSoNoe/tx88xV2Fkl/4iImpQLEJETZSZUoHXB/tj2+ReaOdmg7ySCry68SQi1hzD1ZxiqeMRERkEFiGiJq5Dc1tse7kXXhvsB1MTOQ6cu4FB7x/AN4eTodHw6BAR0f1gESLSA0qFHC/188VvUx9At1b2KC5XY94vCXjy82hcvFEodTwiIr3FIkSkR3yaWWHD8yF4e3h7WJoqEHMlB+GfHMJf529IHY2ISC+xCBHpGblchtEhrfD7jL7o1soeBWWVGLvmGL7/+4rU0YiI9A6LEJGeam5nju8nBOOxzs2h1gi8tTUeC349AzXnDRER1RqLEJEeU5kosOKpAMwK8wMAfH3oMiZ+exyFZZUSJyMi0g8sQkR6TiaTYXJ/X6wc1QUqEzn+TMrEE58dxrXcEqmjERE1eSxCRAbi4U5u2PBCCJysVEhKL8DwTw4hLjVX6lhERE0aixCRAQn0sMO2l3vB39UaWYVlGPF5NHaeTpM6FhFRk8UiRGRgmtuZY9OknnjQ3xlllRq8tC4WK/de4K05iIhqwCJEZICsVCZYPaYrnuvlBQB4d/dZvLrxJMoq1RInIyJqWliEiAyUQi7D3KHt8E54ByjkMmyOvYbRXx7FzaJyqaMRETUZLEJEBu7ZHi2xZmw3WKtMcDT5Jh799BAuZPK2HEREAIsQkVHo06YZNr/UEx4O5riSXYzHPj2EQxeypI5FRCQ5FiEiI9HaxRpbX+qFoJb2yC+tRMTXR/Hj0RSpYxERSYpFiMiIOFqpsG5CMMID3VGpEYjcfBoLd/C2HERkvFiEiIyMmVKB90cEYsbANgCA1X9dxgvfxaCIt+UgIiPEIkRkhGQyGV4Z0BofjewMUxM5/kjMwJOropGWx9tyEJFxYREiMmLDAtyx/vkecLIyxZm0fAz/5BDOZxRIHYuIqNGwCBEZuS6e9tg6uRf8XKyRWVCG0V8dRerNYqljERE1ChYhIkILewusf74HWjtbIT2/FKO/OoIbBWVSxyIianAsQkQEALC3NMV344PRwt4cydnFGPP1UeSVVEgdi4ioQbEIEZGWq60Zvh8fDCcrFRLT8jHhm2MoKef9yYjIcLEIEVE1rZws8d347rA2M8Gx5By8tC4GFWqN1LGIiBoEixAR3aatmw3WjO0GM6Uce8/ewKs/nYSGF10kIgPEIkRENeraygGrng2CiVyGX05ex7xfEiAEyxARGRYWISK6o35+znhvRCBkMuC7v6/gvT3npI5ERKRTkhehlStXolWrVjAzM0NwcDCOHj161/U/+OAD+Pn5wdzcHB4eHpg+fTpKS0sbKS2R8RkW4I63h3cAAHz85wV8+dcliRMREemOpEVow4YNmDFjBubNm4fY2FgEBAQgLCwMmZmZNa7/ww8/YPbs2Zg3bx4SExPx1VdfYcOGDXjjjTcaOTmRcXm2R0vMCvMDALyzIxGbYq5KnIiISDckLULvvfceJk6ciHHjxqFdu3ZYtWoVLCws8PXXX9e4/uHDh9GrVy+MGjUKrVq1wqBBgzBy5Mh7HkUiovv3Uj8fTOjtBQB4/edT2J2QLnEiIqL7J1kRKi8vR0xMDEJDQ/8fRi5HaGgooqOja9ymZ8+eiImJ0RafS5cuYefOnRgyZMgd91NWVob8/PxqDyKqO5lMhjcfbosng1pArRGY8sMJHL6QJXUsIqL7IlkRysrKglqthouLS7XlLi4uSE+v+f80R40ahQULFqB3795QKpXw8fFBv3797npqbPHixbC1tdU+PDw8dDoOImMik8mw+LGOGNTOBeVqDSZ+exwnU3OljkVEVG+ST5aui3379mHRokX49NNPERsbi82bN2PHjh14++2377hNZGQk8vLytI/U1NRGTExkeEwUcnw0sjN6+jiiqFyNsWuO4kIm71hPRPpJsiLk5OQEhUKBjIyMasszMjLg6upa4zZz5szB6NGjMWHCBHTs2BGPPvooFi1ahMWLF0OjqfnKtyqVCjY2NtUeRHR/zJQKfDGmKwJa2CKnuALPfnkUV3N4x3oi0j+SFSFTU1MEBQUhKipKu0yj0SAqKgohISE1blNcXAy5vHpkhUIBALzQG1Ejs1KZYM247vDV3rH+KLIKecd6ItIvkp4amzFjBlavXo1vvvkGiYmJmDRpEoqKijBu3DgAwJgxYxAZGaldf+jQofjss8+wfv16XL58GXv27MGcOXMwdOhQbSEiosbjYGmK78Z3R3M7c1zOKsKYr44iv5R3rCci/WEi5c5HjBiBGzduYO7cuUhPT0dgYCB27dqlnUCdkpJS7QjQW2+9BZlMhrfeegvXrl1Ds2bNMHToUCxcuFCqIRAZPTdbc3w/IRhPrjqMM2n5mLD2OL4d3x1mSv7PCRE1fTJhZOeU8vPzYWtri7y8PM4XItKhhOt5ePrzv1FQVokH/Z3x+eggKBV69XkMImrCGurvN/+VIiKdaO9ui6/GdoPKRI4/kzIxcyPvWE9ETR+LEBHpTHcvB3z2bBeYyGXYFncdC7afkToSEdFdsQgRkU496O+CFU8FQCYD1h5OxsbjvHYXETVdLEJEpHPDA5tj2oA2AIC3tsYj4XqexImIiGrGIkREDWLKg77o79cMZZUavPh9DPKK+bF6Imp6WISIqEHI5TK8PyIQLezNkXqzBNN/iuPkaSJqcliEiKjB2FmYYtWzQdpPkq3ce0HqSERE1bAIEVGD6tDcFm+HdwAAvPfHORw4d0PiRERE/8ciREQN7qmuHhjZ3QNCAK+sP8EbtBJRk8EiRESNYt7Q9ujY3Ba5xRV4aV0sSivUUkciImIRIqLGYaZU4LNnu8DOQolTV/Mw/1debJGIpMciRESNpoW9BT58ujNkMuDHoym82CIRSY5FiIgaVd82zTA9lBdbJKKmgUWIiBrdy/198aC/My+2SESSYxEiokYnl8vw/lOB8HDgxRaJSFosQkQkCVsLJT57hhdbJCJpsQgRkWR4sUUikhqLEBFJqupii5682CIRSYJFiIgkN29oO3RqwYstElHjYxEiIsmZKRX49BlebJGIGh+LEBE1CS3sLfARL7ZIRI2MRYiImow+vNgiETUyFiEialJ4sUUiakwsQkTUpNy62KKngwUvtkhEDY5FiIiaHFsLJT57tgsvtkhEDY5FiIiapPbutniHF1skogbGIkRETdaTvNgiETUwFiEiatL+ebHF1zadghCcL0REusMiRERNmplSgY9HdoaZUo7DF7PxE68vREQ6xCJERE1eS0dLzBzkBwB4Z0ciMvJLJU5ERIaCRYiI9MK4Xl4I8LBDQWkl3toaz1NkRKQTLEJEpBcUchmWPd4JSoUMe85kYMfpNKkjEZEBYBEiIr3h52qNyf19AQDztiUgp6hc4kREpO9YhIhIr7zUzxd+LtbILirHgu28Sz0R3R8WISLSK6Ymcix9ohPkMmDLiWvYm5QpdSQi0mMsQkSkdwI97DC+txcA4M0tp1FQyhuzElH9sAgRkV6aMdAPng4WuJ5XimW7zkodh4j0FIsQEeklc1MFljzeEQDw3d9XcORStsSJiEgfsQgRkd7q6eOEkd09AACzN59GaYVa4kREpG9YhIhIr0UOaQsXGxUuZxXhgz/OSx2HiPQMixAR6TUbMyUWhledIlv91yWcvponcSIi0icsQkSk90LbuWBogDvUGoHXfj6FCrVG6khEpCdYhIjIIPxnaDvYWyiRmJaPz/dflDoOEekJFiEiMgiOVir8Z1h7AMBHURdwIbNA4kREpA9YhIjIYAwLcMeD/s4oV2vw2qZTUGt4h3oiujsWISIyGDKZDO+Ed4CVygSxKbn4NjpZ6khE1MSxCBGRQXG3M8fsh/wBAMt2nUXqzWKJExFRU8YiREQGZ1R3TwR7OaCkQo03tpyGEDxFRkQ1YxEiIoMjl8uw5PFOUJnI8df5LGyMuSp1JCJqoliEiMggeTlZYsbANgCAd7afQWZ+qcSJiKgpYhEiIoM1vrcXOja3RX5pJeZuS5A6DhE1QSxCRGSwTBRyLH28E0zkMuxKSMdvp9OkjkRETQyLEBEZtHbuNnipnw8AYM62BOQWl0uciIiaEhYhIjJ4kx/0ha+zFbIKy/D29kSp4xBRE8IiREQGT2WiwNLHO0EmA36OvYr9525IHYmImggWISIyCkEt7TG2ZysAwBubT6OwrFLaQETUJLAIEZHRmBXmhxb25riWW4J3dyVJHYeImgAWISIyGhamJljyWCcAwLd/X0Fcaq60gYhIcixCRGRUerd2wmNdmkMIYO62eN6hnsjIsQgRkdGJfKgtrFUmOHU1DxuOpUodh4gkxCJEREanmbUK0/93+41lu5OQU8RrCxEZKxYhIjJKY0Jawt/VGrnFFVi2+6zUcYhIIixCRGSUTBRyzB/WHgCw/lgKTl3NlTYQEUlC8iK0cuVKtGrVCmZmZggODsbRo0fvun5ubi4mT54MNzc3qFQqtGnTBjt37myktERkSIK9HfFo56qJ03O2JUDDidNERkfSIrRhwwbMmDED8+bNQ2xsLAICAhAWFobMzMwa1y8vL8fAgQORnJyMTZs24ezZs1i9ejWaN2/eyMmJyFBEPuQPK5UJTqbm4qfjnDhNZGxkQgjJ/hcoODgY3bp1wyeffAIA0Gg08PDwwJQpUzB79uzb1l+1ahXeffddJCUlQalU1muf+fn5sLW1RV5eHmxsbO4rPxEZhi//uoR3diTC3kKJvTP7wc7CVOpIRPQvDfX3W7IjQuXl5YiJiUFoaOj/w8jlCA0NRXR0dI3b/PLLLwgJCcHkyZPh4uKCDh06YNGiRVCr1XfcT1lZGfLz86s9iIj+KaJnK7RxsUJOcQXe5cRpIqMiWRHKysqCWq2Gi4tLteUuLi5IT0+vcZtLly5h06ZNUKvV2LlzJ+bMmYMVK1bgnXfeueN+Fi9eDFtbW+3Dw8NDp+MgIv2nVMixYHgHAMAPR1Nw+mqexImIqLFIPlm6LjQaDZydnfHFF18gKCgII0aMwJtvvolVq1bdcZvIyEjk5eVpH6mpnANARLfr4e2I4YHu/5s4Hc+J00RGwqS2Kx44cKBW6/Xp06dW6zk5OUGhUCAjI6Pa8oyMDLi6uta4jZubG5RKJRQKhXZZ27ZtkZ6ejvLycpia3n5eX6VSQaVS1SoTERm3N4a0xR9nMhCXmotNMVfxVDceQSYydLUuQv369YNMJgMA3Gl+tUwmu+t8nX8yNTVFUFAQoqKiEB4eDqDqiE9UVBRefvnlGrfp1asXfvjhB2g0GsjlVQezzp07Bzc3txpLEBFRXbjYmGFaaBss3JmIJbuSENbeFbYW9ftgBhHph1qfGrO3t4eHhwfmzJmD8+fPIycn57bHzZs367TzGTNmYPXq1fjmm2+QmJiISZMmoaioCOPGjQMAjBkzBpGRkdr1J02ahJs3b2Lq1Kk4d+4cduzYgUWLFmHy5Ml12i8R0Z2M7dUKrZ2tcLOoHMt/58RpIkNX6yKUlpaGpUuXIjo6Gh07dsT48eNx+PBh2NjYVJuMXBcjRozA8uXLMXfuXAQGBiIuLg67du3STqBOSUlBWlqadn0PDw/s3r0bx44dQ6dOnfDKK69g6tSpNX7UnoioPpQKOeYPr7ri9LojVxB/jROniQxZva4jlJKSgrVr1+Kbb75BWVkZIiIiMH/+fJiY1PpMm2R4HSEiqo0pP57Aryevo4unHTa92BNyuUzqSERGrUldR8jT0xNz587FH3/8gTZt2mDJkiW8Pg8RGZQ3h7SFpakCsSm5+Dn2qtRxiKiB1LkIlZWV4YcffkBoaCg6dOgAJycn7NixAw4ODg2Rj4hIEq62ZnhlQGsAwJLfkpBXUiFxIiJqCLUuQkePHsWkSZPg6uqKd999F8OGDUNqaip++uknDB48uCEzEhFJYlwvL/g6WyG7qBzv7zkndRwiagC1niMkl8vh6emJiIgIBAUF3XG9YcOG6SxcQ+AcISKqi8MXsjDqyyOQy4Bfp/RGe/e6fSiEiHSjof5+16kI3fPF6nAdIamwCBFRXU3+IRY7TqWha0t7bHwxRHtNNSJqPJJPltZoNPd8NPUSRERUH2893BYWpgocv5KDzbHXpI5DRDqkV/caIyKSgputOaY8WDVxevFvScgv5cRpIkPBIkREVAvje3vBu5klsgrLOHGayICwCBER1YKpiRwLhnUAAHxzOBmJabx2GpEhYBEiIqql3q2dMKSjKzQCmLst/o43oCYi/cEiRERUB2893A7mSgWOJedgaxwnThPpu3oVodzcXHz55ZeIjIzU3nE+NjYW167xHwUiMmzuduaYMsAXALBoZxIKOHGaSK/VuQidOnUKbdq0wdKlS7F8+XLk5uYCADZv3ozIyEhd5yMianIm9PaGt5MlbhSU4YM/zksdh4juQ52L0IwZMzB27FicP38eZmZm2uVDhgzBgQMHdBqOiKgpMjWR4z/D2gMA1h5Oxtn0AokTEVF91bkIHTt2DC+88MJty5s3b4709HSdhCIiaur6tGmGwe1dodYIzOHEaSK9VecipFKpkJ9/+8dGz507h2bNmukkFBGRPpgztB3MlHIcvXwTv5y8LnUcIqqHOhehYcOGYcGCBaioqJogKJPJkJKSgtdffx2PP/64zgMSETVVze3+f8XpRTsTUVRWKXEiIqqrOhehFStWoLCwEM7OzigpKUHfvn3h6+sLa2trLFy4sCEyEhE1WeN7e8HTwQIZ+WVYtf+i1HGIqI5qfff5fzt48CBOnTqFwsJCdOnSBaGhobrO1iB493ki0rXdCel44bsYmJrIETWjLzwcLKSORGRwGurvd72LkL5iESIiXRNC4Jkvj+DwxWwM6eiKT58JkjoSkcFpqL/fJnXd4KOPPqpxuUwmg5mZGXx9fdGnTx8oFIr7DkdEpA9kMhnmDm2HIR/+hZ2n0/H3pWz08HaUOhYR1UKdjwh5eXnhxo0bKC4uhr29PQAgJycHFhYWsLKyQmZmJry9vbF37154eHg0SOj7wSNCRNRQ5myNx3d/X0FbNxtsn9IbCrlM6khEBqOh/n7XebL0okWL0K1bN5w/fx7Z2dnIzs7GuXPnEBwcjA8//BApKSlwdXXF9OnTdRaSiEgfzBjYBrbmSiSm5WPDsVSp4xBRLdT5iJCPjw9+/vlnBAYGVlt+4sQJPP7447h06RIOHz6Mxx9/HGlpabrMqhM8IkREDWntocv4z69n4GBpir0z+8HWXCl1JCKD0GSOCKWlpaGy8vZrZVRWVmqvLO3u7o6CAl5ynoiMzzM9WqK1sxVuFpXjoyjeh4yoqatzEerfvz9eeOEFnDhxQrvsxIkTmDRpEh588EEAwOnTp+Hl5aW7lEREekKpkGPOI+0AAN8cTsaFzEKJExHR3dS5CH311VdwcHBAUFAQVCoVVCoVunbtCgcHB3z11VcAACsrK6xYsULnYYmI9EGfNs0Q2tYZlRqBhTvOSB2HiO6i3tcRSkpKwrlz5wAAfn5+8PPz02mwhsI5QkTUGC5nFWHQ+/tRoRZYM7Yb+vs7Sx2JSK81mesI3eLv7w9/f3+dBSEiMiReTpZ4rpcXPj9wCW/vOINevk4wNanzQXgiamD1KkJXr17FL7/8gpSUFJSXl1d77r333tNJMCIifffyg774OfYqLt0owrfRyZjwgLfUkYjoX+pchKKiojBs2DB4e3sjKSkJHTp0QHJyMoQQ6NKlS0NkJCLSS9ZmSswK88PrP5/Gh1HnEd65OZysVFLHIqJ/qPNx2sjISMycOROnT5+GmZkZfv75Z6SmpqJv37548sknGyIjEZHeeiLIAx2a26CgtBIrfj8ndRwi+pc6F6HExESMGTMGAGBiYoKSkhJYWVlhwYIFWLp0qc4DEhHpM4VchnlD2wMA1h9LQcL1PIkTEdE/1bkIWVpaaucFubm54eLFi9rnsrKydJeMiMhAdGvlgKEB7hACWPDrGdTzw7pE1ADqXIR69OiBgwcPAgCGDBmCV199FQsXLsRzzz2HHj166DwgEZEhmP2QP8yUchy5fBO/xadLHYeI/qfORei9995DcHAwAGD+/PkYMGAANmzYgFatWmkvqEhERNU1tzPHi319AAALdySitEItcSIiAur4qTG1Wo2rV6+iU6dOAKpOk61atapBghERGZoX+vjgp2OpuJZbgtUHLmHKgNZSRyIyenU6IqRQKDBo0CDk5OQ0VB4iIoNlbqrA7CFtAQCf7ruI9LxSiRMRUZ1PjXXo0AGXLl1qiCxERAZvaCc3dG1pj5IKNZbuSpI6DpHRq3MReueddzBz5kxs374daWlpyM/Pr/YgIqI7k8mqPk4vkwFbTlxDzBUeYSeSUp1vuiqX/787yWQy7X8LISCTyaBWN+0JgLzpKhE1Ba9vOoUNx1MR0MIWW17qBblcdu+NiIxYk7np6t69e3W2cyIiYzUzzA87Tqfh5NU8bD5xDU8EtZA6EpFRqnMR6tu3b0PkICIyKs2sVZjyoC8W/5aEpbuSMLiDK6xU9boPNhHdhzrPEQKAv/76C88++yx69uyJa9euAQC+++477YUWiYjo3sb2aoVWjha4UVCGlXsvSB2HyCjVuQj9/PPPCAsLg7m5OWJjY1FWVgYAyMvLw6JFi3QekIjIUKlMFHjr4XYAgK/+uoyU7GKJExEZn3p9amzVqlVYvXo1lEqldnmvXr0QGxur03BERIZuQFtnPNDaCeVqDRbuPCN1HCKjU+cidPbsWfTp0+e25ba2tsjNzdVFJiIioyGTyTD3kXZQyGXYnZCBQxd482qixlTnIuTq6ooLF24/l33w4EF4e3vrJBQRkTFp7WKN0T1aAqi6O32lWiNxIiLjUeciNHHiREydOhVHjhyBTCbD9evXsW7dOsycOROTJk1qiIxERAZvWmhr2FkocTajAD8eTZE6DpHRqPNnNWfPng2NRoMBAwaguLgYffr0gUqlwsyZMzFlypSGyEhEZPDsLEzx6sA2mLMtASv2nMPQAHfYWZhKHYvI4NX5ytK3lJeX48KFCygsLES7du1gZWWl62wNgleWJqKmqlKtwcMfHcTZjAI828MT74R3lDoSUZPRUH+/63xq7Pvvv0dxcTFMTU3Rrl07dO/eXW9KEBFRU2aikGP+8PYAgHVHUnDqaq60gYiMQJ2L0PTp0+Hs7IxRo0Zh586dTf7eYkRE+qSHtyPCA90hBDBnazw0mnodtCeiWqpzEUpLS8P69eshk8nw1FNPwc3NDZMnT8bhw4cbIh8RkdF5Y0hbWKtMcPJqHjYcT5U6DpFBq3MRMjExwSOPPIJ169YhMzMT77//PpKTk9G/f3/4+Pg0REYiIqPibGOG6QPbAACW7kpCTlG5xImIDFe97jV2i4WFBcLCwvDQQw+hdevWSE5O1lEsIiLjNiakJfxdrZFbXIFlu89KHYfIYNWrCBUXF2PdunUYMmQImjdvjg8++ACPPvooEhISdJ2PiMgomSjkWDC8AwBg/bEUxKXmShuIyEDVuQg9/fTTcHZ2xvTp0+Ht7Y19+/bhwoULePvtt+Hv798QGYmIjFJ3Lwc81qU5hADmbouHmhOniXSuzkVIoVDgp59+QlpaGj755BOEhIRon4uPj9dpOCIiYxf5UNXE6VNX87D+GK84TaRrdS5Ct06JKRQKAEBBQQG++OILdO/eHQEBAToPSERkzJpZq/DqoKqJ08t2nUV2YZnEiYgMS70nSx84cAARERFwc3PD8uXL8eCDD+Lvv//WZTYiIgLwbI+WaOtmg7ySCizbxYnTRLpUpyKUnp6OJUuWoHXr1njyySdhY2ODsrIybN26FUuWLEG3bt0aKicRkdEyUcjx9v+uOL3heCpiU3IkTkRkOGpdhIYOHQo/Pz+cOnUKH3zwAa5fv46PP/64IbMREdH/dG3lgCeCWgCouuI0J04T6Uati9Bvv/2G8ePHY/78+Xj44Ye1c4R0YeXKlWjVqhXMzMwQHByMo0eP1mq7W1e4Dg8P11kWIqKmavZD/rAxM0HC9Xz8cOSK1HGIDEKti9DBgwdRUFCAoKAgBAcH45NPPkFWVtZ9B9iwYQNmzJiBefPmITY2FgEBAQgLC0NmZuZdt0tOTsbMmTPxwAMP3HcGIiJ94GSlwqwwPwDAu7vPIosTp4nuW62LUI8ePbB69WqkpaXhhRdewPr16+Hu7g6NRoM9e/agoKCgXgHee+89TJw4EePGjUO7du2watUqWFhY4Ouvv77jNmq1Gs888wzmz58Pb2/veu2XiEgfjQpuifbuNsgvrcTS35KkjkOk9+r8qTFLS0s899xzOHjwIE6fPo1XX30VS5YsgbOzM4YNG1an1yovL0dMTAxCQ0P/H0guR2hoKKKjo++43YIFC+Ds7Izx48ffcx9lZWXIz8+v9iAi0lcKuQxvh1ddcXpjzFXEXLkpcSIi/XZf9xrz8/PDsmXLcPXqVfz444913j4rKwtqtRouLi7Vlru4uCA9Pb3GbQ4ePIivvvoKq1evrtU+Fi9eDFtbW+3Dw8OjzjmJiJqSLp72GNG16t+yt7YmoFKtkTgRkf66ryJ0i0KhQHh4OH755RddvNwdFRQUYPTo0Vi9ejWcnJxqtU1kZCTy8vK0j9TU1AbNSETUGF4b7AdbcyUS0/Lx/d+cOE1UXyZS7tzJyQkKhQIZGRnVlmdkZMDV1fW29S9evIjk5GQMHTpUu0yjqfo/IRMTE5w9exY+Pj7VtlGpVFCpVA2QnohIOo7/mzj91tZ4rPj9HB7u5I5m1vy3jqiudHJEqL5MTU0RFBSEqKgo7TKNRoOoqKhq9zC7xd/fH6dPn0ZcXJz2MWzYMPTv3x9xcXE87UVERmVkd090bG6LgrJKLP4tUeo4RHpJ0iNCADBjxgxERESga9eu6N69Oz744AMUFRVh3LhxAIAxY8agefPmWLx4MczMzNChQ4dq29vZ2QHAbcuJiAzdrYnTj356CJtjr+Hpbp7o7uUgdSwivSJ5ERoxYgRu3LiBuXPnIj09HYGBgdi1a5d2AnVKSgrkckkPXBERNVmBHnZ4upsnfjyagrnb4rF9Sm+YKPhvJlFtyYQQRnWd9vz8fNja2iIvLw82NjZSxyEium85ReXov2IfcosrMPeRdniut5fUkYh0rqH+fvN/G4iI9Jy9pSleH+wPAHh/zzlk5pdKnIhIf7AIEREZgBFdPRDgYYeCskos2smJ00S1xSJERGQA5HIZ3h7eHjIZsDXuOv6+lC11JCK9wCJERGQgOrWww6jungCAudviUcErThPdE4sQEZEBmRXmB3sLJc5lFOKbw8lSxyFq8liEiIgMiJ2FKWY/9P+J0xmcOE10VyxCREQG5skgD3T2tENRuRoLd3DiNNHdsAgRERmYqonTHSCXAb+cvI7DF7OkjkTUZLEIEREZoA7NbfFsj5YAgLe2xqO0Qi1xIqKmiUWIiMhAvTrQD87WKly6UYQVv5+VOg5Rk8QiRERkoGwtlFj8WEcAwJcHL+N48k2JExE1PSxCREQGbEBbFzwR1AJCADM3nkRJOU+REf0TixARkYGb80g7uNqYITm7GMt2J0kdh6hJYREiIjJwtuZKLHm86hTZmkPJvP0G0T+wCBERGYF+fs54upsHAOC1TadQVFYpcSKipoFFiIjISLz5cFu425oh5WYxlu7iKTIigEWIiMhoWJspseyJAADAt9FXcPgCL7RIxCJERGREerd2wjPBVXeon7XpFAp5ioyMHIsQEZGRiRzSFi3szXEttwSLdvJeZGTcWISIiIyMlcoEy57oBAD44UgKDpy7IXEiIumwCBERGaGePk6ICKm6F9nsn08hv7RC4kRE0mARIiIyUq8/5A9PBwtczyvFwu08RUbGiUWIiMhIWZiaYPmTAZDJgA3HU7H3bKbUkYgaHYsQEZER6+7lgOd6eQGoOkWWV8xTZGRcWISIiIzczEF+8HayREZ+GRZsPyN1HKJGxSJERGTkzE0VePfJAMhlwM+xV/HHmQypIxE1GhYhIiJCUEt7THzAGwAQueU0covLJU5E1DhYhIiICAAwfWAb+DSzxI2CMvznlwSp4xA1ChYhIiICAJgpFVjxVCDkMmBr3HXsik+XOhJRg2MRIiIirUAPO7zY1wcA8NbW07hZxFNkZNhYhIiIqJqpoa3RxsUKWYXlmLstXuo4RA2KRYiIiKpRmSiw4slAKOQybD+Vhh2n0qSORNRgWISIiOg2HVvYYnK/qlNkc7bFI6uwTOJERA2DRYiIiGr08oOt4e9qjZtF5ZizNR5CCKkjEekcixAREdXI1ESOFU8FwEQuw2/x6fiVp8jIALEIERHRHbV3t8WUB1sDAOZui0dmQanEiYh0i0WIiIju6qX+PmjvboPc4gq8uYWnyMiwsAgREdFdKRVVp8iUChn2nMnAD0dTpI5EpDMsQkREdE/+rjZ4dZAfAGDetgT8fSlb4kREusEiREREtfJCH28MDXBHpUZg0vcxSMkuljoS0X1jESIiolqRyWR494lO6NTCFjnFFZjw7TEUlFZIHYvovrAIERFRrZkpFfhidFc4W6twLqMQ09bHQa3h5GnSXyxCRERUJ662ZvhiTFeoTOSISsrEst1JUkciqjcWISIiqrNADzsse6ITAODz/ZewOfaqxImI6odFiIiI6mV4YHO83N8XADD759OITcmROBFR3bEIERFRvc0Y2AaD2rmgXK3B89/G4HpuidSRiOqERYiIiOpNLpfh/RGB8He1RlZhGSZ+exzF5ZVSxyKqNRYhIiK6L5YqE3wZ0RWOlqZIuJ6PV386CQ0/SUZ6gkWIiIjuWwt7C3w+OghKRdWd6j+MOi91JKJaYREiIiKd6NrKAYse7QgA+DDqPLafui5xIqJ7YxEiIiKdebKrByY+4AUAmLnxJE5fzZM4EdHdsQgREZFOzX6oLfr5NUNphQYTvz2OzPxSqSMR3RGLEBER6ZRCLsNHIzvDp5kl0vNLMfG7GJRWqKWORVQjFiEiItI5GzMlvoroBltzJU6m5iJy82kIwU+SUdPDIkRERA2ilZMlPnumCxRyGbacuIZV+y9JHYnoNixCRETUYHr6OuE/w9oDAJbtTsKeMxkSJyKqjkWIiIga1OgeLTG6R0sIAUxbfwJJ6flSRyLSYhEiIqIGN3doO/T0cURRuRoTvjmO7MIyqSMRAWARIiKiRqBUyPHpM13Q0tECV3NKMOn7WJRXaqSORcQiREREjcPOwhRfRXSFtcoER5NvYs7WeH6SjCTHIkRERI3G19kaH43qDLkM2HA8FV8fSpY6Ehk5FiEiImpU/f2c8caQtgCAt7efwVcHL0uciIwZixARETW68b29tPcke3v7GSzffZanyUgSTaIIrVy5Eq1atYKZmRmCg4Nx9OjRO667evVqPPDAA7C3t4e9vT1CQ0Pvuj4RETU9MpkMbwxpi1lhfgCAT/ZewJtb46HWsAxR45K8CG3YsAEzZszAvHnzEBsbi4CAAISFhSEzM7PG9fft24eRI0di7969iI6OhoeHBwYNGoRr1641cnIiIrofMpkMk/v7YvFjHSGXAT8cScGUH2NRVsn7klHjkQmJj0UGBwejW7du+OSTTwAAGo0GHh4emDJlCmbPnn3P7dVqNezt7fHJJ59gzJgx91w/Pz8ftra2yMvLg42NzX3nJyKi+/fb6TRMXR+HcrUGvXwd8fnorrBSmUgdi5qQhvr7LekRofLycsTExCA0NFS7TC6XIzQ0FNHR0bV6jeLiYlRUVMDBwaHG58vKypCfn1/tQURETctDHd2wZlw3WJoqcOhCNp5Z/TduFpVLHYuMgKRFKCsrC2q1Gi4uLtWWu7i4ID09vVav8frrr8Pd3b1amfqnxYsXw9bWVvvw8PC479xERKR7vXyd8MPEHrC3UOLk1Tw8ueowruWWSB2LDJzkc4Tux5IlS7B+/Xps2bIFZmZmNa4TGRmJvLw87SM1NbWRUxIRUW0FeNhh44s94WZrhos3ivDEZ4dxIbNA6lhkwCQtQk5OTlAoFMjIqH434oyMDLi6ut512+XLl2PJkiX4/fff0alTpzuup1KpYGNjU+1BRERNl6+zFX6e1BM+zSyRlleKJ1dF42RqrtSxyEBJWoRMTU0RFBSEqKgo7TKNRoOoqCiEhITccbtly5bh7bffxq5du9C1a9fGiEpERI3I3c4cG1/siYAWtsgprsDI1X/j4PksqWORAZL81NiMGTOwevVqfPPNN0hMTMSkSZNQVFSEcePGAQDGjBmDyMhI7fpLly7FnDlz8PXXX6NVq1ZIT09Heno6CgsLpRoCERE1AAdLU6yb2AO9fZ1QXK7Gc2uPYefpNKljkYGRvAiNGDECy5cvx9y5cxEYGIi4uDjs2rVLO4E6JSUFaWn//8H/7LPPUF5ejieeeAJubm7ax/Lly6UaAhERNRArlQm+GtsVQzq6olytweQfYrHuyBWpY5EBkfw6Qo2N1xEiItI/ao3AnG3x+OFICgBgVpgfXurnA5lMJnEyaiwGeR0hIiKi2lDIZVgY3gEv9/cFALy7+yze2ZEIDW/JQfeJRYiIiPSCTCbDzDA/vPVw1Z3rvzp4GTM3nkSFWiNxMtJnLEJERKRXJjzgjRVPBkAhl2HziWt48bsYlJTz/mRUPyxCRESkdx4PaoHPnw2CykSOqKRMjPn6CPJKKqSORXqIRYiIiPRSaDsXfDc+GNZmJjiWnIMRn0fjOm/JQXXEIkRERHqru5cDNjwfAicrFZLSCzDwvf34+uBlVHLeENUSixAREem1du42+HlSCDp72qGoXI0F288g/NNDOHU1V+popAdYhIiISO+1dLTEzy/2xMJHO8DGzATx1/IxfOUhzNsWj/xSzh2iO2MRIiIigyCXy/BMcEtEvdoPwwPdIQTwTfQVhK7Yjx2n0mBk1w+mWmIRIiIig9LMWoUPn+6M78cHo5WjBTILyjD5h1iMW3sMqTeLpY5HTQyLEBERGaTerZ2wa1ofvDKgNUwVcuw7ewMD39+PT/dd4EUYSYtFiIiIDJaZUoEZA9vgt2kPoIe3A0orNFi26ywe/ugvHEu+KXU8agJYhIiIyOD5NLPCjxN74L2nAuBgaYpzGYV4clU0Xt90CjlF5VLHIwmxCBERkVGQyWR4rEsL/PlqXzzdzQMAsOF4Kga8tx8/x1zlZGojxSJERERGxc7CFEse74SNL4agjYsVbhaV49WNJzFq9RFcvFEodTxqZCxCRERklLq1csD2KQ/gtcF+MFPKEX0pGw998Bfe+/0sSit4E1djwSJERERGy9REjpf6+WLP9L7o59cM5WoNPvrzAgZ/cAC7E9JRVFYpdURqYDJhZCdF8/PzYWtri7y8PNjY2Egdh4iImgghBH6LT8d/fklAZkEZAEAuA/xdbdClpR2CWtqji6c9PB0sIJPJJE5rfBrq7zeLEBER0T8UlFbgwz/OY+fpNFzPK73teScrU3T2rCpFXTzt0KmFHcxNFRIkNS4sQjrCIkRERLWVnleK2JQcxFzJQWxKDuKv5aFCXf3PpolchnbuNlXFqGVVOWpuZ86jRjrGIqQjLEJERFRfpRVqJFzPQ+yVXG1BunUa7Z+crVXaU2ldWtqjQ3MbqEx41Oh+sAjpCIsQERHpihAC13JLEJuSi9j/HTU6cz0flZrqf1pNFXJ087LHg/4uCG3rjJaOlhIl1l8sQjrCIkRERA2ppFyNU1dzq8pRSg5OpOQgq7D61at9na0woK0zQtu6oLOHHUwU/BD3vbAI6QiLEBERNSYhBC5nFeHPpExEJWbiWPLNakeM7CyU6O/njAFtndGnTTPYmCklTNt0sQjpCIsQERFJKa+kAgfO3UBUYgb2nr2BvJIK7XMmchmCvR14Cq0GLEI6wiJERERNRaVag5grOYhKykRUYgYu3iiq9jxPof0fi5COsAgREVFTlZxVhD8SM3gKrQYsQjrCIkRERPogr6QC+8/dwJ93OIW26NGOeKqbh4QJG1dD/f020dkrERERkc7YmisxLMAdwwLcq51C+yMxA5duFKGNq7XUEQ0CjwgRERHpmctZRWjpYAG53HiuXs0jQkRERAQA8HLip8l0xXinnxMREZHRYxEiIiIio8UiREREREaLRYiIiIiMFosQERERGS0WISIiIjJaLEJERERktFiEiIiIyGixCBEREZHRYhEiIiIio8UiREREREaLRYiIiIiMFosQERERGS0WISIiIjJaLEJERERktFiEiIiIyGixCBEREZHRYhEiIiIio8UiREREREaLRYiIiIiMFosQERERGS0WISIiIjJaLEJERERktFiEiIiIyGixCBEREZHRYhEiIiIio8UiREREREaLRYiIiIiMFosQERERGS0WISIiIjJaLEJERERktFiEiIiIyGg1iSK0cuVKtGrVCmZmZggODsbRo0fvuv7GjRvh7+8PMzMzdOzYETt37mykpERERGRIJC9CGzZswIwZMzBv3jzExsYiICAAYWFhyMzMrHH9w4cPY+TIkRg/fjxOnDiB8PBwhIeHIz4+vpGTExERkb6TCSGElAGCg4PRrVs3fPLJJwAAjUYDDw8PTJkyBbNnz75t/REjRqCoqAjbt2/XLuvRowcCAwOxatWqe+4vPz8ftra2yMvLg42Nje4GQkRERA2mof5+m+jsleqhvLwcMTExiIyM1C6Ty+UIDQ1FdHR0jdtER0djxowZ1ZaFhYVh69atNa5fVlaGsrIy7dd5eXkAqr6hREREpB9u/d3W9fEbSYtQVlYW1Go1XFxcqi13cXFBUlJSjdukp6fXuH56enqN6y9evBjz58+/bbmHh0c9UxMREZFUsrOzYWtrq7PXk7QINYbIyMhqR5Byc3PRsmVLpKSk6PQb2dTl5+fDw8MDqampRnVKkOPmuI0Bx81xG4O8vDx4enrCwcFBp68raRFycnKCQqFARkZGteUZGRlwdXWtcRtXV9c6ra9SqaBSqW5bbmtra1Q/QLfY2Nhw3EaE4zYuHLdxMdZxy+W6/ZyXpJ8aMzU1RVBQEKKiorTLNBoNoqKiEBISUuM2ISEh1dYHgD179txxfSIiIqI7kfzU2IwZMxAREYGuXbuie/fu+OCDD1BUVIRx48YBAMaMGYPmzZtj8eLFAICpU6eib9++WLFiBR5++GGsX78ex48fxxdffCHlMIiIiEgPSV6ERowYgRs3bmDu3LlIT09HYGAgdu3apZ0QnZKSUu0wWM+ePfHDDz/grbfewhtvvIHWrVtj69at6NChQ632p1KpMG/evBpPlxkyjpvjNgYcN8dtDDhu3Y5b8usIEREREUlF8itLExEREUmFRYiIiIiMFosQERERGS0WISIiIjJaBl+EkpOTMX78eHh5ecHc3Bw+Pj6YN28eysvL77pdaWkpJk+eDEdHR1hZWeHxxx+/7UKOTd3ChQvRs2dPWFhYwM7OrlbbjB07FjKZrNpj8ODBDRtUx+ozbiEE5s6dCzc3N5ibmyM0NBTnz59v2KA6dvPmTTzzzDOwsbGBnZ0dxo8fj8LCwrtu069fv9ve7xdffLGREtfPypUr0apVK5iZmSE4OBhHjx696/obN26Ev78/zMzM0LFjR+zcubORkupWXca9du3a295XMzOzRkyrGwcOHMDQoUPh7u4OmUx2x3tK/tO+ffvQpUsXqFQq+Pr6Yu3atQ2eU9fqOu59+/bd9n7LZLI73nqqKVq8eDG6desGa2trODs7Izw8HGfPnr3ndrr4/Tb4IpSUlASNRoPPP/8cCQkJeP/997Fq1Sq88cYbd91u+vTp+PXXX7Fx40bs378f169fx2OPPdZIqXWjvLwcTz75JCZNmlSn7QYPHoy0tDTt48cff2yghA2jPuNetmwZPvroI6xatQpHjhyBpaUlwsLCUFpa2oBJdeuZZ55BQkIC9uzZg+3bt+PAgQN4/vnn77ndxIkTq73fy5Yta4S09bNhwwbMmDED8+bNQ2xsLAICAhAWFobMzMwa1z98+DBGjhyJ8ePH48SJEwgPD0d4eDji4+MbOfn9qeu4gaqrDv/zfb1y5UojJtaNoqIiBAQEYOXKlbVa//Lly3j44YfRv39/xMXFYdq0aZgwYQJ2797dwEl1q67jvuXs2bPV3nNnZ+cGSqh7+/fvx+TJk/H3339jz549qKiowKBBg1BUVHTHbXT2+y2M0LJly4SXl9cdn8/NzRVKpVJs3LhRuywxMVEAENHR0Y0RUafWrFkjbG1ta7VuRESEGD58eIPmaSy1HbdGoxGurq7i3Xff1S7Lzc0VKpVK/Pjjjw2YUHfOnDkjAIhjx45pl/32229CJpOJa9eu3XG7vn37iqlTpzZCQt3o3r27mDx5svZrtVot3N3dxeLFi2tc/6mnnhIPP/xwtWXBwcHihRdeaNCculbXcdfld15fABBbtmy56zqvvfaaaN++fbVlI0aMEGFhYQ2YrGHVZtx79+4VAEROTk6jZGoMmZmZAoDYv3//HdfR1e+3wR8RqkleXt5db9oWExODiooKhIaGapf5+/vD09MT0dHRjRFRUvv27YOzszP8/PwwadIkZGdnSx2pQV2+fBnp6enV3m9bW1sEBwfrzfsdHR0NOzs7dO3aVbssNDQUcrkcR44cueu269atg5OTEzp06IDIyEgUFxc3dNx6KS8vR0xMTLX3SS6XIzQ09I7vU3R0dLX1ASAsLExv3legfuMGgMLCQrRs2RIeHh4YPnw4EhISGiOupAzh/b4fgYGBcHNzw8CBA3Ho0CGp49yXvLw8ALjr32pdvd+SX1m6sV24cAEff/wxli9ffsd10tPTYWpqetv8EhcXF70651ofgwcPxmOPPQYvLy9cvHgRb7zxBh566CFER0dDoVBIHa9B3HpPb13N/BZ9er/T09NvOwxuYmICBweHu45h1KhRaNmyJdzd3XHq1Cm8/vrrOHv2LDZv3tzQkessKysLarW6xvcpKSmpxm3S09P1+n0F6jduPz8/fP311+jUqRPy8vKwfPly9OzZEwkJCWjRokVjxJbEnd7v/Px8lJSUwNzcXKJkDcvNzQ2rVq1C165dUVZWhi+//BL9+vXDkSNH0KVLF6nj1ZlGo8G0adPQq1evu941Qle/33p7RGj27Nk1Tg775+Pf/0hcu3YNgwcPxpNPPomJEydKlPz+1GfcdfH0009j2LBh6NixI8LDw7F9+3YcO3YM+/bt090g6qGhx91UNfS4n3/+eYSFhaFjx4545pln8O2332LLli24ePGiDkdBjS0kJARjxoxBYGAg+vbti82bN6NZs2b4/PPPpY5GDcDPzw8vvPACgoKC0LNnT3z99dfo2bMn3n//famj1cvkyZMRHx+P9evXN8r+9PaI0KuvvoqxY8fedR1vb2/tf1+/fh39+/dHz54973mDVldXV5SXlyM3N7faUaGMjAy4urreT+z7Vtdx3y9vb284OTnhwoULGDBggM5et64acty33tOMjAy4ublpl2dkZCAwMLBer6krtR23q6vrbRNnKysrcfPmzTr9zAYHBwOoOnLq4+NT57wNycnJCQqF4rZPb97t99LV1bVO6zdF9Rn3vymVSnTu3BkXLlxoiIhNxp3ebxsbG4M9GnQn3bt3x8GDB6WOUWcvv/yy9sMe9zp6qavfb70tQs2aNUOzZs1qte61a9fQv39/BAUFYc2aNdVu4lqToKAgKJVKREVF4fHHHwdQNRs/JSUFISEh9539ftRl3Lpw9epVZGdnVysIUmjIcXt5ecHV1RVRUVHa4pOfn48jR47U+RN3ulbbcYeEhCA3NxcxMTEICgoCAPz555/QaDTaclMbcXFxACD5+10TU1NTBAUFISoqCuHh4QCqDqFHRUXh5ZdfrnGbkJAQREVFYdq0adple/bskfz3uC7qM+5/U6vVOH36NIYMGdKASaUXEhJy28en9e391pW4uLgm+Xt8J0IITJkyBVu2bMG+ffvg5eV1z2109vtdn9nc+uTq1avC19dXDBgwQFy9elWkpaVpH/9cx8/PTxw5ckS77MUXXxSenp7izz//FMePHxchISEiJCREiiHU25UrV8SJEyfE/PnzhZWVlThx4oQ4ceKEKCgo0K7j5+cnNm/eLIQQoqCgQMycOVNER0eLy5cviz/++EN06dJFtG7dWpSWlko1jDqr67iFEGLJkiXCzs5ObNu2TZw6dUoMHz5ceHl5iZKSEimGUC+DBw8WnTt3FkeOHBEHDx4UrVu3FiNHjtQ+/++f8wsXLogFCxaI48ePi8uXL4tt27YJb29v0adPH6mGcE/r168XKpVKrF27Vpw5c0Y8//zzws7OTqSnpwshhBg9erSYPXu2dv1Dhw4JExMTsXz5cpGYmCjmzZsnlEqlOH36tFRDqJe6jnv+/Pli9+7d4uLFiyImJkY8/fTTwszMTCQkJEg1hHopKCjQ/v4CEO+99544ceKEuHLlihBCiNmzZ4vRo0dr17906ZKwsLAQs2bNEomJiWLlypVCoVCIXbt2STWEeqnruN9//32xdetWcf78eXH69GkxdepUIZfLxR9//CHVEOps0qRJwtbWVuzbt6/a3+ni4mLtOg31+23wRWjNmjUCQI2PWy5fviwAiL1792qXlZSUiJdeeknY29sLCwsL8eijj1YrT/ogIiKixnH/c5wAxJo1a4QQQhQXF4tBgwaJZs2aCaVSKVq2bCkmTpyo/cdWX9R13EJUfYR+zpw5wsXFRahUKjFgwABx9uzZxg9/H7Kzs8XIkSOFlZWVsLGxEePGjatW/v79c56SkiL69OkjHBwchEqlEr6+vmLWrFkiLy9PohHUzscffyw8PT2Fqamp6N69u/j777+1z/Xt21dERERUW/+nn34Sbdq0EaampqJ9+/Zix44djZxYN+oy7mnTpmnXdXFxEUOGDBGxsbESpL4/tz4W/u/HrbFGRESIvn373rZNYGCgMDU1Fd7e3tV+z/VFXce9dOlS4ePjI8zMzISDg4Po16+f+PPPP6UJX093+jv9z/evoX6/Zf8LQERERGR09PZTY0RERET3i0WIiIiIjBaLEBERERktFiEiIiIyWixCREREZLRYhIiIiMhosQgRERGR0WIRIiIiIqPFIkRERERGi0WI6C769etX7YZ+hra/e2lqefTJzJkztTdJlVJ2djacnZ2RnJwsdZQ6e/rpp7FixQqpY5CBYxEiozV27FjIZDLtw9HREYMHD8apU6e062zevBlvv/12o2X69/5YRBpWQ35/4+LiEBgY2CCvXRcLFy7E8OHD0apVKwDA7t27q/3c1/T4/fff72uf48aNw1tvvXXf+3rrrbewcOFC5OXl3VceorthESKjNnjwYKSlpSEtLQ1RUVEwMTHBI488on3ewcEB1tbWjZansfdniMrLy6WOAAA4efKk5EWouLgYX331FcaPH69d1qdPH+3PfFpaGhwdHTFnzpxqywYMGFDvfarVamzfvh3Dhg2773116NABPj4++P777+udh+heWITIqKlUKri6usLV1RWBgYGYPXs2UlNTcePGDQC3HzHQaDRYvHgxvLy8YG5ujoCAAGzatAkAcOPGDbi6umLRokXa9Q8fPgxTU1NERUVVe41ly5bB19cXKpUKnp6eWLhw4W37Gzt2LPbv348PP/xQ+3/Pt05vlJWV4ZVXXoGzszPMzMzQu3dvHDt2TLuPfv364ZVXXsFrr70GBwcHuLq64j//+c9dvxdFRUUYM2YMrKys4ObmVuMpibuNvzbj27VrF3r37g07Ozs4OjrikUcewcWLF7Xbfvvtt3B0dERZWVm11wwPD8fo0aNrzN2vXz+8/PLLmDZtGpycnBAWFlarfd3p+1ubMd7L1atXkZWVhYCAAO2y+Ph4DBkyBDY2NnB1dcWrr756W2k7cuQIevfuDXNzcwQGBuLAgQOQyWSIj4+v0/5v2blzJ1QqFXr06KFdZm5urv2ZV6vVyM7OxgMPPKBd5urqCoVCUa/9AVU/80qlEt26ddPJvoYOHYr169fXOw/RPdX5fvVEBiIiIkIMHz5c+3VBQYF44YUXhK+vr1Cr1UIIIfr27SumTp2qXeedd94R/v7+YteuXeLixYtizZo1QqVSiX379gkhhNixY4dQKpXi2LFjIj8/X3h7e4vp06dX2+9rr70m7O3txdq1a8WFCxfEX3/9JVavXn3b/nJzc0VISIiYOHGiSEtLE2lpaaKyslIIIcQrr7wi3N3dxc6dO0VCQoKIiIgQ9vb2Ijs7W/s6NjY24j//+Y84d+6c+Oabb4RMJhO///77Hb8fkyZNEp6enuKPP/4Qp06dEo888oiwtrau0/jvNb5NmzaJn3/+WZw/f16cOHFCDB06VHTs2FH7/S4uLha2trbip59+0r5eRkaGMDExEX/++WeNufv27SusrKzErFmzRFJSkkhKSqrVvu70/a3NGO/l119/Fba2ttqvY2NjhbW1tXjzzTfF+fPnxd69e4Wbm5tYsGCBdp3Tp08LS0tL8eabb4rExESxadMm4ezsLFQqlaioqKj1vv/plVdeEYMHD75rTgAiKyurXq9fk5kzZ4rnn39eZ/v67bffhKmpqSgtLdVVRKJqWITIaEVERAiFQiEsLS2FpaWlACDc3NxETEyMdp1/FpPS0lJhYWEhDh8+XO11xo8fL0aOHKn9+qWXXhJt2rQRo0aNEh07dqz2D3h+fr5QqVTaYvBv/y5e//5aCCEKCwuFUqkU69at0y4rLy8X7u7uYtmyZdrtevfuXW27bt26iddff73G/RYUFAhTU9NqBSQ7O1uYm5vXafz3Gt+/3bhxQwAQp0+f1i6bNGmSeOihh7Rfr1ixQnh7ewuNRlPja/Tt21d07ty5Xvv69/e3tu/xvbz99tuiT58+2q+DgoLESy+9VG2dN954Q3Tv3l37df/+/W/bx9ChQ7VjCw8PF3Z2duLxxx+/bX+//vqraNOmjfD19a32vR8+fLh47rnn7phz/vz5wsPD47blK1asEG+88Yb261GjRolFixbd8zkhhGjdurXYvn27TvYlhBAnT54UAERycvIdx0F0P3hqjIxa//79ERcXh7i4OBw9ehRhYWF46KGHcOXKldvWvXDhAoqLizFw4EBYWVlpH99++221Uy7Lly9HZWUlNm7ciHXr1kGlUmmfS0xMRFlZ2X3Nwbh48SIqKirQq1cv7TKlUonu3bsjMTFRu6xTp07VtnNzc0NmZuYdX7O8vBzBwcHaZQ4ODvDz86vT+O81vvPnz2PkyJHw9vaGjY2NdgJvSkqKdp2JEyfi999/x7Vr1wAAa9eu1U5sv5OgoKB67evfavse30tcXJz2tFhSUhJiYmIwZcqUauuYmppqTwFeuXIFe/fuxZtvvlltHZVKpX2dqVOn4ttvv71tX5WVlZgxYwb+/PNPnDhxAu+++y6ys7MBACUlJTAzM7tjztjYWHTp0uW25c899xx++OEHlJWV4bPPPkN+fj5mz559z+cSExNx/fr1Gt//+uwLqDqVB1TNdyJqCCZSByCSkqWlJXx9fbVff/nll7C1tcXq1avxzjvvVFu3sLAQALBjxw40b9682nP/LDsXL17E9evXodFokJycjI4dO2qfu/WPemNQKpXVvpbJZNBoNPV+vdqM/17jGzp0KFq2bInVq1fD3d0dGo0GHTp0qDZXpnPnzggICMC3336LQYMGISEhATt27Ljr61paWtZrX/UZY23ExcVhyJAhAICEhAQolUq0adOm2jpnzpzR/mzExcXB1NQU7du3r7ZOYmIiJkyYAKBqLtS+fftu29fRo0fRvn17bd6HHnoIv//+O0aOHAknJyfk5OTcMWdsbKz29f/Jzs4OAwcORGRkJH777TccPnxYW0Tv9twvv/yCgQMH1li+6rMvALh58yYAoFmzZnccB9H9YBEi+geZTAa5XI6SkpLbnmvXrh1UKhVSUlLQt2/fGrcvLy/Hs88+ixEjRsDPzw8TJkzA6dOn4ezsDABo3bo1zM3NERUVVeMfhX8zNTWFWq2utszHxwempqY4dOgQWrZsCQCoqKjAsWPH6v1RcB8fHyiVShw5cgSenp4AgJycHJw7d0471tqM/27jy87OxtmzZ7F69Wo88MADAICDBw/W+DoTJkzABx98gGvXriE0NBQeHh51Gk9t9/Xv729txngvBQUFuHTpkvYTY9bW1lCr1aioqNCWqcuXL2PLli345ZdfAAAKhQKVlZUoLS3VloioqCgkJCRUm3Bdk+vXr1crbc2bN9ceTevcufMdP3GVlZWF1NTUGo/SAEBERAT69OmDo0ePwt7evlbPbdu2Dc8//7xO9xUfH48WLVrAycmpxm2J7heLEBm1srIypKenA6j6w//JJ5+gsLAQQ4cOvW1da2trzJw5E9OnT4dGo0Hv3r2Rl5eHQ4cOwcbGBhEREXjzzTeRl5eHjz76CFZWVti5cyeee+45bN++HQBgZmaG119/Ha+99hpMTU3Rq1cv3LhxAwkJCdU+4nxLq1atcOTIESQnJ8PKygoODg6wtLTEpEmTMGvWLDg4OMDT0xPLli1DcXFxja9RG1ZWVhg/fjxmzZoFR0dHODs7480334Rc/v+z57UZ/93GN27cODg6OuKLL76Am5sbUlJSqp0C+adRo0Zh5syZWL16dY2ng+7F3t6+Vvuq6ft7rzHey8mTJ6FQKLRHd4KDg2FnZ4fZs2djypQpSE5Oxssvv4ynn34agwcPBlB1ak+pVGLWrFmYPn06EhIStKX2XkXobsLCwhAZGYmcnJzbCkZsbCwA1FhOhBBYvHgxHB0da/1cZmYmjh8/ri13utgXAPz1118YNGjQHUZIpAMSz1EikkxERIQAoH1YW1uLbt26iU2bNmnX+fdkWo1GIz744APh5+cnlEqlaNasmQgLCxP79+8Xe/fuFSYmJuKvv/7Srn/58mVhY2MjPv30U+0ytVot3nnnHdGyZUuhVCqFp6endnLov/d39uxZ0aNHD2Fubi4AiMuXLwshhCgpKRFTpkwRTk5OQqVSiV69eomjR4/eMbcQVRNnIyIi7vj9KCgoEM8++6ywsLAQLi4uYtmyZXUaf23Gt2fPHtG2bVuhUqlEp06dxL59+wQAsWXLltvyjB49Wjg4ONzz00I1jbW2+6rp+1ubMa5Zs0bc6Z/Pjz/+WHTo0KHasgMHDoguXboIMzMz4e3tLRYvXqz9BOAt69atEx4eHsLS0lI8+uijYv78+cLX17faOnv37r1tsvShQ4dEeHi49uupU6dWm0jfvXt3sWrVqttyLlmyRLi4uNQ4hgULFoixY8eKn3766bafmTs99+WXX4pevXrV+Hr13VdJSYmwtbUV0dHRNW5LpAssQkTUJD344INiypQpUseo0dy5c0Xfvn0b7PXVarV44IEHRGRkZLXlNRWhiooK4evrK65evSoKCgpEmzZtqn1Effv27aJt27baywbcy++//y46d+4siouLRUVFhfDx8RE3bty453NDhw4VS5curdM47/Z6Qgjx6aefioEDB9bpNYnqikWIiJqUmzdvis2bNwu5XK69JlBT061bN3HkyBGdvd7+/fvFpk2bxMWLF8WRI0fEE088ITw9PbXXhRJCiAEDBggnJydhbm4umjdvXu0j/tu2bROtW7cWPj4+4vPPP7/t9d9//32RkpJyzxwpKSnCx8dHnD9/XrvsnXfeEYsWLbrrc0IIsXTp0lrtozb7umX16tVN9meADIdMCCGkOzFHRFRdq1atkJOTgzlz5mDmzJlSx2kUGzduxOzZs3Ht2jW4uLggNDQUixYtgouLi9TRiAweixAREREZLV5QkYiIiIwWixAREREZLRYhIiIiMlosQkRERGS0WISIiIjIaLEIERERkdFiESIiIiKjxSJERERERotFiIiIiIwWixAREREZLRYhIiIiMlr/BVFBVY0I1lkLAAAAAElFTkSuQmCC" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.plot(decays, M_set)\n", "plt.xlabel(\"Biexciton decay rate, $log_{10}(T_{XX}/T_{X})$\")\n", "plt.ylabel(\"Average M\")\n", "plt.xlim([-2, 2])\n", "plt.ylim([0, 1])\n", "plt.show()" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:21:18.024593Z", "start_time": "2024-02-09T09:21:17.957593Z" } } }, { "cell_type": "markdown", "source": [ "In the above plot, we indeed see a qualitative replication of the result published in figure 3 panel c of the 'crux' paper. The mean wavepacket overlap is only large when the lifetime of the biexciton state $T_{XX}$ is very short compared to the lifetime of the exciton state $T_{X}$." ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "## Trion" ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [ "Because ZPGenerator is a source-physics simulator, we have direct access to properties of the source. This becomes critical when simulating experiments where the quantum dynamics of the source play an important role, such as a spin-photonic device. One quantum system that allows for implementing interesting spin-photonic protocols is the charged quantum dot system. When the quantum dot captures a single particle (an electron or hole), it has a spin doublet ground state (spin up and spin down). Optical excitation of this quantum dot state produces an exciton (electron-hole pair) so that there is also a spin doublet excited state (spin up + exciton and spin down + exciton) called a trion state. Thus, a trion system refers to a four-level system. Let's explore how to simulate properties of a source constructed from a trion system.\n", "\n", "Without getting too deep into the physics, we can initialise the catalogue quantum dot trion source using the trion() method of the Source factory. In this case, there are two choices for the 'charge' keyword: (1) a 'negative' trion or (2) a 'positive' trion. The differences are subtle, but can play an important role in the photonic errors produced by the source. In the example given here, both the negative and positive trions will behave identically, and so we choose to use the 'negative' trion without loss of generality." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 41, "outputs": [], "source": [ "from zpgenerator import *\n", "import numpy as np\n", "import matplotlib.pyplot as plt\n", "\n", "source = Source.trion(charge='negative')" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:21:18.036916Z", "start_time": "2024-02-09T09:21:18.026225Z" } } }, { "cell_type": "markdown", "source": [ "We can inspect this object to see what properties it has. For example, we can look at the possible system states stored as a dictionary of [QuTiP](https://qutip.org/) quantum objects ([Qobj](https://qutip.org/docs/latest/apidoc/classes.html))." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 42, "outputs": [ { "data": { "text/plain": "{('|spin_up>',): Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket\nQobj data =\n[[1.]\n [0.]\n [0.]\n [0.]], ('|spin_down>',): Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket\nQobj data =\n[[0.]\n [1.]\n [0.]\n [0.]], ('|trion_up>',): Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket\nQobj data =\n[[0.]\n [0.]\n [1.]\n [0.]], ('|trion_down>',): Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket\nQobj data =\n[[0.]\n [0.]\n [0.]\n [1.]]}" }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "source.states" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:21:18.040926Z", "start_time": "2024-02-09T09:21:18.037860Z" } } }, { "cell_type": "markdown", "source": [ "This makes manipulating source states simple via the operations defined by QuTiP. For example, we can define our qubit states for quantum information processing. Then, we can make custom states:" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 43, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Quantum object: dims = [[2, 2], [1, 1]], shape = (4, 1), type = ket\n", "Qobj data =\n", "[[0.70710678]\n", " [0.70710678]\n", " [0. ]\n", " [0. ]]\n" ] } ], "source": [ "st0 = source.states['|spin_up>'] # computational state |0>\n", "st1 = source.states['|spin_down>'] # computational state |1>\n", "\n", "st_plus = (st0 + st1)/np.sqrt(2) # computational state |+> = (|0> + |1>)/sqrt(2)\n", "\n", "print(st_plus)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:21:18.077010Z", "start_time": "2024-02-09T09:21:18.041681Z" } } }, { "cell_type": "markdown", "source": [ "By default, the pre-built trion source is initialised in a fully mixed ground spin doublet, which is usually the case in the lab." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 44, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True\n", "Qobj data =\n", "[[0.5 0. 0. 0. ]\n", " [0. 0.5 0. 0. ]\n", " [0. 0. 0. 0. ]\n", " [0. 0. 0. 0. ]]\n" ] } ], "source": [ "print(source.initial_state)" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:21:18.077193Z", "start_time": "2024-02-09T09:21:18.045675Z" } } }, { "cell_type": "markdown", "source": [ "To modify the initial state, we can simply set the property source.initial_state to our desired initial state. For now, let's continue with the default settings.\n", "\n", "Let's now also look at the source parameters we can modify." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 45, "outputs": [ { "data": { "text/plain": "{'resonance': 0,\n 'Bx': 0,\n 'By': 0,\n 'Bz': 0,\n 'g_spin': 2,\n 'g_trion': 2,\n 'Bx_OH': 0,\n 'By_OH': 0,\n 'Bz_OH': 0,\n 'decay': 1.0,\n 'theta_c': 0.7853981633974483,\n 'phi_c': -1.5707963267948966,\n 'dephasing': 0,\n 'dephasing_spin': 0,\n 'dephasing_trion': 0,\n 'area': 3.141592653589793,\n 'phase': 0,\n 'delay': 0,\n 'theta': 0.7853981633974483,\n 'phi': -1.5707963267948966,\n 'efficiency': 1}" }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "source.default_parameters" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:21:18.077525Z", "start_time": "2024-02-09T09:21:18.051083Z" } } }, { "cell_type": "markdown", "source": [ "To measure the spin coherence time of the charged quantum dot that is initially in a fully mixed state, it is possible to perform a pump-probe experiment in the presence of a transverse static magnetic field, where we excite the quantum dot with two linearly-polarised laser pulses in quick succession. The first linearly-polarised laser pulse excites spin up and spin down states of the quantum dot to the trion up and trion down states, respectively. Then, the emission is monitored in the RL polarisation basis. If an R-polarised photon is detected after the first pulse, the quantum dot is projected onto the spin up state. Due to the transverse magnetic field, this state is no longer an eigenstate and so, from the moment the photon is detected, the spin will begin to precess around the magnetic field direction. After some delay time $\\tau$, a second 'probe' pulse is applied that again excites both the spin up and spin down states of the quantum dot. By monitoring the emission after the probe pulse, again in the RL basis, and looking at its correlation with the polarisation detected in the first time bin, we can gain information about the quality of the spin precession.\n", "\n", "Let's first prepare our pump-probe pulse sequence. To do this, we initialise a sequence using the Pulse class, then add two ideal pulses: one named 'pump' and another named' probe. Giving the pulses a unique name will allow us to independently tune their parameters. Since we want to excite both R and L transitions using a linearly-polarized pulse, we must increase the pulse area to $\\sqrt{2}\\pi$." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 46, "outputs": [], "source": [ "sequence = Pulse()\n", "sequence.add(Pulse.dirac(parameters={'delay': 0, 'area': np.pi * np.sqrt(2)}, name='pump'))\n", "sequence.add(Pulse.dirac(parameters={'delay': 0, 'area': np.pi * np.sqrt(2)}, name='probe'))" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:21:18.088987Z", "start_time": "2024-02-09T09:21:18.058851Z" } } }, { "cell_type": "markdown", "source": [ "Next, let's make a negatively-charged trion source with a default small static magnetic field of $B_x = \\pi/10$ and a spin dephasing rate of $0.1$. In addition, the default transition excited by the pulse is the R-polarized transition. To modify theis, we can set the 'phi' and 'theta' angles of the trion to zero so that the pulses are exciting the H-polarized transition instead." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 47, "outputs": [], "source": [ "source = Source.trion(charge='negative', pulse=sequence, gate=[0, float('inf')],\n", " parameters={'Bx': 0.1 * np.pi, 'dephasing_spin': 0.1, 'theta': 0, 'phi': 0})" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:21:18.097416Z", "start_time": "2024-02-09T09:21:18.073730Z" } } }, { "cell_type": "markdown", "source": [ "Note that all parameters are assumed to be unitless. A dephasing rate of $0.1$ in this case implies that it is $1/10$ the value of the spontaneous emission rate ($1/T_1$). Similarly, setting $B_x$ to $\\pi/10$ with the default g-factor of 2 implies that the spin will perform a full precession ($2\\pi$) every $10$ source lifetimes ($T_1$). Altering the g-factor away from its default value of 2 will change how long it takes for the spin to precess for a given value of $B_x$. For more physically-realistic values, a proper unit conversion should be done that includes the Bohr magneton and Plank's constant. In the future, unit conversions will be integrated and handled by a sub-package.\n", "\n", "Once we have made our source, we need to define the detectors monitoring for emission following the pump and probe pulses. Since we don't care so much about multi-photon emission, we can use threshold detectors. The first detector, monitoring bin 0 following the pump pulse, will be active from time $t=0$ until the probe pulse arrives. Recall that we named our probe pulse 'probe' and so the delay parameter corresponding to this pulse is 'probe/delay'. We can define a parameterised detector by adding the desired parameter string to the gate interval. We must also specify a default value for this parameter." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 48, "outputs": [], "source": [ "detector_bin0 = DetectorGate(1, gate=[0, 'bin_threshold'], parameters={'bin_threshold': 0})" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:21:18.097603Z", "start_time": "2024-02-09T09:21:18.077718Z" } } }, { "cell_type": "markdown", "source": [ "\n", "The second detector, monitoring bin 1 following the probe pulse, will be active from the time the probe pulse arrives 'probe/delay' until our source stops producing light." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 49, "outputs": [], "source": [ "detector_bin1 = DetectorGate(1, gate=['bin_threshold', float('inf')], parameters={'bin_threshold': 0})" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:21:18.098074Z", "start_time": "2024-02-09T09:21:18.089065Z" } } }, { "cell_type": "markdown", "source": [ "Finally, we combine the source and detectors together in a two-mode Processor. When we add our source to port 0, it will automatically occupy port 0 with the R-polarised emission and port 1 with the L-polarised emission. So, if we wish to detect R-polarised light in the first time bin, we add our first detector (bin 0) to mode 0. For the second time bin, let's assign our detector to monitor both R and L polarisation. This will allow us to look at both RR and RL coincidences." ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 50, "outputs": [], "source": [ "qpu = Processor() // source\n", "qpu.add(0, detector_bin0, bin_name='Early R') # time bin 0, R polarisation\n", "qpu.add(0, detector_bin1, bin_name='Late R') # time bin 1, R polarisation\n", "qpu.add(1, detector_bin1, bin_name='Late L') # time bin 1, L polarisation\n", "\n", "qpu.final_time = 150\n", "delays = np.linspace(0, 120, 240) # let's get quite a few points\n", "coinc_set_RR = []\n", "coinc_set_RL = []" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:21:18.098112Z", "start_time": "2024-02-09T09:21:18.089789Z" } } }, { "cell_type": "markdown", "source": [ "Once we have generated the data, we can plot it to see the result!" ], "metadata": { "collapsed": false } }, { "cell_type": "code", "execution_count": 51, "outputs": [], "source": [ "for delay in delays:\n", " pn = qpu.probs(parameters={'probe/delay': delay, 'bin_threshold': delay})\n", " coinc_set_RR.append(pn[1, 1, 0]) # ordering follows time then mode so 110 = RR\n", " coinc_set_RL.append(pn[1, 0, 1]) # 101 = RL" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:21:36.676969Z", "start_time": "2024-02-09T09:21:18.090047Z" } } }, { "cell_type": "code", "execution_count": 52, "outputs": [ { "data": { "text/plain": "
", "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1IAAAF8CAYAAADFH4poAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC2b0lEQVR4nOzdd3gUVRcG8HfTCZDQe5MivTcBBaRbUFQUG03AjkDEgiiIqKggYEGagFgQRJDPiiIiUkUIvfceWkhCS937/XEymU2ym+zMziwB3t/zhFl2Z/feLdnMmXPvuQ6llAIRERERERF5LeBqd4CIiIiIiOhaw0CKiIiIiIjIIAZSREREREREBjGQIiIiIiIiMoiBFBERERERkUEMpIiIiIiIiAxiIEVERERERGQQAykiIiIiIiKDGEgREREREREZxECKiIiIiIjIoDwZSE2aNAmVKlVCWFgYmjdvjnXr1nnc94svvoDD4cj0ExYW5sfeEhERERHRjSbPBVLz5s1DVFQURo4ciejoaNSvXx+dO3fG6dOnPd4nIiICJ0+ezPg5fPiwH3tMREREREQ3mjwXSI0fPx4DBgxA3759UatWLUyZMgXh4eGYOXOmx/s4HA6UKlUq46dkyZJ+7DEREREREd1ogq52B1wlJydjw4YNGDZsWMZ1AQEB6NChA9asWePxfhcvXkTFihXhdDrRqFEjvPvuu6hdu7bbfZOSkpCUlJTxf6fTidjYWBQtWhQOh8O6J0NERERERNcUpRQuXLiAMmXKICAg55xTngqkzp49i7S0tGwZpZIlS2LXrl1u71O9enXMnDkT9erVQ3x8PMaNG4eWLVti+/btKFeuXLb9x4wZg1GjRtnSfyIiIiIiuvYdPXrUbSzhKk8FUma0aNECLVq0yPh/y5YtUbNmTUydOhWjR4/Otv+wYcMQFRWV8f/4+HhUqFABR48eRUREhF/6TEREREREeU9CQgLKly+PggUL5rpvngqkihUrhsDAQJw6dSrT9adOnUKpUqW8eozg4GA0bNgQ+/btc3t7aGgoQkNDs10fERHBQIqIiIiIiLya8pOnik2EhISgcePGWLp0acZ1TqcTS5cuzZR1yklaWhq2bt2K0qVL29VNIiIiIiK6weWpjBQAREVFoXfv3mjSpAmaNWuGiRMn4tKlS+jbty8AoFevXihbtizGjBkDAHjrrbdwyy23oGrVqoiLi8PYsWNx+PBh9O/f/2o+DSIiIiIiuo7luUCqR48eOHPmDEaMGIGYmBg0aNAAixcvzihAceTIkUwVNM6fP48BAwYgJiYGhQsXRuPGjbF69WrUqlXraj0FIiIiIiK6zjmUUupqd+JqSkhIQGRkJOLj4zlHioiIiIiuO0oppKamIi0t7Wp3JU8IDg5GYGCg29uMxAZ5LiNFRERERETWSE5OxsmTJ3H58uWr3ZU8w+FwoFy5cihQoIBPj8NAioiIiIjoOuR0OnHw4EEEBgaiTJkyCAkJ8aoa3fVMKYUzZ87g2LFjqFatmsfMlDcYSBERERERXYeSk5PhdDpRvnx5hIeHX+3u5BnFixfHoUOHkJKS4lMglafKnxMRERERkbVcC7WRd2tEeYOvKhERERERkUEMpIiIiIiIiAxiIEVERERERGQQAykiIiIiIsqT2rRpA4fDAYfDgZCQENSsWRNz5szJtE+rVq3w5JNP+r1vDKSIiIiIiCjPUUph48aNGDduHE6ePIndu3ejS5cu6NWrFw4ePAhASrxv3rwZjRo18nv/WP6ciIiIiOhGoRRwtRbnDQ8HDFTM27t3Ly5cuIAuXbqgVKlSAIB+/fph4sSJ2L17N2666Sbs3r0bly5dYiBFREREREQ2unwZKFDg6rR98SKQP7/Xu2/YsAGFCxdGrVq1AADHjh3D8OHDERoainr16gEAoqOjERQUlPF/f2IgRUREREREeU50dDTi4+NRsGBBpKWlITExEfny5cOUKVNQpkyZjH1q1aqFsLAwv/ePgRQRERER0Y0iPFwyQ1erbQOio6Px3HPP4YUXXkBcXByGDh2KVq1aoU+fPpn2uRrD+gAGUkRERERENw6Hw9DwuqspOjoaAwYMQNWqVQEAn332GerVq4cBAwagUqVKAIBNmzbhgQceuCr9Y9U+IiIiIiLKUw4cOIC4uDjUqVMn47patWqhSpUqGeXP9+/fj7i4uKuWkWIgRUREREREecqGDRsQHByMm2++OdP17du3xw8//ABAMlYAEBgYiG3btmX87Nmzxy995NA+IiIiIiLKU6Kjo1GtWjWEhIRkur5Dhw6YMmUKjh07lhFI3XLLLZn2ufXWW7FixQrb++hQSinbW8nDEhISEBkZifj4eERERFzt7hARERERWSIxMREHDx7ETTfddFWq2uVVOb0uRmIDDu0jIiIiIiIyiIEUERERERGRQQykiIiIiIiIDGIgRUREREREZBADKSIiIiIiIoMYSBERERERERnEQIqIiIiIiMggBlJEREREREQGBfly55SUFMTExODy5csoXrw4ihQpYlW/iIiIiIiI8izDGakLFy5g8uTJaNOmDSIiIlCpUiXUrFkTxYsXR8WKFTFgwAD8999/dvSViIiIiIgoTzAUSI0fPx6VKlXCrFmz0KFDByxatAibNm3Cnj17sGbNGowcORKpqano1KkTunTpgr1799rVbyIiIiIius61adMGDocDDocDISEhqFmzJubMmWN4HzsYCqT+++8//PPPP1i3bh3eeOMNdO7cGXXr1kXVqlXRrFkzPPHEE5g1axZiYmLQrVs3rFixwq5+ExERERHRdUwphY0bN2LcuHE4efIkdu/ejS5duqBXr144ePCg1/vYxdAcqW+//dar/UJDQ/H000+b6hAREREREdnr0iXPtwUGAmFh3u0bEADky5f7vvnzG+sfAOzduxcXLlxAly5dUKpUKQBAv379MHHiROzevRs33XSTV/vYxXTVvp9//hlOp9PKvhARERERkR8UKOD554EHMu9booTnfe+4I/O+lSq538+MDRs2oHDhwqhVqxYA4NixYxg+fDhCQ0NRr149r/exi+mqfffeey9OnjyJEiVKWNkfIiIiIiIiREdHIz4+HgULFkRaWhoSExORL18+TJkyBWXKlPF6H7uYDqSUUlb2g4iIiIiI/OTiRc+3BQZm/v/p0573Dcgyvu3QIdNdyiY6OhrPPfccXnjhBcTFxWHo0KFo1aoV+vTpY2gfu/i0IO+mTZtw+fLlTNedOHECERERPnWKiIiIiIjskz+/5x/X+VG57es6Pyqnfc2Ijo5Gy5YtUbVqVTRp0gSfffYZ3n//fRxyida82ccuPgVSd9xxByIiIlC1alXcf//9GDZsGIYOHYpChQpZ1D0iIiIiIrrRHDhwAHFxcahTp07GdbVq1UKVKlUySpt7s4+dfAqk9uzZgxUrVuDll19GmTJlsHXrVsTFxWHatGlW9Y+IiIiIiG4wGzZsQHBwMG6++eZM17dv3x4//PCD1/vYyfQcKQAoWLAgqlSpghYtWljVHyIiIiIiusFFR0ejWrVqCAkJyXR9hw4dMGXKFBw7dsyrfcqVK2dbHx3KZNWIbt26YdasWShcuLDVffKrhIQEREZGIj4+nnO7iIiIiOi6kZiYiIMHD+Kmm25CWNaJTzewnF4XI7GB6YzUokWLzN6ViIiIiIjommZojtSRI0cMPfjx48cN7U9ERERERHQtMBRINW3aFE899RT+++8/j/vEx8dj+vTpqFOnDhYsWOBzB4mIiIiIiPIaQ0P7duzYgXfeeQcdO3ZEWFgYGjdujDJlyiAsLAznz5/Hjh07sH37djRq1AgffPAB7rzzTrv6TUREREREdNUYykgVLVoU48ePx8mTJ/Hpp5+iWrVqOHv2LPbu3QsAeOyxx7BhwwasWbOGQRQRERERUR5gsrbcdcuq18NUsYl8+fKhe/fu6N69uyWdICIiIiIiawUHBwMALl++jHz58l3l3uQdycnJAIDAwECfHsdwILVjxw58++23ePHFF1GoUCGfGiciIiIiInsEBgaiUKFCOH36NAAgPDwcDofjKvfq6nI6nThz5gzCw8MRFOTTkrrGA6kxY8bg4sWLboOoxMREHDp0CDVq1PCpU0RERERE5LtSpUoBQEYwRUBAQAAqVKjgc1BpOJBau3Ytpk2b5va2sLAwDBgwAHfeeSeGDRvmU8eIiIiIiMg3DocDpUuXRokSJZCSknK1u5MnhISEICDAUKkItwwHUseOHUPVqlU93v7000/j008/ZSB1LfnnHyAoCGjZ8mr3hIiIiIhsEBgY6POcIMrMcChWpEgRnDx50uPtzZo1w759+3zqFPnR+vXA7bcDbdoAO3Zc7d4QEREREV0TDAdSrVu3xhdffOH5AQMCkJiY6EufyF9SU4EnnwScTrn8wgsAy2MSEREREeXKcCA1dOhQTJ8+3eM8qTVr1qBy5co+dWrSpEmoVKkSwsLC0Lx5c6xbt86r+82dOxcOhwPdunXzqf0bxscfAxs3AoUKAWFhwNKlwIIFV7tXRERERER5nuFAqnHjxvjss8/w7LPPomPHjli0aBGOHDmC2NhY/O9//8Mrr7yCRx991HSH5s2bh6ioKIwcORLR0dGoX78+OnfunGulkUOHDmHo0KG47bbbTLd9Qzl8GHjjDbk8dizw8styOSoKuHz56vWLiIiIiOga4FAml/ZduXIloqKisH79+ozSgUopdOrUCT/++CNCQkJMdah58+Zo2rQpPv30UwBS6718+fIYOHAgXn31Vbf3SUtLQ+vWrfHEE09gxYoViIuLw6JFi9zum5SUhKSkpIz/JyQkoHz58oiPj0dERISpPl+T7r0X+PFH4NZbgeXLgcREoFYtCbBefx0YPfpq95CIiIiIyK8SEhIQGRnpVWxguu7frbfeinXr1mHHjh346quvMHXqVKxevRqLFy82HUQlJydjw4YN6NChg97BgAB06NABa9as8Xi/t956CyVKlEC/fv1ybWPMmDGIjIzM+Clfvrypvl7Tzp2TIAoApk4FAgKA8HBg/Hi5bvx4gOUxiYiIiIg88m05XwA1atSwbAHes2fPIi0tDSVLlsx0fcmSJbFr1y6391m5ciVmzJiBTZs2edXGsGHDEBUVlfF/LSN1Q/nvP9lWqyZZKE23bjJfKi4O2LoVaNToKnSOiIiIiCjv830lqqvowoUL6NmzJ6ZPn45ixYp5dZ/Q0FBERERk+rnhaIFU06aZrw8IAJo1k8teFvggIiIiIroR+ZyRslKxYsUQGBiIU6dOZbr+1KlTKFWqVLb99+/fj0OHDqFr164Z1zmdTgBAUFAQdu/ejSpVqtjb6WuRp0AKkEDqjz8kkHr6af/2i4iIiIjoGpGnMlIhISFo3Lgxli5dmnGd0+nE0qVL0aJFi2z716hRA1u3bsWmTZsyfu655x7cfvvt2LRp0403ZM8bSuUeSAHAv//6r09ERERERNeYPJWRAoCoqCj07t0bTZo0QbNmzTBx4kRcunQJffv2BQD06tULZcuWxZgxYxAWFoY6depkun+hQoUAINv1lO74cSAmBggMBBo2zH67Fkjt3AkkJAA2DX10OoEtW4D69YH0oo9ERERERNeMPJWRAoAePXpg3LhxGDFiBBo0aIBNmzZh8eLFGQUojhw5gpMnT17lXl7DtGxU7dpSqS+rkiWBihUlc7Vhgy1dUAro1UviuLfesqUJIiIiIiJb2ZKRCggIQNu2bTF27Fg0btzY8P2ff/55PP/8825v+/vvv3O87xdffGG4vRtKTsP6NM2ayXpS//4L3H675V2YOBH45hu5vGePBFbMShERERHRtcSWjNTMmTPRunVrPPfcc3Y8PPnC20AKsKVy37JlwEsvyeV+/SSgYhBFRERERNcah1JKXe1OXE1GVi++5ikFFCki60Rt2OB5nagVK4DWrYGyZYFjxyxr/uhRafLsWaBnT2D2bAZRRERERJR3GIkNTGekevfujX/++cfs3elq2LdPgqjQUKBuXc/7NWoka0odPy4/FpkwQYKohg2BqVP1IOrwYQmszp2zrCkiIiIiIluZDqTi4+PRoUMHVKtWDe+++y6OW3jATTbRhvU1aAAEB3veL39+QKt6aOHwvlWrZPvKK0C+fHJZKeChh4CvvwY+/9yypoiIiIiIbGU6kFq0aBGOHz+OZ555BvPmzUOlSpVwxx134Pvvv0dKSoqVfSSraEFRTvOjNM2bZ76PBZYvB/7+G+jUSb/O4QAeflgur1hhWVNERERERLbyqdhE8eLFERUVhc2bN+Pff/9F1apV0bNnT5QpUwZDhgzB3r17reonWcGbQhMaGxbmDQsD2rQBChfOfP1tt8l21SpZX4qIiIiIKK+zpGrfyZMnsWTJEixZsgSBgYG48847sXXrVtSqVQsTJkywognylVLApk1yuUmT3PfXgq3oaLmvjRo0kNGEcXHAjh22NkVEREREZAnTgVRKSgoWLFiAu+++GxUrVsT8+fMxePBgnDhxArNnz8aff/6J7777Dm9xxdW84dQp4PJlGUtXtWru+998s2zj44HYWJ+b79ULeOEF4MiR7LcFBQG33CKXV670uamcJSfLDxERERGRD0wHUqVLl8aAAQNQsWJFrFu3DuvXr8fTTz+dqUzg7bffjkKFClnRT/LVwYOyLVcOCAnJff98+aT8OSDV/nxw4QIwZw7wySee97n1VtnaOk8qOhqoUEEychcu2NgQEREREV3vTAdSgwYNwrFjxzBp0iQ0aNAg43qlFI6kpx0KFSqEg9oBPF1d2vtw003e36dKFdnu3+9T06tXA2lpQKVKEse4owVS27b51JRnmzcDHTtKZm7rVuDVV21qiIiIiIhuBKYDqTfffBMXL17Mdn1sbCxuMnKwTv5x4IBsjbw32hBAHzNSy5fLtk0bz/u0aiXxzcaNPjXl3vbtQIcOMkSxRg257rPPgGXLbGiMiIiIiG4EpgMp5aEAwcWLFxEWFma6Q2QTLSNVubL399EyUn4IpPLlk6WrAiwpf+IiORno0kVWAm7SBFizBnj6abmtXz/AzckAIiIiIqLcBBm9Q1RUFADA4XBgxIgRCA8Pz7gtLS0N//77b6ahfpRHmBnap2WkfBjad/myXnU9p0DKNitXAseOAcWLA7//DhQqBHzwAfDrr/KaDB8OfPTRVegYEREREV3LDAdSG9PHXimlsHXrVoS4FC4ICQlB/fr1MXToUOt6SNbwJZDyISO1di2QkiJ1K3Jr+uBB4I03gPPngV9+Md1kZr/9Jts77wSKFJHLBQsC06ZJpmrqVOC99yQlRkRERETkJcOB1LL0eSV9+/bFRx99lKlKH+VRKSl63XEzQ/tOn5YqdwULGm765EkpMHHrrVJ5PSf58gHffCP7xcVJ8shnWiB1xx2Zr+/USaK748dlJeAOHSxojIiIiIhuFKZnpMyaNYtB1LXi6FHA6QRCQ4FSpby/X2QkUKyYXDY5vO+xx4DDh4Gvvsp931KlJAmmlFT689nRo1JoIiBAKva5cjiA9u3l8tKlFjRGRERERDcSQxmpqKgojB49Gvnz58+YK+XJ+PHjfeoYWUgb1lepkvFqDlWqSKGG/fsBH+a+edts8+YyknDzZhmN5xMtG3XLLfqwPlft2gFffgn89ZePDRERERHRjcZQILVx40akpKRkXPbEkdsYLvIvM/OjNFWrAv/+63PlPm/VrCnbXbsseDAtkOrSxf3tWkZq/XoLxxJ6lpoKBBkeTEtEREREeZGhw7plLuvuLOMaPNcObQ0pI/OjND5U7jt5EmjUCKhVC1iyxLuslLbMk8+BVHIy8Oefcjnr/ChNuXLAzTcDe/ZIjfZ77/Wx0cyOHAHKl5dRhH/9BfTvDyxYADRsaGkzRERERHQVWL1qD+VFvmSkfFhLavduICYGOHTI+6F9roGUh6XKvLN6tawRVaKERHOe2DRPat06oG5d4O235f+TJsnb8OijUhKeiIiIiK5thudIeYtzpPIQX4f2AaYDKQCoXt1Yc/nySSYnIUHqXZiiDevr3DnnKK59e2DyZMvnSY0eLf1fsgQYNkyqrK9ZIwHi0KHAZ59Z2hwRERER+ZnhOVLe4BypPEYLpMwM7dMyUseOAYmJQFiY13c1E0iFhkql9cBAA310J7f5UZq2bWXs3fbtkj4zUtXQg/h44I8/5PKUKTIvqlgxYPZsqbo+eTLw0EPSNBERERFdm0zPkaJrxMWLsg4UYC4jVby4rB914YIEZFo1CC+YCaQAC4Ko+Hhg61a5nLXseVZFi0o1wo0bJSv16KM+Ng789JNM0apZU+aHaTp2BJ54Apg5E/j2WwZSRERERNcyzpG63h06JNtChcxVpXM4TBecMBtI+WzbNtmWLSuBYG4snic1f75sH3ww+23adb/+6uMcMCIiIiK6qriO1PXOl/lRmipVJGNjYJ5UUpLetNFAatkymUd0003A998buy8APZCqW9e7/du3B8aNk8p9PkpIAH7/XS5375799jZtZA7YsWPAli1A/fo+N+nZvn1ARIQU3CAiIiIiS3EdqeudL/OjNCYyUnFxQOvWwPHjQOnSxpoLDgaio4HYWGP3y6AN6/M2kGraVLb798sQxoIFTTYM/PyzBJHVqwN16mS/PV8+YNo0qbrubfcMu3gRePVVKRVYogSwYYOUeiciIiIiy3AdqeudtoaUrxkpwFBGqmRJySyZoZVAP3xYSoWHhxt8AC2QchfJuFO0qER7J08CO3YAzZsbbFDXqZNU6AsLk1GR7jz+uOmHz93ffwN9++pDOk+fBnr0kOuDg21smIiIiOjGYskcKaUUFCd85E1WDO3zYVFeM4oVA4oUkTlEe/cavLNSxof2ue6rBWEmFSsGPPkk0KuXTw9jzvHjsvjwoUNAxYrArFlSP371aslQEREREZFlfAqkZsyYgTp16iAsLAxhYWGoU6cOPv/8c6v6RlawIpCqUEG2R496XSEhNdV8c0DmhXkNOXlSxgQGBhqqMJiRvfIxkPLW0qVA//7AL79Y+KBffikl6ps0kefRp48EUwAwfjywcKGFjRERERHd2EwHUiNGjMCgQYPQtWtXzJ8/H/Pnz0fXrl0xZMgQjBgxwso+ki+OHJFtpUrmH6NsWdkmJgLnznl1l7ZtZVFdX4f3GQ6ktECoWjVDa15lZKS0bJYJs2YBH32kj6bMye+/AzNmAN99Z7q5zJSSuuoA8Nxz+jyv++4DXnxRLg8cCKSlWdQgERER0Y3NdCA1efJkTJ8+HWPGjME999yDe+65B2PGjMG0adPw2WefWdlHMuvSJVlTCdCDITNCQ2XSEyBZKS/s2iWV6QoXNtek6UBKC4S8nR+lsWBo36efAoMHS6GM3Nx5p2x/+w1wOk03qVu5UuawFSiQvVzgO+9I9b4TJ4A1ayxojIiIiIhMB1IpKSlo0qRJtusbN26MVF/HdZE1Tp6UbXi4T5XoAEh6CfAqkDp3Tk9cVatmrrnataWyndGKf4Yr9mlq1pTqEGfOAKdOGWxUKvVpTTdunPv+rVpJbHPmDPDff4aby07LRvXoIcGUq9BQoGtXuWzz8L64OInVOGWSiIiIrnemA6mePXti8uTJ2a6fNm0aHnvsMZ86RRY5cUK2Zcp4LiHnLa18theBlLYQb/nyQP785pq78055HMPLkZkNpMLD9aIaJob3bdsGpKRIkQxvRlEGBwPt2snlVasMN5fZhQv6GMEnnnC/zwMPyHbhQluinEuXgDFjZCpey5bAyy9b3gQRERFRnmJ4QV6Nw+HA559/jj/++AO33HILAODff//FkSNH0OuqlCyjbLSMVJkyvj+WlpE6dizXXbVAyuhCvD5LS5Py5YC5RZrq1pUygVu3yiK9BqxfL9vGjb2PWZs0ARYt8m4oYI6++07qxFevDrRo4X6fzp0lWDx8WBr0Jm3mpVWrJE5zTeSNGyejK3v3tqwZIiIiojzF8IK8rhqnH4ztTy+LXaxYMRQrVgzbt2+3qHvkE9eMlK8MDO3TljDyZQ1gV04nEOBN7nT/fimIkS+fuSqFdepIxsbEPKkNG2RrJD5p1Ei2PgdSM2bI9oknPEdx4eGS5vv+e2DBAksDqfPnZQpdcLBkpXbtkmlZTz4pQztbtrSsKSIiIqI8w/SCvHQN0AIpwxON3DAwtE8rFFixom9NRkVJJbx33gGefdaLO2gBUO3aUv7cKB8KTmiBlJtpgx5pgVRKivyYWi83JkYmJTkcQM+eOe97//16IPXOO74P90x3993AXXfpMazTCezcCfzzj0WFNIiIiIjyIEOBlDs7duzAkSNHkJycnHGdw+FAV21yO109VykjVb060KaN8cJ5WSklxQu0DFeuzM6P0mj3277dQBpMgiBtRKGRRE/JkpLNKVTIWDcz0SZY1amTe8B8111ASAiwZ490uHZtHxrOzOGQIAqQl+3LL4GzZ30PpomIiIjyKtOB1IEDB3Dfffdh69atcDgcUOkT2B3pZ7nTuF7N1WfHHKnjx3MNMl59VX58pRVt0NYUzpXZ0ueaqlWlwt3ly9JolSpe3S04WIKGzZuNBw4+BVGAHki1apX7vhERQKdOwM8/S1bKx0Bq925ZD6tv3+xFIfPnN19oxJTYWBm+aGTtMCIiIiIfmK7aN2jQINx00004ffo0wsPDsX37dvzzzz9o0qQJ/v77bwu7SKZZmZHSKv8lJ0vNbj/QAim/ZaQCA4FatTI/lpfy55e5QBaNlvPe6tWy9SaQAvTqff/7n89Njx8PDBokc6E8uXQJ+OYbn5bn8iwtTRbiuuceoHhxSQd6uWA0ERERka9MB1Jr1qzBW2+9hWLFiiEgIAABAQG49dZbMWbMGLzwwgtW9pHMsjKQCg4GSpWSyzkM70tLk1jLCoYCqZQUKTYB6MGQGVoQZqIEuhk7dkgZ9NatTdz5yhW9UoW3gVSnTrLdtAm4eNFEo+LsWRm+BwDPPON5vxdeAB5/HHCzUoJvLlwAmjWTAho//SRZ0h07ZMLW5csWN0ZERESUnelAKi0tDQXTx/MUK1YMJ9IP2itWrIjdWv1runouXJAfwJpiE4BX86Q2bJDRVc2a+d6cFkidPevFMf+RIxLFhYX5FjiaKDjxxBPAwIFSWdyoiAhg2TJJLF25YvDO//0nAWTp0t4tXgXIa1O+vAQeWs12E2bMkOISjRsDt93meb+HH5btvHnWBdgAgI8/liAyIgIYPFiGKxYuDKxdK41yUXAiIiKymelAqk6dOti8eTMAoHnz5vjggw+watUqvPXWW6hsVd1rMk+bH1WgQPYJLGZ5sZbU4cNSJCIkxPfmIiPl2BjwIiulZaMqV/ZtfJ02v8rLjFRSEvD118Cnn5pb57ZsWRmVlpZmYvib6/woI885fd03rFljsEHdL7/Itn//nJtu107ivNhYYPFi081ldv48MHasXJ48GZgwQQpp/PijBNI//QQMHWpRY0RERETumQ6kXn/9dTjTaxu/9dZbOHjwIG677Tb8+uuv+Pjjjy3rIJlkZaEJjRcZKa30eYUK1jTZrh1wxx1eBCkHDsjWywIRHmmrCO/f71Xt7q1bJSlUtKi5CnUOhw/rSWmBlNGFmrRFe9euNdiguHhRv2vHjjnvGxgIPPqoXP76a1PNZffhh0B8vAS9WsoLAG69VSZkAcBnnwGnT1vUIBEREVF2pgOpzp074/777wcAVK1aFbt27cLZs2dx+vRptGvXzrIOkklWzo/SeLGWlNWB1PffA7/+6kX9CNeMlC/Kl5f5YElJOWbeNK4L8ZpNhJkKpJxO44UmNK4ZKRNptBUrJHisVMm7l/vxx2X7448S//jk9Glg4kS5PHp09uqR998PNG0qHZw928fG3NNe+pdeArp312N4IiIiurGYDqRcKaWglEKRIkUyyp/TVWZHIOVFRkqbJ2RVIOU1qzJSQUF6dLBvX667b98u23r1zDeprT1lKJDatUuGuOXLBzRsaKzBhg0lWDxzxkBted3u3RK/dOjgXfBYv77U/0hK0ocEmvb++1IKsEkT4N573e/z1FOynTbNlhWBz5yR5Ne4cVJFvl07c/PjiIiI6NrmUyA1Y8YM1KlTB2FhYQgLC0OdOnXw+eefW9U38oUWSFlVaALwao6UlpGyeiHWpKRcdrAqIwXIelIAsHdvrrtqdVVq1DDfnJaR2rrVQEEGLRvVrJkERUaEhemNmhjeN3iwzHkaNcq7/R0OoEsXuawtXGxKXJwM2QOAt9/2HMX16CHzAvftA2xYiqFkSRlu+uijwM03SxDVrp1XCUwiIiK6jpgOpEaMGIFBgwaha9eumD9/PubPn4+uXbtiyJAhGDFihJV9JDPsHNp3/LhUR3DD6qF9//wDFCmiT+txSynrMlIAUK2abL3ISO3aJVttapUZlSpJk23bSoDiFSML8brjY8GJyEhjH60XX5Rpe2+/bao58dtvUiqwZk29jLs7BQro4wmnTvWhwcxck1u//CLTsf76S2L3AweA9u0NvH9ERER0zTMdSE2ePBnTp0/HmDFjcM899+Cee+7BmDFjMG3aNHymnTWmq8eOYhOlS8uYrtRU4NSpbDenpcmyPq1bWxdIFSkiI9hyrNp39qyUenc4vC8DnhMvM1LJyTIVB/AtkHI4gD17gN9/15fqypWvgZTJghNmKhMC8jH0+rl58tNPsr333tzHFGrD+374wZKiE+vWAbVrA3/8kfn6smUlmKpQQd7DTz7xuSkiIiK6RpgOpFJSUtCkSZNs1zdu3BipXMPl6rMjIxUUpD+em3lSgYGySOvy5ZKxsIIWF50/n0OhAi0bVbasDFvzlZcZqZAQeZnPnweKFfO9Wa/Fx+tBnpZZMkq736ZNhhaweu45icEsK2XurZQUqToCAF275r5//foy7DElBfjiC5+aTkuT571rl14U0FXFipL4mjABGDLEp6Y827MHGD8euO8++R185BHJzhEREdFVYzqQ6tmzJyZPnpzt+mnTpuGxxx7zqVPkI6XsCaQArwpOWKlAAT1I8ZiVsnJ+FKBnpLwsgV6okG9LV7nKdS4YoK9xVbaspOzMqFBBUkSpqXrpQS8sXixJLDM1HP78E+jcWardGbZypQSQxYsDzZt7dx8tK/XVVyYa1M2aJWsXR0QAH3zgfp8uXWTuWESET025t2aNlK188UVg0SLJNs+dC9x9txcrVRMREZFdDAVSUVFRGT8OhwOff/456tSpg/79+6N///6oW7cupk+fjoCsJYkNmjRpEipVqoSwsDA0b94c69at87jvwoUL0aRJExQqVAj58+dHgwYN8JWPB07XvAsXpLIZYG2xCUCfJ+VmZv2lSwaKJRigZaU8BlJWzo8CJMgIDpYz/n6qILBxo8RFXlX/01buzbUmfA4cDsPD+w4ckCJ/QUEyfNOoCxdkaJyWWDLkxx9le/fdkvr0hjYEcNs2n97HKVNk+/rrUmgiN0qZHwKZzYULMt8rOVnKur//vpR1L1AAWLpU5orFxVnUGBERERlhKOLZuHFjxs/WrVvRuHFjFC9eHPv378f+/ftRrFgxNGrUCNu1mtAmzJs3D1FRURg5ciSio6NRv359dO7cGac9zHMoUqQIhg8fjjVr1mDLli3o27cv+vbti99//910H6552vyoiAggf35rHzuHjNR778nIuldesbbJm26SrcdK3VZnpIKC9EZzGN4XFSUZlj//9L3JUqUkibhvnxdZKSsCKcBwwYmlS/W7FShgvDkt+Nqxw+C0JaX0+VHeDOvTFC0qwQeQfXKTl/bulYRdYCDQp0/u+y9YIOXsf/vNVHPZDRkiEWzFisCSJcDLLwO9esmHrlAhee969LCoMSIiIjIiyMjOy5Yts6sfGcaPH48BAwagb9++AIApU6bgl19+wcyZM/Hqq69m279t27aZ/j9o0CDMnj0bK1euROfOnW3vb55k17A+IMdA6vBhOeYtXNjaJnPNSGmBlFUZKUDmSe3ZI0fSHhaY/ucfOch+5hnfmytVSuaVxcdLsznGSFYFUs2aydbLBay0eKtNG3PNFS0qXd66VV677t29vOPOnfIeh4YCHTsaa7RLF6kU8fvvwBNPGO7zt9/KtkMHGVWYmzVrJLv44YdSeMUnixYBM2ZIVm327MwTD5s3l9LuTZtKkPjPP+bShDlISwOWLQO2bJGknsMBvPGGNfVciIiIrgc+jcGLi4vDhx9+mDG0b8KECYj3WBEgd8nJydiwYQM6dOigdzAgAB06dMAaL86aK6WwdOlS7N69G609HFQkJSUhISEh0891x85AShva5yaQsrr0uaZxYzke9rhWk9VD+wB9npSHjJRS1qwhpXE4pKo3IHGDR0pZF0jVry/bQ4dyqOSh06ZSaUkeM7QgzNDyTlo2ql0746kw7WTKkiUeS/Z7opQeSD3yiHf3GThQsld//aW/TaYkJAADBsjloUPdR6/16wP9+sllbxf18lJqKnDXXRK3vviizBObOxc4d87SZoiIiK5ppgOp9evXo0qVKpgwYQJiY2MRGxuL8ePHo0qVKoj28gx3VmfPnkVaWhpKZpmIULJkScTExHi8X3x8PAoUKICQkBDcdddd+OSTT9DRw5nrMWPGIDIyMuOnvJZhuZ74I5A6fjzbTXYtxtujhwyVevppNzdeuaL3xaqhfYBeuc9DCfQTJ2Sef2Cgdc16FUgdPy5zYgID9TuYVbiwnmHM5aj/yhVAG7HbuLH5JrUE8vLlBu6kzY+65x7jDTZrJpmc8+elYoQBSgHvvgs8/DDQrZt396lYUQIQAPj+e2NdzWTOHCnrX60aMHq05/2GDZP5fH/9BaxY4UODmb30kiTx8uUDHnhAYrk5c3x774mIiK43pgOpIUOG4J577sGhQ4ewcOFCLFy4EAcPHsTdd9+NwYMHW9jF3BUsWBCbNm3Cf//9h3feeQdRUVH428Mp72HDhiE+Pj7j56ifqs/5lRZIWV1oApCKCIDMw3Ip3ZaWpieprM5I5Ugb7xcRIWPHrJJLRkpbiLdyZSmDbgUtLtqxI4edtIDn5ptlqJuvtOoWmzfnuFtcnExPatxY/wiYoSWKt22TOCFXcXH6mMK77zbeYFCQjMsDJDIwICBAqo1/+62xcv733y/bRYsMNadTSl9I+Jlncn6fK1TQhyxalJX64gtg4kS5/PXXEhCOHSu1OzQxMbkE/FaxrGoHERGR9XzKSL3yyisICtKnWQUFBeHll1/GeoNnfjXFihVDYGAgTmVZ7PXUqVMolcNqngEBAahatSoaNGiAF198Ed27d8eYMWPc7hsaGoqIiIhMP9cdOxbj1ZQqJePQUlOBM2cyro6JkasCA+2J3wAZ7ZRtiTLXQhNW1SAH9IyUhxLoVg7r03iVkbJqWJ9GG963ZUuOu5UuLWvbrl/v28tcvLisIdy+faaPj2dr18rBdNWqejbUKG14n58Wv7r7bgnCtmzRR50asmGDrO8VGiqFJXKjZaWWLpUy8T7SPmIjR+pBoatff5W3o08fG+KcxER5PrffLr/T4eHSifPnLW6IiIjId6YDqYiICBzRxnK5OHr0KAoWLGjqMUNCQtC4cWMs1cqDAXA6nVi6dClaaKWaveB0OpHk1YI81yk7h/YFBwMlSshll+F92kehXDlJAlitVi3JCmQ73rdjfhQgZ/qDguTAzs0wRi2Qql7duibr1AFuu02OIT2yOpDyMiNlpZUrpeicVyMTV6+WbcuW5hvUAql///X6gDw6GhgxQs88GlG0qJ55+9//jN8f06bJtnt377KsFSsC6cV58N57JhrM7MMPZSjtiBHub2/USLbr1gHffedzc7rkZHnO770nk+gOHpTfvx9+AJo0yTXYJyIi8jfTgVSPHj3Qr18/zJs3D0ePHsXRo0cxd+5c9O/fH494OzPbjaioKEyfPh2zZ8/Gzp078cwzz+DSpUsZVfx69eqFYcOGZew/ZswYLFmyBAcOHMDOnTvx4Ycf4quvvsLjjz9uug/XPDuH9gH62C6tHUgNgJ49zU1j8YaWOMxWuc/q0ueaoCD9Md3MkwoMlLVwrcxIVaokxdc++iiHnezKSG3dmuMquydOXKVRVqtWybZVK/OPUaGCvFFOp17DPRdffy1Tk955x1yTjzwi86pq1TJ4x4QEmYwEAE8+6f39XnxRtosXe5nqy1mXLpJVc6dUKX2Jg1df9XIR6dykpckXyC+/yMSsyZNlztfff8svxoEDsu6ZVniEiIgoL1AmJSUlqRdeeEGFhISogIAAFRAQoEJDQ9XgwYNVYmKi2YdVSin1ySefqAoVKqiQkBDVrFkztXbt2ozb2rRpo3r37p3x/+HDh6uqVauqsLAwVbhwYdWiRQs1d+5cr9uKj49XAFR8fLxPfc5TChaUNUF377bn8e++Wx5/yhR7Ht+NBx+UJidM8GNf7rpLHnvqVI+7pKVZ36xHyclKhYRIn/bvt+YxU1KUCguTx9yzx+0uly4pFRioVNGiSp07Z02zSil19qxSTmcufcufX/q2datvjQ0aJI/Tv79Xu9etK7vPm+dbs4ZNmSINV6+ey4vjRpMmct9Jk0w3feCAd/tevKhUmTLS3LhxpprTOZ1KPfGEPFhwsFKLF2e+/exZpTp0kNsLFVIqJsbHBrPbvVupkSOVevpppbp3V6pvX6UOHrS8GSIiugYYiQ1MB1KaS5cuqS1btqgtW7aoS5cu+fpwfnfdBVKXL8sBB6BUXJw9bTz1lDz+iBH2PL4bL74oTQ4ZkuWGmjXlhj/+sL5R7eB76FDrHzsHly4pdfq0mxu2b5f+5M9vbQTXuLE87vffu7159Wq5uWRJ48f27qSlKVWjhjxmjgerGzbITpGRvj/fn3+Wx6paNdddT53Sf4Xcvg92atRIGv7wQ+P3/fBDuW+rVobvqn20goO9j1NmztRjm9hYw03qFi2SBwoMVGrhQvf7pKTor81jj/nQWHZ//aWfe3L9iYxU6rvvLG2KiIiuAUZiA1ND+1JSUtC+fXvs3bsX4eHhqFu3LurWrYvw8HArk2VkhlaoIzRUHw9nNW3ulcvcodhYICXFnuYAvaR6pml5Sulj/W66yfpGcymBboePPpJhki+/7OZGbVhfnTqex12ZoQ3v8zBPSls/qnFja+p5BAQA+fPL5Rzr0mjzo1q08P35tmwpnd+3T/8d8UBbd7xePe8W4c3Jvn0yxccru3fL5KzgYO+KTGTVo4c8x1WrZHVsAz78ULZ33w1kWX3Co169gNq1pbDi7NnGupohLQ0YPlwuv/yylEl0JygImDJFnt8333g9RNNbSUnALbdIgY2PP5aPXHy8LNNlwUhJIiK6Tpk6OgkODsYWTvzNm06flm2JEtZWsXPlZo5Ut24Su3l90GiQVlI9UyB17pwscATo6yFZyUMJ9AUL5KaXXrK+ybJlJT50WwLd6vlRGq3ghIffaddAyipNmsj2v/9y2MmK+VGawoXlqB/QAzQPtGP09u19a3LHDonFH3sMuHzZizv8/LNsb78dKFbMeINly+oLdc2d6/XdTpyQOWGAhwDeg8BA4LnngLAwOZFiyrffygJlhQrl/gvVtKk0CEhZ+MREk41mdvvt8p4vWwa8+aYsqrx8ucR3kyf7Hkx7dPq0PI9OneQz3rixdOBGLpRERHSNMX2a9/HHH8eMGTOs7AtZQTvb7u1pZTO0QMolI3X8uAQAdh10uA2ktP+UKmXNmkpZacUmDh7MVGlh1y6pcWHHmWrXEujZijvYFUgZyEhZpWlT2XqVkfKlYp8rLSDTAjQPrAqkataUOglXrkjNhFxpgZSZ9bI0jz4qW61ghRcmT5aCebfeKlkZI3r1kkDsrbeM3Q+ANKqVBnzlFQl2c/P221JEZ+9eWdzKpDNnMgd/t94qAaEmOFiaeuwx003kbPVqKX84ZQqwZIn8Pzpa1gJr3Njw4tFERHR1mA6kUlNTMXnyZDRp0gRPPfUUoqKiMv3QVeKakbJLlqF9StlbcR2QoX133CEjfzKKy2mBlF0rAFesKFm9y5f11xX2VVwHJIMRGAhcuJAp4Se2bZNtnTrWNqplpA4dkvFMLi5f1rNjWhbJCtpjrV/voVjgsWPy/gYGAs2aWdOoF4HUmTNyLiIwUErR+8LhADp2lMu5jkSLi5MqdQBw113mG33gAYkCtmyRTE8ulJKRcgDw/PPGm8uf37v4x63PP5eTFKVKSRrIG5GR+jjECROAS5dMNT14sCxdoMWuufnvP/nu0RLgPvn4Y6BNG/n+rFkTmDULWLhQXo8SJeR9u+UWYNIkCxrLLilJns/KlZKF8+JjQkREHpgOpLZt24ZGjRqhYMGC2LNnDzZu3Jjxs2nTJgu7SIb4MyN17hyQlITz5/VRNnYFUkWKyEKgkye7TJexO5AKCdGHDLqsrKpdtLriutakNqIw08K8V67IQSegD1GzSpEi+mK3WtYr3ebNMo2lZElr39vatSUDkJCQbeSk0LJR9evLpDEr3HqrbDds8HhEXLy4LDW1YYM1Uwy1rFaugdTixfJC16rl2wercGHgzjvlshdZqfXr5WMVHu5bIgyQ2C0hwcudExOlvjwAvP66PmnOGw89JK/R+fPAl18a7ueyZfLSnDsnMVxukpMlPl20CHjtNcPNZfbtt8CgQbKy+MMPy2JcffpIlNavn0Q1Dz8sn4UXXtAn7Flo/375VbjtNqBdOzkv8/DDbpfLIyKiXJgOpJYtW+bx56+//rKyj2SEPwKpIkX0oXQnTmRkTooUyTw8xnZ2B1KAnnbS1quCvYEUoC/yqy36C0CiDaXkjLwd2UYPC/MWKwYMHQo88YS1U+6CgoCGDeWy21FMWtbIqmF9gIyzK11aqqLkMDkrOFgf7egrbXHlzZtzGQpqxbA+zcMPy3bRolx33b9fPlJduxqLZbLq2VNeM69HFC5cCMTESAA/YICxxgIDJaUESFYqh/XPskpO1qdZPf20d1nWkBBg6lS5PHGijMAz5ehR4Nln5fIrr8iLlfUkQbFicn3v3vK8Hn7YTWrauNRU/XKtWsAbb0j2u2ZNOTE1b54stfbRRzauF+d0SkdSUyVQJCK6DlhS+ktJGXUrHop85Y+hfQ6Hnp44cSLjTKaWqLLThQsuo8/8EUhp0VJ69JScLMdDrjdZzW0gpf2nenV7iohokUOWghPVqslUlHfftb7J7t2Bp57y8DpqGSkrCk1oHA6v50lZpUQJfUqbx+RCairw229y2YpAqksXCTZ27NCzmB48/LCce8lxEWgvNGok2+nTvbyDNr+2Xz+JVIzq21ciwL17JVXtpU8/lUxv8eLGFlu+4w59+tmoUQb7CkgQ0bevDOFs1kwmYHn6PXY4gM8+k5Mbp09LBs6HkqhJSRLQu547eP11YM8e+Yhs2CAjCS9elPj0s89MN+XelSvyBVK0qJyl0H7uvFMfrkxEdI3yKZCaMWMG6tSpg7CwMISFhaFOnTr4/PPPreobmeGPjBSQqeCE3fOjNC+8IMOtJk5Mv0Ir8ezHQOrwYTljmz+/fbFqmzZyzJVpjo5rIGWHXCr32SEqSubaZytwkJgIaMODW7SwttEcAqkdO4CbbwZefNHaJnMd3rd2rVQ+KFLEmudbqJA+jPGXX3LdPTTU96+LXr0kHoqO9lizRHfgAPDXXxIw9O1rrsECBYAnn5TL48d7dZfkZGDcOLn87rvG53aNGCHZmx9/NJGV+uQT+QDkywd89ZWkZHMSHg58/7184a1aJdX8TBo4UOZDDRniPtvUoIE08d578vF76CHTTWU3d658Zw0fLkGkRik5eVC/vryPZ89a2GjmZs6flyGnV67YmG0johuW6UBqxIgRGDRoELp27Yr58+dj/vz56Nq1K4YMGYIRWiUm8j9/BVIuBScqVgQefxzo0MHeJrXAJaNyn3ZBW2TKDlkCqcuXpeKcVWsquXPXXcDMmcCDD7pcuWePbO0KpLQCFtu3ZxxtKAX884/MJfGrrVslS1O8uPVBshZgrFqVbUjYX39JgsPqWLJfP+Cnn3IoMqcN67vjjtwPsL2lZbZyqKZw4oR1B5ZFi+o1MubPz2XnWbNk27Gjb7+7AwdK5m3ZMj3wzsF33wEnT8roTjPLdFWvDjzyiFw2VKXw8GEZygdIoYybb/buftWq6Zm7ceNyzS66M3WqZAkdDslCefrOCgiQLi5fbmHl1bFj5QU7elTmmn7zjXyZxMbK90z37vI7OH26nDVyKejjq5QUmT5Xq5acn4iMlNjUpniNiG5kZlf9LVasmJozZ0626+fMmaOKFi1q9mH9zsjqxdeEYsWUApTassXedoYMkXaGDrW3HRezZ0uTHToopRIT5T+AUmfO2Nfov/9KG2XL2teGN5o3l3589509j5+UpFRQkLRx+LBSSqmjR+W/QUFysx2uXFFq3TqlTp92uXLKFGm4UyfrG0xOVio8XB5/27ZMNz38sFw9erT1zeaodm1p+NtvrXvMHTvkMUNClLpwIdvNqalKlS6tVNWqSu3aZU2Tc+ZIk9WqKeV0etgpNVV+lwCl5s3zvVHtTevbN9ddhw1TyuFQ6u23zTe3c6c8BqDUxo1e3mnAALlDmzY5vDAeOJ3yhQco1aOHobuuXq1UcLDcdcwYY80qpdSXXyp18qTx+ymllJo5U/9+fuUVpS5fdr/fypVKlS8v+9Wrp9S5cyYb1C1apFSlSnrzrj+xsfp+GzcqlZbmc3PZXb6s1P/+p9TcudKZJUuUSkiwoSEisouR2MB0IBUZGan27NmT7frdu3eryMhIsw/rd9dVIJWSov+VP3XK3rbGjpV2HnnE3nZcLFsmTd58s1Jq3z75T758xg9OjDhzRv8rfOWKfe1kkZio1PbtSp0/r+T5FSokfdi82b5GtQP6X35RSin122/y31q17GuybVtp44svXK588km58tVX7Wn09tvl8adOzXR1xYpy9Z9/2tOsW1q0GhCQ+SjPV06nUpUry2MvWpTt5r//lpsiI+WzZoWEBKVCQ+VxN23ysNMvv8gORYta0/CKFfJ4+fO7DRiz2r/f95d52DAJMlJSvNj5wAH9BMXKleYa3LRJ/15fvdqruyQnK1Wjhtyle3fjX5GffCL3ffhhE/1dtEg+z4BSL72U+/579ihVqpTs37ixUnFxJhoV//uf/lKVKKHUe+/Jd+iVK/L51F6HixeVKl5cqT59vHwfvbFnj1JRUUoVKZI9gitUSKnXXvMhMiUifzISG5ge2tezZ09Mnjw52/XTpk3DY7atYkg5OntWvrYDAmSsjZ20OVInTiAmRuYf2E0bBXTkCKAOuxSasGuMHSCvo1YH++BBv42xb9tWSoT/+Sek3FtcnDzPatXsa1Qb3pc+AdyuZatcNWgg20xzTrT/aBUMrOZmntTJkzICy+HQFwu20t69Ujo725AwrQJF48Y+LMjkhsOhj7VzM7xvwQLZ3nefdWtZFywooxNdHz8bbaja449b03CrVrJewKVLOTSqq1zZ95f53XelSqFXozDffluGqXbqZL5wSv36UjYTkImFXnwJffaZLBxevLgsT2X0K7JlS/kzMneuoVoe8qXRo4cM2XviCeD993O/T7VqMn+sWDGpfPH446bHnLZpI18bAwbISMhXXpEpg2Fh8vnUXoctW2SE4RdfyBBqbfkOU5SS6pE1ash8vdhY+bvUtq1MAC1fXr6/331X/oi9956lk7WuXMk8ZDE+Xpru00eWpuO8MCJ7WVJson///ujfvz/q1q2L6dOnIyAggIvzXg3a/KhixWTugJ1cik00aiTHRBs32t+kwyF/9M5uT3+udhaaAKRBl3lSt9wicyVyqJ5tCS1e2rMH+vyoChVksrpdrkIgpcVKGYFUSoo+ScmuQEorqb5mTcZVa9fKtk4da9aPyurYMWDMGFkHLdOBjbZURLt21jeqzZP65ZdMjSql16C4915rm3zpJeB///Ow3tK5c1KpAZCJY1ZwOOSIEdDnXmVx4kSmZeD8Z/9+YPZsuWyq1J+L0aOlws3atTLZKwdKAb//LpfffVfmBxnVqJEUpwCkYrtX6x6npkrxkKQkqRw5dar3EVytWrKWWkiIBP5avXmDIiPl3MTUqTInypMWLaQCf2iorBJw113SbcOSkuSzHBUlwWPnztL/AwekI2vWyELnP/wgjSYnA8OGSSTuU/QmDzV8uEyHHjlSvz4hQea6zZ4NtG4tJ6tmz7YhoHI6Ze2KsWMlYP7sM5kHxwXJ6EZjNu3Vtm1br35uv/12s034xXU1tO/332UYQd269re1d69SgErJV1AFBDgVoNSJE/Y3W6aMPMX1T0+TC/362d/o/fcrBSjnRx+rggWlWavmlXjy9tvSTq9eSqnPP5f/dOxob6M//CDtNGyolJJRNoBSCxfa1+S2bfrIrLQ0JcOYtDFndg3ZjI3NNr/upZfkv08+aU+TV64oFRYmbezYkX6l06lUhQpy5eLF1jeamCgvLKDUhg0ZV+/aleP0Kfton+P69a193CNH9PFc+/dnu3nwYBlp9u671jWZnKzU+PHyVM6f97BTnz7Spy5drGl01Ch5vJo1c53ck5Ymv86pqeabu3hRH+764ote3GHMGH0Ym9k/BhMm6EO2d+706i7LlsmULDOWLVOqQAGTv/txcUq1bKkPzZ0wIffvrMmTlQoMlPs0b65UTIypfu/cqVSjRvrXWOPGetMXLsj0rH795GXU9unWzaLRw0ePKvXUU/pwzKw/AQHymZ87V35RLJaWJvPbfv5ZqeXLLX94IqWUn+ZIXS+uq0Dqq6/ki6x9e/vbunRJKUAdQxkFyN8GX/5oe2vIEPkO3/XAa/JcR42yv9GhQ5UC1OknhytAjtnsni713Xf639qMo/znn7e30fTgWIWGqtSk1Iw/wm6mQlomJUX/Y79rl9Inqbdta1+jSukTSH7+WSklcymqV1dq1iz7mtSmZk2enH7F/v16NY+LF+1ptFu3bL8nH37on7g8my5dpGFfqj140rGjPPbIkZmuTkrS6++kv9WWcDqVqlNHHnfCBDc7HDqkHzD/+681jcbFyQkGQKnvv7fmMXOhTWkLCHA5AeDOjh0SmWeb8GhQWpr+XjZsmGuVm5gY/Xh+xgxzTf76qx6HZ5k26Vlyst7PyEhjJ0KWLlWqcGH9pILBOWHffKN/ZxYpotT8+Z7j6thYpd55R39rKlaU8w6mpKTI2QMt8gTkcrduSvXuLSccmzXLHFQ1bGjJvN60NInL7r1Xf+m0eNvVpk3WTjXNJD5e5ij++6983k+csHd+Nl1VDKQMuNYCqfj4HOYsjxsn3y6PPuqfzhQqpNahiQKuQlE77Y+YnUe+ms8+UwpQa28bqgClypWzv8nNm/WTu86u98h/PvnE3kZTUzP+Qu/944ACJItid4B8yy3y9L79VkmwCMikbTtp2YLhwzNdbeffxTffzDKBX8vQ3HqrfY1Ony5ttGiRcVX79jkEABY4d05e1jvucHk9z53Tiy7s3m19o998ox8puhxVLlwoV5cubWFRgXRaccmqVd0cyL78sj0ntV5/XT9AdfNhnTfP+gJx996rZzTcSk3Vf4kzvekmHT8uxUgAeb45NKt9lmvXlnN7Zr3zjjxOjRpeJFGcTqX695c7hIcrtX698QZ371aqZEn9pJGXhVe+/FIP+tq3l5fKG+vXK1WlipzLMFWp8MAB+cxpEUyrVjICxl2/9+6VLwAt4gkKki8/k9mpP//M3LQWvzVqJAlBV/XrK1WwoJwssiQZtm6dUk88IR8M7YV3/alSRdK1K1bY8sfj3Lnsyd1MFW7JNgykDLjWAqm+feX397PP3Nyo/fEeMsQ/naldW/2AexUgJ6L8qnp1ea5//WV/W4sXKwWoOeVeUoBSrVvb3+Tly/r39umqLeTCH3/Y33D6eL4zs35SU6aYK5ts1DPPyNN76SUlf6ABpb7+2t5Gp06Vdtq1s7cdF1rVyVKl0v/mPvqoXPHGG/Y1euSInlJIP1X7++9KPfecFL60g2v1voyT0VqmsV49exq9dEmpiIhs3wn3pJ+DePll65u8eFFPEP36a5a+aAeRP/5obaNnzujl+3/7LdNN69fL1SVKWDtkc8cO+bqdO9fDDl9+KQ0XLOhDuiOL+fPlMYODPY6j1oKf8HCpcOoLp1OGfp4968XO77+v/0758v5GR6uMseIPPphrhHP2rP4Rf+YZ4wFRfLyXzy+r9ev1oK9IETkB5E3jJ0/qGXFAyvibqMj4xhv6x+v115Vau9b9SZG4OL3wLCDVZv/+23BzYskS+duQNXAqW1aGYxcurFem1H6aNJH7+cDpVGrVKhnSr60S8eyz+u3aqi8NG0oRSDMxfI5iYyXr9sUXEvyOGaPUpEmytsW+fTdUBo6BlAHXWiCl/c5+842bG3v3lhv9cfSrlFKdOqlJeCbns5U2SIh3qqNhVeW52nU06Cp9yNvo4DcVIMkMf9DmJ6wIbCMXDh2yv1HtM+SPIZPp/vpLqulvWJeqz+nJcRyRBbZsyTi1ee50quXZCncuX9aH2Oze5ZQ0CSARlp1q1pR27FqDzI27787yMbrzTrnirbfsa1Qrm9+rl1JKhn1po+vs+jhpy+ndcYfLldPS529WrmxPOjcqym0mUztm7dnT+iY9HjdfuaLP83vvPesadDr1z0y7dtkO4Pbt04N1fwxKyPDnn/of4Y8/9v3xlizRF/vyItpfsULm/Pm6/pXTKR8jNysjZPbbb/p3cv363qfAXBuaM0d/jLp1ZY6VF3fTxMfLShjeLBeZliZxnjac1+GQrxyvX6+zZ2W9Nu09DgqS75Nffsm+pMyFCzLEtmdP/flpn1eDkX1amqyTWbdu9tite/fM3ct6e/v28rE0HePExsrIhbZt3WfdXH8qVJADoL/+siSoSkyU89TvvCNJ3rvuyjuxGgMpA66lQComRv9ycDt8Q5uDYHbmrVF9+qjX8LYC5Ay3P/z0kzzFpkhfKNeqRXBykpSkVECA6osZth8Lunr/faXeHnJGHUAlGXJny+qRWWjrgz34oP1tZbVzp36K2e7xhKmpGWeDH70zVuXP758Dsttuk1FLv39+WJ5raKj9E+60o31/FGZJN2OGNNmggZJqDNrBopcFBExZuVIf93PpUsZcsObN7Wty3z792GPfPiVHAdrR0Icf2tPo8eN6RJ4+214bCuxw2PsSZzN+vH6m3tOiu2bt369XaJkzJ+Nqp1P/U9ehg/UHXk6n/AnNtl70+fMyrhuQRZat8vXX+oGqn+a+aUnEkJAcBnX8+qs+HLdDB4lozNqwQZ/MVrZstsXQXc2bJzG0Lye3YmNlRJ72st51lxfd/+knvY+BgUoNHJixOH2uTp1SatAg/fcyNFSpiRO9+pvtdGZOfuXLJyOPli1z3+eYGHn/HnpIf3u08yo5vKzuH2jQIP2MhGvWrV07iWz69lXqgQdkaLj2Ha791K4tE34N/v1KS5OE8333ZY4/tZ+8MnTRL4HU4cOHldPNN5jT6VSHvf3w5QHXUiD188/yQatZ08MOWhmf9AVVbTd8uJqPB1Sv6mtc/87ZKjo6ffgK0mcZ+0vFiupNjFCNq19QCxb4r9mMyNGuIVFZpa/CO7/sILV2ba5zva2lzXPJOvDdLukTLCoXi1OAf0ZOnj2b/rd10iT97KXd0oemOsuWU2+OdKrly+2PU0+f1ke+HBybPkyrTh17G3U6lapUSdqaO1c1by4XM4p72OSOO1wSCtr4zfDwHMr5WeCppzKlwh56SP770EP2NZmcLB/bdu3SPz9xcfris59/bk+jo0fL45cqlTEsbN06PQiwY7rdt9/K40dGZhmp+NhjckO1atYXh9GyjAUKZEqfnj8vX1NWD+FKSZHjY0CGC27ZkmWHdev0IaQ9eljzh+DgQT07Xry4Ulu3Ztvlyy/1743p031vcuZMicVbtcrhKTidekVM7QDrv//MNXjwoFKdO2dOF3mRxRs1St76MWOMfW0cOiTTirXzDV6t133hgowL1N5fLVP43ns5j3q5eFH+SD79dOYIqEIFKXTm5Ylep1NOsGl3L1NGfrVGjpQRhVbP8TTLL4FUQECAOpU11amUOnv2rAoICDD7sH53LQVS2mT1nj3lLFKXLkqtWeOygzao1uyXgFHawaAfx/W5prYvN7nNb+1mlFz76iv/tamUXmLNXxmio0dVEoJVEJIV4P0JOV8dOKDUnDu/UptR1/7qhJrXX1enUDzjTL6J4fvmde8u7+vo0fa3dfmyUmFhagMaKkD+BvojkdumjTzFCbXS56P5Y7jo8OHS1t13q4QEOZCyM55RSk5wPfywzG1Q990n7T/zjL2N7t2bccS5Y9HujKxYtgNiC50/r0/9mjVL6a91zZrWV/LQJCYqdfPN0s7AgRlXL18uxT7skJKiMoLw9u3Tjw+1MqoBAVn+6FrYqPYLU6OGUgkJKi1NHyJbo4b1Jz+uXJEMuXYwm/Fdv2+fBDqAUp06WVvC/Nw5/YRvsWKZKvp98YWe3R0wwLrnGx2dQyyTnKwXHgIkQ+PrCAGnU46NtNKKJUpkS/sdPSq/wprLl42Pmsz6eNOmZb7u5Ek3O/72mz5nAFCqaVMJjoymdc+fl2pF2jGnNvzATSW01FRJurq+rAsXKjVsmJwgyCtD+bLySyDlcDjUaTc5uEOHDqnw8HCzD+t311IgpX2pfvyx/rufMX7W6dRTr1ZN+M3NokX6L6OfOJ1KhYfIQf6ezn464FZKhkX562AwXWqqUrsfel0txe3ZqsvZxulUWwvcImcqC6T67UtOe3mHY7T5OsZG/fyzWoR7MkYp+E1amnIWLaZSEZB+9O0HnTqp0ZDy/ffe658mJ06U97S1Y7lc8LUigDd27JC2goK8m1RhpSNH9NPp/niuDz6oFKB6V/nHb+eztMKw5Uqnqsth6VFVrhNtfLRkiR7EuKyHZqfdu/UT9hPfcsm85VBF0GcxMfqB6QMPqFFvyvqMYWH2Pe3YWCnKAMg2dvdpqUQHSEUDO9IDsbH6IoVFiyq1aZOaMUMPoswU0jDizTfTp4vGxcmQRe2zZXVkvnu3jCTRHv+dd5RKS1N//CExZO3a9q16sWePnDAbODC9muW5c0o9/rge9FSsKNGMr3/gL12SNJpWBQWQP+bpVU2WL9ezT++/7/PT8itbA6khQ4aoIUOGqICAAPXUU09l/H/IkCHqhRdeUM2bN1ct/TU0xwLXSiDldOqFc1avlqy49vu5f7/KvMio3XMuNP/9pw6jvEoqXdE/7aWrWeSkApT6s7vNY3ZcpI5+V6XBIcUY/ORw+jSaYCSplFn+y4R9e/MIGWFXzX+DlSd9KgcNd+JnWW3RH86eVa9gjAKU6t/TT78zSqm3notRZXFUzQp50n9jJ8ePV7dCDrjtOpOf1aFDShUreEX1xzSVVt3TeGTrORumn/GeNMlvbSqllBoxQtr11yL069YpJ6Aec3yjAgKcli1XlZMrV5QqX16e5li8KMNw/XG25eGH1R5UVYfq3+OfBQtVxqoXKiwgUe1ADTn4t2GB2UzWrFEqOFj9ii7K4XDq2T8bHTmix2+tC26Qv3OVKnlIaVjk/Hk5AQuo6eEvZBy6PPecvR+n9JHrClBqXKmxyqml6O2aDnHpUsZZ7zQ41Fs3f5XxvjZqpNSxY/Y0q61rDShVrexFtarYPfoB4+DB1q/Efvq0fjYUUKcKV1e9Wu7N6ENkpP1DrK1mayDVtm1b1bZtW+VwOFTLli0z/t+2bVvVqVMn9eSTT6o9dq7gabFrJZBKS5NJmEOH6nN6tZEAU6cqfaJ+ZKTf+nRp34mMX5S4c/7546aUUp1LblSAUjMf8cOklnS/vfq3CsUVdU+Rf/zWZlqaUvlwWbJv8zf5rd3hDX9RgFJPNvDDkVm6Nd8fU4BSpXDCrxOz2uRbqwClPh9k45ioLF7tuF4BSvUpbWARTx/Frd2pApGiAKUO7vRf0JjaPb0C1rBhfmvz1wELVUNsUNOr+Kl6qVJKJSerHcVuU4MwQe348Nfc97dK27ZKAerok36qgKOU+mKMfO8XxjkV+4s3kzJ8l3bshGoVuFrlwyX1w9P++b1xOpXqUuuwApRq7FivkjfbXEk03f63vlKFEKsApZ6+O/cKd1bYEp2iioecV3PwsGSJPJSct1RcnDrVqIsqgAQZudnjlO0xeWqqUs/3OJ1x3PJ8+OcqdZ3NWU6nU52d8KW6I+C3jHYH3Hfa9vPdv/+YqMoVkM9RAFLVS4WnqSvL7f2bnvbPSjW1zJuqMM7JkHmkqacePOf3wQFW8MvQvj59+uT54MMb10og5Y5WjGvwYCU5VEDGk/vJ3l2pClAqHBeV85gPA3wNGlD8BwUo9ebD/vnDppRSk14+KMNnwvx4kBQfr+pDgsaf59k0BsCNe+vulyGkdfyUulBKXfp6oQqAfJ6yLkBol5QUpcKDEmUk1tMWlDL20m+3SaXLmwrH+q3NhQvkLOjN2JVt/SHbXLkiM6gB5Zd0SbpH75OTDwPxUXq63g8WLlT3Qr6XBj3vv5NK6pdf5PUtWND+yWDpUu9/UNXBFgUo9corfmkyYxmy/LigjkTWyV6K2g579qjjYZVVEZxVDodT/f67/U1euqRU/fryu9oca1Ri0TL2D9V3OpXq109dQH4ZR+hVxQKLxMWpv2s9o17BGOWMLGT//O7Fi5UzfwH1IYZkBDX33GPfEDulpG6HtkJAmOOK+gK9pFLK1Kn2pd+io5WqVUudR6TqjVkZz7VWLRvWnnKhHZMCSjVwbFJr0UyGWb/wgslFzK4eI7FBAEyaNWsWIiIizN6dLFCzpmx37gRw6pT8p0QJv7V/4lQgAKAMTsBx8oTf2m2XvBhPYioaNw/2W5v7L5QEAFRO3AFcueKfRvfswc3YAwDYfSy/f9oEsO1caQBAnbPL/dZm+Pb/UBM7AQDR0f5pMzERePWOzbgfC1Bj70/+aVQptNo5A4FIxcHzhXHkiH+aXfy7AwDQGb8Dixf7p9GlS4GLF6HKlMU6ZxNcvGh/kxcvAot+zwcAeAzfAN98Y3+jADBlCp7GFADA7K8DcemS/U0uWQLsq3YHUKcOcOECMHmy/Y2uXYvAhfPxnuM1AMAnnwDnz9vb5LlzwEsvyeU3y0xD+fhtwMsv29toairQsyfKJB7Al/XHY/kyhU6d7G0SAFJSgHLlHChRQuH72m8i9NwJoHt3ICnJvkZHjQJmzECBgCvA3LlAixY4cQKYPdu+JjM+M5GRaLPmPbzX8ic44uOADh2A//6zp9EZM4C77oLj0kVE3b4J87+4hNBQ4Mcfgdtv1w+hrKQU8OqrwJEjQNWqwL//JKP3PXFAcjLw1FNA797A5cvWNZiSAowZAzRvDuzYgUKl8uGLX0vif/8DSpYEduwAfrLxT93TTwPFigETJwL/7SuM5veWlt+ljz+WF2DcOPjlD4G/+RKx/fnnn2rYsGGqX79+qm/fvpl+rhXXSkZqzhyZc+t65mTFCr36pPrkk4xJqv7sE6BUGyyzf8KxRlvaG/DrZPJu3eQs4ad41v7FYjVff61ex1syzO5J/zR58aLKGMN9GsWsH0vtSefOqidmK8B/63QppWQ+lnZG3x9zL9KH4DZ3/KsAqVTlD02ayNP8GXdK+WZ/SB8z377cTgUovyyR8NVX8jyrloyX+Q9Vqtg/h2f//vQ5EAGqSoVkfbi1jRITZT3ngACllr76h14Fzc5T606nUq1bKwUoZ5++6qWX5MS33bR1luvUUSp55b96VYL0NbRsoZVdz1YD3X5paemJ1AMH9DKJdv0B0BaPdpk8ee6cnkH5+mvrm/z4YzfVzxMSZCEkQAoXrF1rXYNpaXqFSUDKHqcPH1+5UkYyArK2kR2OHZOvwoyqsGlpUmpcK0xTp441z3flSnks7Xned1+mY6QzZ2SEtes0vyNHzBf2iI+Xv9UuxTSVUm6Wk1uyRC+6Achn+rXX7J2DZwG/DO178803VUBAgGrWrJm69957Vbdu3TL9XCuuhUDK6dS/T13TsmfPysiZpk2VSn5tpOzw7LN+65dWwekRfOO/id379kmj+fL5tW6m9j3wK7pIvWN/GDFCfYXHFCBTIfwhKUm+9yYVfMV/Q7KcTqWKF1fjMViGT/rz6yMlRV8Tw826JpabMkUpQL1a4WsF+K92SVqaUv8tu6AuBaVXV7J7HmtqakYJ5dceOZDxd91u2kKtI4clZSy4rP6xeV7jK+m/K126ZKxPW7u2vV9Pn38u7ZQpo1TSpRS90ppdiwArpQ8jDA31W3CxZo1+/LViRfqVWmRVu7Y9xR/Wr9dXOs0SSezebc9LfPKkh8/L4sV64Gh1NdOfftIP5rNUI9SGaAUHW7e+ntMpldu09/Ptt7PscOGCXo+9YEFZENhXsbGyGq/W6BtvZHuh9+yxthDCr796Wdxx2TK9ghggKwibGbK6d6/8IdEep2hRpWbPzvULKCVFZoLUqycFTbxd/mPXLlmhRBu17dUi4Kmp8qWlfU8B8tlr3VoOJDduzDsLSKXzSyBVqlQp9eWXX5q9e55xLQRSWuwQEpJ9Hn7G74r2x+XNN/3WL+3Ldig+8F957qVLlQJUQrVGats2/8RSTqd+rL0LNyv10Uf2N6qUUj16qH/RVAFy9tmv0her9Usp8mPHlALU/oCq6oe5iX47AfzLL+lrd2hrhGVdiMMOjzyiFKD+eFyyb+XL+3kdjXbt5LlOnGhvO//8k3H2ceM6ydKEhdmb4IyJ0Y8L9+xRehUpO0dIJCbqa+4sWqTOn9e/K7IsHWOZ1FRJKgJKjR2bfqUWWZUq5eaUsEWN1q0rbbz0UrabY2KsbzIlRS+d3KePyw3nzkn2DVDqgw+sbfTyZVm0CZDy8i6/nDEx+ntrxTG+5uRJ+X7v3dvDW/f223oAmxFN+ujPP/V1jvr0yfYllJYm6/Bqzfq6CH1Kipzj1Y6hX3vNw/fexYsZBVSUwyGrtJpNmWzcqNRNN6mMLx8v0/8HDsi8Kdd1nryxd6/+mgFyQjJXMTGZg6CCBeWFcllfy620NJnL1qOH/qUHKNW/v9dzkTZvloSrdtfQUKXuv1++U378MfNc5Q0bJHjSSuVrPzVqyALWXr9FqalSdr1ly8wPpP0UKSLVMQ8e9PIB7eOXQKpIkSJq3759Zu+eZ1wLgZS20nqOyzXde6/s5Mcak9qXxngMzvKXzkazZqlkBCkH0mT4mR8qdJ86lf69jjSViBBZtM8fGjRQ8SioRj68S337rZ8PuAcNkic9ZIj9bf34o7RVt679baU7fVr/7j4/ZJR+RtBOTqekEAB16de/VZMm8vL6Y3HcDFoauVMne9vRzrL07KmcTv1E5Lff2tektm5Vs2bpV2hjn/Pnty+C+/JLaaNcuYxFaZ95RtmaWZ07Vz/myHhaSUn6eKxPPrG+0dmz5bELFZJAJp3TKcWOgoPdrsXpk8RESSCUKuXme37WLOlPeLjU2beK9r1XurTbA1Lt5mLFrKljcuGCPuy2Zk0PJ+XT0vS/7wUK+F4M4vffJbAAJFvjIauXmCgBhRbTfGyyHs+FC0p17ao/zoQJudwhMVH/JQKU6tzZ2IudkCDBvrau5k03GVpS44479IRJjx45D191OuX2p57Sk5iA1FYwdD5j1SpZt8s1qGjQQAKjjz+Wha8+/1y+vx99VD+RoP3ceaephaLPnZM4vWbN7DHN+PH6ft98o1/vcMj7aWYd30wOHZLvqk6d9PGVGX+Uz/vwwNbwSyD18ssvq7f8OpnBHtdCIPXii/LZeuYZz/s4b2khO/l66siAqVOV6tVyr/obre0/MNOMkoPeMuFS1tPuIj9KySiW7t2VuqN2+sJOXbva32hamr4ipD9K0aabMUNGs5wenz7ZpGNH+xt9801py49rdGmxW82aWf9jo7179dSyHVkDN65ckexFnz7pB2naMgkhIfYFF06nrEMDyNlHpdSrr8p/7ZzC+c8/8vgZ85OcTqWqVpWG7ZqMlr4WjnrnnYyrtm+X44Lhw60/+eF06sOMs60NPmmSHtRZGZ1fuaIHaW5W1RwwQG5q0cKehVQvXXJzZVqaPqemVStrhvh9/71+IOch5XT5sqz/o52Nj/Wh8GZSkvzZBOTzsnt3DjtfuqRnkwsWND+n5rffJPWg/R3L5XOSkiJBgvayzJ1rrLmjR5WqXFlPCn3/vYE7f/mlnjULDpbJODkNfTt/XkYVlC6td7hbN8Nv0p49ejCl/VStKoMJvvtO3+/IEf3XwjWeMb0MYlqaZAq7d88clXn6iYhQ6rHHlNq0yWSDOqdTMlSjRknw2KCBylSl8uRJWePr++9tnJqekKDUli0y5DQP8Esg9cILL6hChQqp1q1bq+effz7TwrxD/HEW2yLXQiD1wAPye+PujNDPP8vxX48CP8lOVp8WzM0f6ROda9f2T3vpw3VuKXfU33GjfLP467kePSptBQXZvwikC21hxtXT0ld8LlPG/ka1054ffaTWr5cJrOnH37Z57TVpsm9flTk95cuRUW604Ve33mpfG1ksWaKfYHc6lfyjDXexq0DMf//J4+fLl1H8YMOGbFf5hzYsyo5JhmvX6kFplpSJXUuh/fSTnphwSQyJK1f0g8hPP7Wu0Q8/lMcsW9btCYBjx/Qhb1Ykw5xOL+PAffvkYBJQ6uWXfWt061b9SURF5bjr8eMSqwIyKtjMe52WptTjj+tJNa/ioosX9cUjIyONHXBqBQ4CA+X+997rdcedTjlPULasFBgwIi1NpsFUqCBJF8O2bZOMlPb9HBwsgfPw4XLGb8oUGd55773ye6jtV6WKzwfkmzZJ8kd7ybT32/W5lS4t32n33Wdx7ZOTJ6X6xeuvS8B7662SPXz0UXnu//zj1+OCG5FfAinXhXjd/VwrroVASpuu4q6CjnZsXyNgl1zI8bSWDbZvl3YLF/ZPex07KgWoh5rJBPZchwlYScso+KPQxZ9/Sls336xOnpQTpHYv7xEbq//BiD8ar/8n2xGbxbSjkhUr1HvvycWHHrK3yWzTorSxZ4ttXOyzZ09pw2U+4aVLMu3Pro+TNsIu08jb55+XK+2qBPbyy/L4Dz6YcZXTqZ+Ztqs6lltHjuiT9a1eU+qxx+Rxe/Wy9nFzMGuWjK7zGDd8+qme4rDipMDp03qlo88/97ib1mz+/DLHxBeTJknxsS3erJHtmkUye+AcG6v//rdrlzFEMyebN+uT7R96yFgCMDFRPjKAHKQbmm/lWpABkPk0uWW3T5/Wq7AAEsGZiP5cRzqmpEg88+qrcky/ebOcw507V86LuU5xOXbMeACWzdKlevY3p5+aNWWSj4Wr3Z47J38WRo/OPhV882YPGVO65vklkLpeXAuBVOPG8h3hrljckSPpiQskq2QE+W1saVKSfFkmxpzXv8T8MVypenWlADX0IVlx3h/Jz/j49CErSUn6xE67S3dqw3S6dlVjx8rFHj3sbVKbUlK+fPoVFSvKFXZWPcuYgOZQKiEhI8FZtap9Tbot1KedHh450p5GnU59HEh6GayUFDkoBuR8hB1uvtlN8PLbb/oQMDvGnmkZL9dxMEoSYMuWWV9lPilJRod6PIeUfvJFvfaadY2ePKnPwfAwvtjplJfa6lGF8fE5fM2npOgzwq2Yy6n9XtSvn2OAoWUetFjE7Mdq+3Z9+o7X9VAGDtRP5hmtRnnlij6+rmJFQ+OWfvtNBgx07WpsSOOmTfIcAwNl9JphiYmZVz69+WbJGh47lnm/7dtlPJZWvTJfPgmGLfid//vvnOMZW2peOZ1yMmTmTDkpdfvtkonq2VMm023Z4ueJxHQ980sgNWrUKI8/19LcqWshkFq1Sg6E3B27O51KFcgvhRd2BNX12xfJli3aiU+nPpfHaJkbo5zOjDHTH484rQD/LJvVurX84fvxR6UHF3YPoXzhBWnnxRczpvA0aGBvk5MnSzt33JF+hVY29rPP7Gt08WL9YEDJcUxGVsymX8lNm+TxMy0dpQWuds3100pvBgdnGtumZZvtqA+wZ48+OjTTa3n5sj73ILfqUEatX+/3MXw//KAPX3QbpGlZi6JFrTvZ89Zb8pi33OJxFy1ejYz089xp7WxEYKBva95pj+NweLUMwt69+scqfUkiQxIT9Sp9nTsbCE4SE/VsRcmSXqaylPxSaBXiwsJk/KlB//yT+XfrzBn3/U5NzfzZ/O47C8qK//67VOLQvjAdDsnIVKuWUdQm46d+fUuXd4iLkwIEjzwiL3nJkpLUa9hQsqX+HhhDZDW/BFINGjTI9FO7dm0VHh6uIiIiVMOGDc0+rN9dC4FUbprUuqgApRYU6e+3NrXj37p1lT6h284FEpXKNJdl0XwpqZxjJUOLaCPP1qxR+oRfu0v/a0Mxpk1Tu3fLxfBweyZza557TtrJqG6srY9j59pk774rbTz8cMZVWuLGro+TFjB26OBypTaJJzLSnhd56lR5/Ntuy3T1O+/I1fffb32TEybIY7dv7+bGu++WG12KJFjCzbA+u2kFzdxU5RapqXrxCytWynWdi5TDiqVpaTKd0opE508/yY/X58m0eYedO5s7uXbpkj4WM+uKmzkYP15iEqOj7FJTM1YGUMWKZS697JVTpyRY0DJTuQV+p0/rQz0KFpRUqQXatpU45sMPlfrf/5SaN08uV66cLUFrjdhYOQvjrpx0QIBM3vnzT2ZqiAy6akP74uPj1X333XdNrS91PQRSPdsdU4BSb5ey4bS2BzNmyHd1ly5KnwA7Z469jWpnu0uVUnv3yhQPu5d0unJFn2Jx+rSScqS2jV1woQ2PWr5cJSfrRXzsXGNJextnz06/4qv0yn2tW9vXaPfu0obLejDduslVds1/O3FCjn8zHeylpOin0+0YZ/fQQ24/N6tXy9VFilgfv3XoII/tWsY2w7Rp1qc5cxjWpzl+XI7L77zTmiZPndJ/N3J827SVcmvW9P2g8pNP9KGRucw1+e472TUiwvyUpUuX9JM5X33l5Z327tWHHs6bZ7xR7SSKwQoDqaneJ4Q0aWlS9EXLnv72m8G+amJjJUMIyNjdESOylzC/ckXePy0QLlYs8yr3PjhzRq994e7H9gKohw9LmmvFCqnJbWZxVyJSSl3lOVJbtmxRFStWtPphbZPXA6nERDmJOm+e5wOtd7tvUIBSj5X+02/9Gj1a/jj066ekkgwgaxzYaeFCaSdjoRj77Uqv4VGgQPrxl5ZBsXOCuWv0lr7SpTbXxatF/kxwOvWlHDJGuGzcqB/l23VGUzvr7fLEtFFTPXva06RH2iSPHCbVm5KWpq/7kWVBzeRk/eDLbEVjT4YPl7jB7TCbs2f1CMSqcTheDOs7eVKvgrVtm+9NfvCBl18J8fH6XBHTR+pKfje1YVNeDHlNS9PXsX39dXNNat+1FSoYnEOvlabMn9/Yi71ggf7988MPRrubyf79uX+83n9fT6D4XIjkwgV9vKz23Pv0Uerpp+WPlRaRAhL079zpY4PZm586VTJTt9wi2zvvlIq7fq1WSUQ+MRIbBMBi8fHxiI+Pt/phb1jnzgFPPQU8+ijgcLjfp17EIdTDZlQsetFv/Tp+XLZlymj/uFxplyNHZFuhgr3tuDhwQLaVK6e//pUrZ77BDvv2yZ/6iAigRAkAQPXqctOePfY1u3498NNPQK1a6VfUqAEEBACxsUBMjPUNxsbqr2PjxhlXN2ok2+3brW8yRy1ayHblSmsfd+tW4OxZIH9+oFmzTDcFBwOdO8vln3+2ttm33wZ27ABuvtnNjUWLAh06yOV586xpcP582d59tzxXN0qVkpsBYMYM35pLSQE++UQuP/VULjtHRAD9+8vlCRPMNzpjBnDiBFCuHPDEE7nuHhAAvPmmXP7wQ+O/vydPAu+9J5ffew8ICzNw51GjgNtvBy5dArp1A+Licr/PunXA44/L98+zz8r9TNq+HWjVSn61330XuHLF/X4DBsiv3uzZQPfuppsTBQoAv/8OfPcd0KCBPPcvvgCmTJH37tgxee8++wzYuVO+4yxUoADw5JPAsmXAmjWy/eUXYOBAj78SRHSNCzJ7x48//jjT/5VSOHnyJL766ivccccdPneMhPa3r1Ahz4HUXUXX4i48AHQcAuBev/TrxAnZli0L4EpZ+Y+/AqmKFQEAFy7IVSVLAsWK2dPk/v2y1eInvwRS2tFW9eoZb3r16hLk7N5tT5MOB1CpkvxkCAsDqlWTRrdtA0qXtrbR9etlW7UqULhwxtWtW0vsYfExDgBg1Sr56dRJjrMyadsWeP994K+/5EDS0y+cUX/9JdvWrYGQkGw33323xCA//wyMHm1Nk17p0QNYvFgCqTfe8O2xnE45eAWABx/Mcdf+/YH//Q/46isJDty8JF5ZsAA4elTONTz6qBd3eOEF4KOPgD/+kM9znTrGGkxKAsaMkcuvvQaEhnp1t/vuA9q3B5YuBXr3Blav9u6jlZYG9OolsUCzZsDDDxvrLoKC5L1t0kROzjz2mLzwQR7+7B88CHTtKhHPnXfKa+WDYsXk+2TtWmD4cIllbr9dbktLA2bNkhMJhQsDK1YAgYE+NacLDJTPYPfuElStXi3XBQdLENWjh9fvHRFRbkwHUhOynNULCAhA8eLF0bt3bwwbNsznjpFwDaQ8On1atunZC3/IlJG6kp6R0qIru2TJSD34oPydnDkT6NvXniZdM1KZLpw4IQcc+fJZ36gWLWlpKMjf/nr1gKZNrW8uR3Xq6IFUx47WPrYWSDVpkunqggWNH+N6a/58OT48elTPZmS47TY52DpyRN74KlWsaXTpUtm2b+/25jvvBMaOBe66y5rmnE5gyRKgTZtcMhjdukkqZ/t2+ald23yjy5bJgXhERK5PpEsXiclPngR+/NF8FiIuDoiMlMSJV5maSpWA++8Hvv8eePllSRUYCZZnzJAvPi+zURqHQ4KGO++ULKG3Tb75JvDnn0B4uHzHmYrrixcHfvhBUkO//gq0bCmdcX2vlZIgeMgQ+VvSoIEEYJ4CLi+VLCknLebOBV59VX7nvvxSv71FC+C55+SyZUGUK4dDPmxdutjw4EREwvQ35cGDB63sB3ngVSB15gwAQBUvgdQUORa024MPysFu9eoAzvg5I5UeSGkj/A4ftq/J+vXl2Kt58/QrihSRg8WEBDlwzBgHZyE3gVSTJtniDUtNmiTDSB98EKhZ0+WGOnXk1P+WLdY3+t9/svVjdKiN2mvVys2N+fMDt9wip8eXLrUmkEpJAZYvl8vt2rndpVgxYOhQ35vSbNggx46lSsmvZICnAdyFCsm4wp9+kgPpUaPMNzp9umwfe0yO/HMQFAT06SPJnRkzzAdSTz8to9CcTgN3evttycr89huwaJGki7xx7hzw1ltyedgwwxmN8uXlV8jbYOjAAT35NW2abzEuGjWSwKhXL/mda9QIGDxYAsvgYLntzz9l35tvltRogQI+NKgLCJBs4X33Ad9+Ky8jIJ8BLTtFRHRNs3/KVt6W14tNfPNNDiWMNU2aqKfxmQoLSTW1fofPDh6UToaG2ltmtWTJTNUQtEnYffva16RbDRtKw0Zr/HpLqzxlptqWSdpTyja3fNEiuaFePesb1SZ+u6lzvmWL1PN45hnrmrtwQS904LH64ciRsoNVqx+vWqWvYWRn7XoXWsG17t292Pnrr2Xn6tXN/+6eOaNUSIg8TnS0V3fZu1evZ+DlXayjFWEoX967CgBOp15dsmZNqQDko0WLstUdyeb3361dQ1gdO6aXvc/6Exqq1KhRBqtZEBFdn/xWbCIuLg4ffvgh+vfvj/79+2P8+PEsNGExLSMVGZnDTqdPIxgpSEwOxKFDfuhUVtrcmaQkKSBgh8RE4NQpuZwlI6UlqvzGznlSSgG7dsnlLJOEVq0CPv7Y+uebkqIXdqhfP8uNWhGI7ds9zxY3IyZGJn47HHp1CRdXrsgwoHnz5CWxwrp1MjejfHn5cUsbfvfXXwZTHR5ow/puvz2H1JD068svgUceAS5fNt+c0yln/gEv59Tcc4+Mi9u923zW8csvgeRk+aw0bOjVXapWldFxL7+cMeXRa0eOSALF9Odi+HBp9OhR4J13ct//m29kOGBQEPD11z7Pr9mzRzJpbdtK3QvteVy5Avz7r75fp07edc9rZcvKWMq5c+WDdv/9MieqXz/5/R4xwmA1CyIiMh1IrV+/HlWqVMGECRMQGxuL2NhYTJgwAVWqVEF0dLSVfbyhaXGpx6F9SgFnzqASDgGQ0WZ2u3BB2klMTL8iNFSv9mDXPKljx2SbL59UHIN+AGZXIJWUJMf72Q7Y7AykTp2S6DkgIFu5tVdeAQYNsr6o3J49chxcsKCbg9qyZWXuXVoasHmzdY1q86Nq1nQ7jKhBAzmmi421rsDGqlWydTusT9O8uQxNO3NG5oX5Kpf5UZqAAKn3MHeuXpvCjNWr5fchIkLm5OSqYEF9x1mzjDeolIw9A6T8mgGffy61PYoUMdbk4MEyXU+bX2NYeLheSGHcOP2z6M6RI3pDI0e6DfqNKlNG4pe0NCAqSr7OtEIvnTpJfGcbh0MmXM6ZI0N2f/xR3gir5gMSEd1gTAdSQ4YMwT333INDhw5h4cKFWLhwIQ4ePIi7774bgwcPtrCLN7bu3WWCvMdjlEuXgCtXMgIpf2Skli6VWKJNG5cr7S6B7jo/Kn2igWtGyqqshauNGyXZlq16nHbQsXev9Y3u2CHbypWznR2uW1e2W7da26QWH9Wt6yZp4nDoWakNG6xrNJf5USEheqXw1autaTLH+VGuDbduLZd9iWgA4Px5PXrLpVCHw6GXBfelDPqcObK9/34DdVC02uGffy59NmLlSol0w8Mly2GSNsYsNz/9JLUTgoKAZ54x3Zxk4rp2lXTs7bfrAa+r/fuBe++V+ZC33CIVEyxQoIAkuT75RD5u58/LPM/Tp2Wanq2BFBERWcqnjNQrr7yCIJfKPkFBQXj55ZexPqczfGRItWoSTN1yi4cd0iv2VQqVdX78EUhpsVLZsi5XlrW54ESW0udakw6HZI7S621YSit9nq3qt5YpsqMW+c6dss1U8UHYFUhpI7qyDevTaFUurAykPFTsc9WypWytCKSUAjZtkss5BlKAXhTC3cG1Eb/+CqSmSsEOL874uwZSZkYVpqToFcgNxTQdO8qbf+kSMHmysUa1IhMPPyxpMBPWrJFhbr/9lvN+ly4Bzz8vl6Oi9N8HUxwOGaZ3++3AxYvAHXdIPfb4ePmwzJkjwxQ3bZKU2Zdf+lzFLmvzzz8vCeht22RI3/Ll8pWife6JiCjvMx1IRURE4IibMVVHjx5FwYIFfeoUGZAeSN1UXBbjPXXK2qks7mij97QkVKb/2DW0z81ivCEhUrH33XftqVSoJZyqVctyg5aiOnhQojgr5RBIaSXB7cpI1avnYQerM1JKeVWxTwt4tKSOLxwO+QitWuXFAbg2DG/5cgmEzFq0SLZeLmp6++0yF/L4cXPJsDVrpCpaiRIeCwS653DoZQM//thlzG4udu/WU2BPPmmor64WLgT++UeCo5ymWI4aJe9hxYoyncdnERESvT30kEShvXrJGOqQEKk+eOGClMTftMnNl4A1ChWSinzNmkkilH86iYiuLaYDqR49eqBfv36YN28ejh49iqNHj2Lu3Lno378/HvFhiAdl9ttvMrTPY3ySnoopVCos44Sw3Vmpq5qRcgmkAODDD6Uasct6rpbZt0+2VatmuaFUKTnicTr1tJVVvMhIHTmiz52zgrb+r8eMlNUFJ44elc9tUFAOjco6M4DU3tDKJvsiNFTO9ueaWGjQQLIQFy7kPH8mJ4mJeorFy0AqLEyKEAD6tCMjWreWj8+sWSaSJz16SAWOU6ckU+ONV16RiT5du7qsD2Dcq6/Kr9Tu3ZIYunAh+z4//giMHy+XP/1UhsBZIjRUqnO8/LIexaSmyhjXESMkovVYmYSIiG50pgOpcePG4f7770evXr1QqVIlVKpUCX369EH37t3x/vvvW9nHG9qbb8oJU4/Hc+kZKUeJ4rjjDu+XRfGFFtT5NZDSFovKEkjZyWNGyuHQ13jSKuxZRZsj5WZ9qsKF9ZfZijoImt27pVmPBdesLjihfZjr1s2xSljRovIy1Klj/1rPmQQE6Ivc/PGHucdYulTGopUrZ6hAgTYX8ocf9CKVRtSo4WWRiayCg6WKAyAFGHIbW7h8uazHFBgoFSN8ULSoLCBcpIhUVrznnszxekKCVPhLS5N4TxsCaZmAAHkOCQlSMvHoUfleHTXK0uF8RER0/TEdSIWEhOCjjz7C+fPnsWnTJmzatCmjcl+oj+VhSZfrgrzpgRRKlMDcuTJMxk0yw1JarJRpaJ921taumdIeAqnEREmUWFlQTqMFUtkyUoA+vM/KeVJxcVIm0PXxs7BjnlRQkHxmPMY0Doe186S0YX1erDAcHS3P1Zf5MImJkvgaONBAafG77pLt/PnmGv3f/2R7773er8IK6Wfz5jIn0si8P19KpmcYMEDGFu7eLdUQPHE69aGATz5pyRdOnToSs0ZEAH//LbH78OFyW0SEjCAcOFCmKtkqXz4JftMrgxIREeXEdCA1ZswYzJw5E+Hh4ahbty7q1q2L8PBwzJw50+eM1KRJk1CpUiWEhYWhefPmWLduncd9p0+fjttuuw2FCxdG4cKF0aFDhxz3v9bkuo6USyDlL24zUlqAowU8VnI69ce96aZMNy1YIAdhVheKjI3VC5i5DaS0jJSVgZQ2rK9sWY8T9998U+b5PPaYdc16RRveZ0UhGS/mR2msOCezYoUU1Fi40EAlu/vuk7ky27YZT/+lpemBlJfD+lwtXSp91ubE5SY1VUYjPvywHoebUrCgTFQCgKef9nx24ttv5XNQsKB8IC3SuDHwyy+SeT1/Xl5GTadOMn0rJMSy5oiIiHxmOpCaOnUqarg5a167dm1MmTLFdIfmzZuHqKgojBw5EtHR0ahfvz46d+6M01rAkMXff/+NRx55BMuWLcOaNWtQvnx5dOrUCcftGmLmZ7lmpLTT1umBlFLu5xhYxekEnn0W6NNHTtxm0AKpuDgZImOlkydloaPAwCyN6ks6WT1VKS1NTrr36SOVnbPRPvtWDu3LYX6Upnlzmedj1aT0UaOAnj29qIxnVcGJlBR91VED82ouXpS7mvH777Lt3NlAcqhQIZmwA+gr3Hrr33/lBEdkZJY1ArxjdP7P119L9nTpUgs+F6+9JlX8Ll+WbFrWtNhPP+mFJV591fITOLfeKkvGbdoksRwREVGepkwKDQ1VBw4cyHb9/v37VWhoqNmHVc2aNVPPPfdcxv/T0tJUmTJl1JgxY7y6f2pqqipYsKCaPXu2V/vHx8crACo+Pt5Uf+105Yq2uopScXEedurYUXaYPVstWaJUvnxKNW3q127qCheWvmzbZu3jrlwpj1upUrabTp2SmxwOpRITrW02R1u2SMOFCinldFrzmEOHymMOHGjN43mhUSNp8ocfctnx6FHZMTBQqcuXzTe4dq08TpEiSqWleXWXPn2UCglR6vffzTVZu7Y0OXeuwTvOnSt3rFzZ2Hv80ktyv8ceM9hgZmfOKPXjjznvk5KiVJUq0twHH/jUnC42VqmqVeVBb7tNfv/i4pT65BOlAgLk+s6d5QuKiIjoOmMkNjCdkSpfvjxWualLvGrVKpTJNHnGe8nJydiwYQM6dOiQcV1AQAA6dOiANWvWePUYly9fRkpKCooUKeL29qSkJCQkJGT6yau0bJTDkcOZZpehfcWLyyTtgwf90Ts3XFfItZJWhrBSpWw3FS8uC1wq5Z81tDJUrSpvTFycdYtY5VBowtWsWcALL/g4jAsyJGz7drnssfS5pmxZoGRJ3wtOLF8u29tuc7P6r3vBwZKQ/PFH480dOybP0eEAXL5WvNO1q6SHDhyQKgjeSEkB5s6Vy/fea7BB3dGj8pLfe68M8/Pkm28kG1usmGSKLVG4sAxNLFhQGr/1VsnQDRwoKen+/SUzlUOhECIiohuB6UBqwIABGDx4MGbNmoXDhw/j8OHDmDlzJoYMGYIBWukpg86ePYu0tDSULFky0/UlS5ZEjJdHja+88grKlCmTKRhzNWbMGERGRmb8lM/DpW1d50d5POZ0CaS0tWrPnpWhUHY4fVqOK90un2TXPCktMnQTSDkc+vC+Awesa3LvXqmappSHHfLl0/tj1fA+L4b2AcDYscAnnwAbN/rW3O7d8j4WKOD2pc3M4bBmnpQWSLVt6/Vd7rlHtj/9lMP74YFWdK9ZMxP1A8LD9WDI2+F9CxZIFFSihARiJpUvDzz6qDzfnj3dj5ZNTQXeflsuv/SShSXBAQnmf/tNSgBqw2kDAoAxY6Q2ux0LtxEREV1jTAdSL730Evr164dnn30WlStXRuXKlTFw4EC88MILGDZsmJV99Np7772HuXPn4ocffkCYh7Olw4YNQ3x8fMbPUbuqzFmgdGkpGvbZZx52UErPhhQvjkKF9LlUdtR8AICZM4EqVfQyzZlokZxdGakshSY0VarI1sp5Uj17yto2P/yQw05WFpy4ckV/nrkEUlZV7ouOlm29el4mh7Qqe15mh7NJTdXTKwbmDrVvL3HrkSNSNMII1/lRpmhr4s2bl7n6gTtKycJmAPD88z5nbD76SD7yhw9LBtJVcrKsObVvn8XZKFetWkn1h6NHpfrDmTMyL8pAFUIiIqLrmelAyuFw4P3338eZM2ewdu1abN68GbGxsRjhw5LzxYoVQ2BgIE5lWUDl1KlTKFWqVI73HTduHN577z388ccfqJfDOKXQ0FBERERk+smrIiOB7t31Y7ls4uLk4BSQMW7QMwt2De87dky2bhN5dg3tyyEjBdiXkQI8VOzTWFlwYvduORAvUiTjvfREC6R8XUtq7VrZ3nKLl3fQ1lZautR4agiQCgIXLsgHO9exhLp8+aT+ASBZKSMqVZL43nQg1amTDHWLiQGWLct535UrJVsXFmZJpYSICOCrryTInT0bmDpVlqYCpKT7vn2SGPr8c8kq2qpQIflsEhERUQbTgZSmQIECaNq0KerUqePz+lEhISFo3Lgxli5dmnGd0+nE0qVL0aJFC4/3++CDDzB69GgsXrwYTbxYm+a6oQ3ri4jIOPutJW3smi+kJfByDKSsToflMEcKkCV/3n7busWIY2PlB9CzXW5ZmZHShvXVqpXrGX+rMlKGA6kWLSSqOXVKn1xlhOv8qMBAQ3fVRskZnSf1/vsSh+fw9ZGzkBBZERuQEoc5BZDjx8u2d+9cg2FvtWolSSBAYrPq1aULERHA4sXy48NULCIiIvKBz4GU1aKiojB9+nTMnj0bO3fuxDPPPINLly6hb9++AIBevXplGjr4/vvv44033sDMmTNRqVIlxMTEICYmBhftmiTkRzt3ytC+TZs87OAyrE+jxRp2BVJaRipLFXJhR0YqLU1/PA9D+26/XRbvvO02a5rct0+2ZcrkMu/EykBKKzThxeKmWiC1c6eekDRKG6UWEGAgyAgN1V9kl5MdXvv7b9kamB+luftu2f73n1TDN8Lh8HE02vDhMl9q5UqpNe7O3r362lEWL2o2cqQ8ZLlyEvRqz6VYMaBdO0ubIiIiIgPyXCDVo0cPjBs3DiNGjECDBg2wadMmLF68OKMAxZEjR3DS5Uhq8uTJSE5ORvfu3VG6dOmMn3Hjxl2tp2CZH3+Uk+ETJ3rYwc1ivM2ayRqg3i7maVSOGSltjtTx4+aP8LPSHisoSCIbP/BqWB+gD+3zWH3DAC8LTQASLEdESJNmh/cFBsqSUHFxHoJiT7QiLn/+aazBtDRT86M0pUrJtKOJE72bepSQAPz8c+7TmrxSvjygDVkeOlSvAqNRCnjrLdnedZf+ubBISAgwYYKcT/jyS0sfmoiIiHwQdLU74M7zzz+P559/3u1tf2tntdMd8mvNa/+Kj5etx8V43QRSDz8sP3ZITNSTYG4PvkuVkkkbKSmSNrCiIqL2/laokONwsN27JQBq08b3RUm1jFS1arnsWKqUNHbhglS6yKVseY60cXpePEZAgGQm/vhDKpE3aGC+WcOvVfv2sl2+XN5nb6u3bdkiH+iCBU13+JNPvN/3m2+kAEOHDsCSJaaay2zIEKk7v3u3pIg++kiuVwp45RU9U/XKKxY05p7D4WFxaCIiIroq8lxGinTaiW8jgZSdjh+Xbb58HuadBwToEZZV86Ryqdin6dJF5tEYrermjtcZKYfDmuF9CQnAnj1yuWFDr+7yySfy9vfuba5Jp9Pc/dCggbz5Fy7IODtvaSdAbrtNsos2UkoKMwBSvdsSISF6JPfpp8Brr0lhiREjpB49AEyZYt34UiIiIsrzfAqkVqxYgccffxwtWrTA8fSj7K+++gorV660pHM3ulwDKTdzpAA5kDx9WhIGVgoPl+kizz+fw5wTq+dJ5VKxT6NV7rOiBPr990sConVrL3a2onKftsBtuXJeB8U332y+noFSUkSjVSsT8W5AgD4xx8g8Ka3inYlhfa6SkiSOGT3a8z7//ScvaWio+UDTrY4dZXEnp1PWU2raVF/I6eOPgaeesrAxIiIiyutMB1ILFixA586dkS9fPmzcuBFJ6XNE4uPj8e6771rWwRuZ2YxUxYpAyZLWrROrKV1ajhs/+CCHnaxeSyqXin0arbqeFSXQ779fCrC1bOnFzlogpRWLMENb0KlRI/OPYcDhw/KyrltnMplpdJ5UXJy+Mq7pOuRi9Wpg4ED5HHpaAm7aNNk++KANFbu/+ELGDXbvrlciGTtWOkVEREQ3FNOB1Ntvv40pU6Zg+vTpCHaZJ9GqVStEaweG5BOvA6ksqQnt4PiqTB+zugS6lpHKZWiflRkpQ7T5Pr585rX7Nm5s6G6ffy5JEq1YnLe0sucNG8owTcO0QGrNGn1ho5wsWCCppDp1DK0f5U7btvKTnOw+K3X2LPDtt3L5ySd9asq94GDJSs2fLxnhw4elAAURERHdcEwHUrt370ZrN2OfIiMjEZe1qhWZkmsgpS1cnF7RUGNXCfR9+7woUGf10D6DGSlfA6kzZyQ+OHfOyztowc/OnYDZkvsmM1KbN0tS6K+/jDW3Zo1svV4/KqvKlSXzmJKiV+LLyVdfyfbxx32sQy5310bTzZypFwYBgCtXZE2ly5clZrv1Vp+ayl2+fPrnnYiIiG44pgOpUqVKYZ/rUUy6lStXorKWHiCfjB0LTJ+eQ0VsLSPlIZDSkjlWefFFCVhmzcphJyuH9qWm6gtX5ZKRsmpo3y+/yJA+bQ3WXJUqBZQtKxOPPC74lYPLl/VhgQYDqVatZLtqlbEmtYyU6UVqHQ49K7VgQc77HjmiL8T76KMmG8ysVSvgjjuktPnzz+uxtsMhFfILFZKslI8xGxEREVGOTAdSAwYMwKBBg/Dvv//C4XDgxIkT+OabbzB06FA888wzVvbxhnXXXUD//tniJJGSoqdNskx0sSsjleMaUhorM1JHj8rRckiIBCw50GL3U6fMJ4YAvQq5tuitV7Ss1IYNxhvcskWKF5QsKZPQDNACqU2bvH/OiYnAxo1y2XRGCtCrOHz9tV70xJ05c2Tbtq015fDTjR4tgdLvv8t7/+uvsr7U3LnAv//at44aERERkcZ0IPXqq6/i0UcfRfv27XHx4kW0bt0a/fv3x1NPPYWBnHhtv7NnZRsQABQtmukmLXljVyCV4wKu2sFyQkL2hUuN0p5AxYryPHNQqJAcXM+b51t1bS2QMnQgrgVS69cbb9B1WJ/BFEr58vKTliaFI7yxbp3E4CVK5DpaMme33go0aSKR2ZQp7vdRKvOwPgs1biz1Kzp2lMWJtVHGgYFS0ZCIiIjIbqYDKYfDgeHDhyM2Nhbbtm3D2rVrcebMGYzOqS4xee3yZZnP7rEwmjY/qlixbAvV2jG0LzFRj91yTCzkz68Hdr5mpbxcQ0rz+usyJC8szHyTpjJSTZrI1kxGymShCY1WWdDb4X3h4cB99wHduvk49M3hAKKi5PKkSe4nzm3eLMMWQ0OBBx7woTH3OnSQYOrAAaBAAcsfnoiIiChHPi/IGxISglq1aqFZs2YowKMZyxw/LkHB/fd72MHD/ChAAqlu3YA+fWSakRW0qUrh4UDhwrnsbNU8KS/XkLLK2bNATIxcrl3bwB21IGjXLlmo1ggfS59rw/tWr/Zu/yZNgIUL9QVrfdK9u6QnT53SS+W5+vxz2d5zTw4VU3xneYlzIiIiIi+YDqTGjBmDmTNnZrt+5syZeP/9933qFBmo2OdmIaD8+YEffgAmTPBtmJsrLZAqV86LTIZVJdC9rNinSUgAFi+WTJ4Z27bJ9qabDGY4SpY0V3AiKUlv1IdAKiJCfvwuOBh44QW5PH68PH/NwoWSqQKAJ57wf9+IiIiIbGY6kJo6dSpqaIuRuqhduzameJozQV7zeg0pt5UorOdVoQmNVQUntFrmXg7t27pVqrlpI86MMjWsT2NmeN+2bTJhqUgR02W0GzQAYmNlblhuli/PXC7cEgMGSOS+dSvwzjsyBnTTJqBnT7l90CCgSxeLGyUiIiK6+kwHUjExMSjtpspY8eLFcfLkSZ86RUB8vGzNZKQASQ6cOaPHW76qU0fmID38sBc7a0GBr9Uudu+WbfXqXu2uFYg4dgw4f954cx07Ap98YjKBYqbghA+FJjQBAdmmyLmllMQ81aoBP/1kqin3ChUCtOIyb7whDdx9t0zy69gRGDfOwsaIiIiI8g7TgVT58uWxys0M91WrVqFMmTI+dYp8z0gNHy4x1rvvWtOfhg2lKl7//l7sXK2abPfsMd/g2bN6eXcvy7BFRuoxnDZizogaNWRdonvvNX5fUyXQfZwfldXmzZKdcmf7dmDvXqkk36aNJc3p3n5b5kOVKydR7PHj8p75WkKRiIiIKA/zaR2pwYMHY9asWTh8+DAOHz6MmTNnYsiQIRgwYICVfbwhaYFUZKSHHbSMlIdAShuCZ/WivF7RMkh79sgaSWbs2iXbChVk6JiXtGF52jA9v9ECqd27vS84sWKFbJs29bn5vn1lmN+XX7q/XVs3t1MnG+ZTBQYC/fpJpDZhghSh+OUXL6qSEBEREV27TAdSL730Evr164dnn30WlStXRuXKlTFw4EC88MILGDZsmJV9vCF5nZHyMLTP6kV516+XKUteVQGsXFkyEZcvS3bCDC2QcjMPLydaIGU0I3XmDDB7trFaEZmULCkZGaX0FW9zcviwpIkCA4H27U02qmvWTLYzZ2au+aBZuFC2NlQh14WFAYMHS7WPqlVtbIiIiIjo6vNpHan3338fZ86cwdq1a7F582bExsZixIgRVvbvhvXAA8D06UCPHh52yCUj5RpIuTuwNuqOO+TYeMcOL3YODpZgCtDnORml3c9gIKXNkzKakfr3XykX37u3sftlYmR436+/yrZlS0syN488InHM1q3Zm1+5EtiyRWK2rl19boqIiIiIYME6UgUKFEDTpk1Rp04dhIaGWtEngsxJ6t8fuPVWNzcqlWtGSlvKKSHBXOEFV1eu6Ivxlivn5Z204X1mAykfM1JbtxoLIH2q2Ke55RbZLlmS+75aIHXnnT40qCtUSF9zzHVVgjNn9AIhjz2mr5VMRERERL7xaSb40qVLsXTpUpw+fRrOLHNh3K0xRRaJi5Oy2YDHQCo8XG46fVqyUr4sWmpoMV5N9epSHs7XQMrLin2aGjWAL74wHhBpgZSW0TKlWzdg2DDgzz8levX0YiUmAkuXymWLAilApinNmSN1H8qWBV5+WYpP5MsnL+Onn1rWFBEREdENz3RGatSoUejUqROWLl2Ks2fP4vz585l+yDf//Qf8/ruHKUbasL6ICBnP5YG2/JKv86S0dXXLlzdQpduXjFRSEnDggFw2mJEKCZHheUYrimtzqnzKSNWoIZFYSgrw44+e9/v7b0nzlSvnY4OZtW0rQ0FTUqRU/cSJ8jasXy+1HwoWtKwpIiIiohue6YzUlClT8MUXX6CntvAmWWrUKDn4nTHDzbpGXi7G2727jDbThvmZpa2LW6WKgTv5Ekjt2yfV/goWBNysVWa1lBQ9AeZzXNO9u0Rl33/vecKV67A+k+tHuRMQAHz7rSzj9MknwHPPyfWRkTlUfyQiIiIiU0wHUsnJyWjZsqWVfSEXiYmydZtwymUxXs3Qodb0xadA6sgRyb7ky+f9fV0LTZgINA4dAn7+Waqm9+2b+/47d0owFRGhl403rXt34M03gT/+kFWVs0YwSkmEDFg6rE/jcACPPy7zoSyM0YiIiIgoC9ND+/r37485c+ZY2RdykZQkW7f1O7zMSFlFC6QMVbQuXlwqICgl6wsZYbLQhGbLFmDgQOCjj7zbf/ly2TZrZkHwUbs2ULMmkJwsc8Sy2rNHhi2GhFhS9twTBlFERERE9jKdkUpMTMS0adPw559/ol69eggODs50+/jx433u3I3Mq4xULoGUUsC5c0BMjG9FFHr3ltjAbQVBTxwOyUr9+69kmOrV8/6+PgZS2vA8LdOU5aOZzRNPANWqeQhazejeHRg9Wob3Pf545tu0YX1t2gAFCljUIBERERH5m+lAasuWLWjQoAEAYFuW1U8dPB3uMy0j5TaQyqX0uWbPHolFChSQMuhm35Z77pEfw2rU0AMpI3wMpCpWlGRYXJwUWmjRIuf98+cHunQx1ZR7Dz4ogdTixcCFC3qVh/PngQkT5PJdd1nYIBERERH5m+lAatmyZVb2g7LQMlJusyReZqS0IhMXL0oZbL+vIWSm4IRSpkufawICgI4dgfnzgd9+yz2QslydOsDNN0skO3MmMGiQPK+nnwaOHpUxkv36+blTRERERGQlnxbkXbFiBR5//HG0bNkSx9PrdH/11VdYuXKlJZ27keU4tM/LjFRYGFCmjFzW5jkZFRMD/PWXvpaUIWYCqZgYyeIEBBiclJXZHXfI9rffct7vyy9lvaXoaNNNZedwAH36yOXBg4ERI4DZs4HvvgOCgmSxJw7rIyIiIrqmmQ6kFixYgM6dOyNfvnyIjo5GUvpYtPj4eLz77ruWdfBGNXq0jAKrUMHNjV5mpABJjADm18X980+piWCqyr1rIKWUd/fRslGVK/s0aUkbqrd+vR53uvPll8DYscDq1aabcu/ll/WyiaNH6+UDR40Cmja1uDEiIiIi8jfTgdTbb7+NKVOmYPr06ZkKTbRq1QrRlp7evzH17i3JDLdJJy8zUoA+zUiLT4wyVfpcU7WqZJYSEvTgLzc+zo/SlC4NNGgghSY2bXK/T2IisGqVXG7XzqfmsgsMlAjtiy+kQh8A3HYb8MorFjdERERERFeD6TlSu3fvRuvWrbNdHxkZibi4OF/6RDm5ckWGvgFeZaR8WRcX8DGQCg0FKlWSct+7dwOlSuV+H4sCKUAWpy1XzvMoujVrJJgqXVqqEtqid2+gVi1gwQKJjAMDbWqIiIiIiPzJdEaqVKlS2LdvX7brV65cicqVK/vUqRudUjIvadUqKd+diZaNCgmRFWRzcVUzUoDxSG7zZtlaENloFQs9WbpUtu3a2bzuUtOmwHvveRdIEhEREdE1wXQgNWDAAAwaNAj//vsvHA4HTpw4gW+++QZDhw7FM888Y2UfbzhJSTIv6dZbJQGViev8KC+O/uvVA55/HnjhBXN9MbUYrystkPImkktOlnLpANCypckG3XM3Reuvv2Rr47q4RERERHSdMj2079VXX4XT6UT79u1x+fJltG7dGqGhoRg6dCgGDhxoZR9vONoaUoCbegsGCk0AUrXvk0/M9ePiRb050xmp+vVlu3Zt7vtGR8tYu6JFTZc+z2ruXOCDD4Bu3aR4nubMGWDdOrls+fwoIiIiIrrumQ6kHA4Hhg8fjpdeegn79u3DxYsXUatWLRRgWWefaaXPAb1OQQYDhSZ8pWWjihYFIiNNPog2j+6//4BLl2T1W0+0svm33mrZWLtLl4CNG+V1dA2kTp2SdbYiIvT1toiIiIiIvGU6kNKEhISgVq1aVvSF0rmuIZUtnjCYkQKkNsWuXTJfyMjUozJlgM8/zxzYGXbTTVLx4dgxyUrlNI7ONZCySJcu8hr++y/w6acyzBGQNXO3bAFOnrSsKSIiIiK6gRgKpKKiorzed/z48YY7Q0Ib2ud2GSUTGamxY2UpowEDgGnTvO9H8eJAv37e7++WwwG0aQN88w2wfLnnQMrptCWQKlsWeOMN4K23gIEDpRz6U0/Jbfnz+7TmLxERERHdwAwFUhs3bsz0/+joaKSmpqJ6+nyWPXv2IDAwEI0bN7auhzcg14xUNiYyUr6WQPeZayDlye7dwLlz8qQbNbK0+TfflKIdY8cCTz8N/Por8MMPssQVEREREZEZhgKpZcuWZVweP348ChYsiNmzZ6Nw4cIAgPPnz6Nv37647bbbrO3lDSbHQComRrYGAimzJdB/+w3Ilw9o3BgoWNDYfTNp00a2//4rT87dE9OyUc2bu5kY5huHA3j/fSkK+NFHwE8/SZX1hg0tbYaIiIiIbiCm50h9+OGH+OOPPzKCKAAoXLgw3n77bXTq1AkvvviiJR28EZUrJ9mT8HA3N2qTekqX9vrxbr5ZtqdPA+fPAy5vWY6eew44eBD45x/Ap9i4WjVZQykmRoIpLbByZcOwPlcOBzBhggRPRYowiCIiIiIi35ge3JSQkIAzZ85ku/7MmTO4cOGCT5260ZUpAwwdCjz7rJsbTQRSBQvKXCHA++F9ycnA4cNy2XTpc43DoVfv++cf9/togZSN2UyHA+jdG+ja1bYmiIiIiOgGYTqQuu+++9C3b18sXLgQx44dw7Fjx7BgwQL069cP999/v5V9JM3ly0BCglw2EEgBxof3HTok9R/y5TPclHtaFsrdPKkTJ4ADB2TSUosWFjRGRERERGQv00P7pkyZgqFDh+LRRx9FSkqKPFhQEPr164exY8da1sEb0ZkzMqSuSJEsVeW0bFS+fLIAkgHVqwNLl3qfkYqOlm3duhYt6aQFUqtXS7rLdR7UqlWyrVfP8PMiIiIiIroaTAdS4eHh+OyzzzB27FjsT1+5tUqVKsif04Kr5JXffwd69gQ6dACWLHG5wXVYn8Hopnt3mark7ci59etl27SpoWY8q1ULKFYMOHtWHrxlS/22336TrU3zo4iIiIiIrObzgrz58+dHvXr1rOgLpfNYtc/E/CjN7bfLj7f++0+2TZoYbso9bZ7UwoXAokV6ILVhAzB7tlx+4AGLGiMiIiIispfhBXlHjx6N/Pnz57o4LxfkNU9bkNfKQMqItDR9aJ9lGSkA6NFDAqlx44B27YCOHWVhJ6cTeOQRoG1bCxsjIiIiIrKP4QV5tflQWRfndeWwZFLNjUvLSIWGZrnBx0Dq4EGp9dCuHVChguf9HA4ZUrh+vV6kwhIPPQT8+ScwfboETv37SyORkQADbyIiIiK6hphekNf1MlnLrozUgAFScGLSJA+l1dMFBAC33CI/lvvkE2DLFllPatw4ue7dd2WdKSIiIiKia4Tp8udkHzvmSAF64TxPSzn5RWgosGABULKk/L9ZM+Cpp65ih4iIiIiIjDMdSI0ZMwYzZ87Mdv3MmTPx/vvv+9SpG52WkbJ6aJ+2Ju7y5YBSnvf74ANg1iwgNtZUM7krWxb45Rfg0UeBr78GAgNtaoiIiIiIyB6mA6mpU6eihpsJNLVr18aUKVN86tSNrmNHYORIoFOnLDf4GEg1by7BWUwMsHev+31SUqTtJ54Azp0z1Yx3GjcGvvlGarITEREREV1jTAdSMTExKO3mgL548eI4qR3wmzBp0iRUqlQJYWFhaN68OdatW+dx3+3bt+OBBx5ApUqV4HA4MHHiRNPt5iUdOgBvvgl07uxyZXKyrMEEmA6kwsIkmAI8D+/bvl2GFkZGAlWqmGqGiIiIiOi6ZzqQKl++PFatWpXt+lWrVqFMmTKmHnPevHmIiorCyJEjER0djfr166Nz5844ffq02/0vX76MypUr47333kOp671YQUyMbIOCgKJFTT+M6/A+d7SFeJs0kaITRERERESUnelD5QEDBmDw4MGYNWsWDh8+jMOHD2PmzJkYMmQIBgwYYOoxx48fjwEDBqBv376oVasWpkyZgvDwcLdzsQCgadOmGDt2LB5++GGEZptQdO06eFAyQ3FxLldqWb5SpXyKcHIrOGH5QrxERERERNchQ+XPXb300ks4d+4cnn32WSQnJ0MphXz58uGVV17Bq6++avjxkpOTsWHDBgwbNizjuoCAAHTo0AFr1qwx281skpKSkKRVcwCQkJBg2WNbZcgQ4H//A6ZOBZ58Mv1KixbjbdlS1sS97Tb3t2sZKUsX4iUiIiIius6YTm04HA68//77OHPmDNauXYstW7YgNjYWI0aMMLUg79mzZ5GWloaSWlnsdCVLlkSMNqzNAmPGjEFkZGTGT/ny5S17bKu4LX+uBVImh01qwsOB++4DihXLftvly8DWrXKZGSkiIiIiIs9MZ6QAYOnSpVi6dClOnz4Np9OZ6TZPw/GutmHDhiEqKirj/wkJCXkumHJb/tyijFRONmyQKVhlywIVKtjWDBERERHRNc90IDVq1Ci89dZbaNKkCUqXLm0qC+WqWLFiCAwMxKlTpzJdf+rUKUsLSYSGhub5+VQ5ZqQsCKTOnQM++URKoH/zjX79bbcB+/fLHC0f304iIiIiouua6UBqypQp+OKLL9CzZ09LOhISEoLGjRtj6dKl6NatGwDA6XRi6dKleP755y1p41phd0YqOBh45x0gNRVo1Qp49ln9ttKlbU16ERERERFdF0zPkUpOTkbLli2t7AuioqIwffp0zJ49Gzt37sQzzzyDS5cuoW/fvgCAXr16ZSpGkZycjE2bNmHTpk1ITk7G8ePHsWnTJuzbt8/Sfvmb3RmpiAhg1Ci5PHAg8O23wOrVPj8sEREREdENw3Qg1b9/f8yZM8fKvqBHjx4YN24cRowYgQYNGmDTpk1YvHhxRgGKI0eOZFrs98SJE2jYsCEaNmyIkydPYty4cWjYsCH69+9vab/8zR9zpIYNA/r1A5xO4NFHs2emiIiIiIjIM9ND+xITEzFt2jT8+eefqFevHoKDgzPdPn78eFOP+/zzz3scyvf3339n+n+lSpWglDLVTl721FPA6dNAuXLpV6SlAdrcMYsCKYcDmDwZOHoU+OMPue7WWy15aCIiIiKi655DmYxEbr/9ds8P6nDgr7/+Mt0pf0pISEBkZCTi4+MRERFxtbvjXkyMBFAOB5CcLKX1LJKQADz4IJA/PzB/PhAYaNlDExERERFdU4zEBqaPyJctW2b2rmSUNqyvRAlLgyhA5kv9/rulD0lEREREdN0zPUeK7LNnD3DkiIzoA+CXNaSIiIiIiMh7htIbUVFRGD16NPLnz59pUVt3zM6RutGlpgLVq8vlc+eAIkXAQIqIiIiIKI8xFEht3LgRKSkpGZc98XVx3huZVrEPcCl/zkCKiIiIiChPMRRIuc6L4hwpe2hrSAEu5c8ZSBERERER5SmcI5XHaIFUUJBLBb3jx2VbpsxV6RMREREREWXmUwm4uLg4zJgxAzt37gQA1KpVC/369UNkZKQlnbsRaUP7Mob1AbLYEwCUL+/3/hARERERUXamM1Lr169HlSpVMGHCBMTGxiI2NhYTJkxAlSpVEB0dbWUfbyhaRipjWB/AQIqIiIiIKI8xnZEaMmQI7rnnHkyfPh1B6Wsbpaamon///hg8eDD++ecfyzp5I9ECqYyMVGIicOaMXGYgRURERESUJ5gOpNavX58piAKAoKAgvPzyy2jSpIklnbsRFSsGDBoEFCiQfsWxY7LNly+9FjoREREREV1tpgOpiIgIHDlyBDVq1Mh0/dGjR1GwYEGfO3ajqlABmDjR5YojR2RbvjzAsvJERERERHmC6TlSPXr0QL9+/TBv3jwcPXoUR48exdy5c9G/f3888sgjVvbxxsb5UUREREREeY7pjNS4cePgcDjQq1cvpKamAgCCg4PxzDPP4L333rOsgzeay5eBuDggf34gMhJ6IFWhwtXsFhERERERuTCdkQoJCcFHH32E8+fPY9OmTdi0aVNG5b7QTCXnyIiffgLKlgXuuy/9CmakiIiIiIjyHMOB1F9//YVatWohISEBABAeHo66deuibt26SElJQe3atbFixQrLO3qjyFb+nIEUEREREVGeYziQmjhxIgYMGICIiIhst0VGRuKpp57C+PHjLencjShb+XMGUkREREREeY7hQGrz5s3o0qWLx9s7deqEDRs2+NSpG1lSkmwZSBERERER5V2GA6lTp04hODjY4+1BQUE4oy0gS4ZlGtp34QIQHy9XMJAiIiIiIsozDAdSZcuWxbZt2zzevmXLFpQuXdqnTt3IMg3t07JRkZEA1+YiIiIiIsozDAdSd955J9544w0kakf8Lq5cuYKRI0fi7rvvtqRzN6JMQ/tcF+MlIiIiIqI8w/A6Uq+//joWLlyIm2++Gc8//zyqV68OANi1axcmTZqEtLQ0DB8+3PKO3igaNQKeeAK45RZwfhQRERERUR5lOJAqWbIkVq9ejWeeeQbDhg2DUgoA4HA40LlzZ0yaNAklS5a0vKM3igcekB8AwAguxktERERElBcZDqQAoGLFivj1119x/vx57Nu3D0opVKtWDYULF7a6fzc2ZqSIiIiIiPIkU4GUpnDhwmjatKlVfSEA6escIzwcCGIgRURERESUJxkuNkH26tdPivRNnQpmpIiIiIiI8igGUnlMRvnzUMVAioiIiIgoj2IglcdklD9PvQhcuSL/KVfu6nWIiIiIiIiyYSCVx2gZqdALZ+VC8eLpi0oREREREVFewUAqj8kY2pdwWi5wWB8RERERUZ7DQCqPyRjaFxcjFxhIERERERHlOQyk8piMoX2xJ+UCF+MlIiIiIspzfFpHiqx3993A8eNAqfjdcgUDKSIiIiKiPIeBVB7z4YfpF25ZI9ubbrpqfSEiIiIiIvc4tC+vOnBAtpUrX91+EBERERFRNsxI5TGXLwOhKRcReOaMXMGMFBERERFRnsNAKg9RCsifHwAKIAYlULJQMlCo0FXuFRERERERZcWhfXlIcrJ+OQyJHNZHRERERJRHMZDKQ7Q1pAAgFEkc1kdERERElEcxkMpDtDWkgPRAihkpIiIiIqI8iYFUHpKxGG9AMhwAM1JERERERHkUA6k8RBvaF4r0CwykiIiIiIjyJAZSeYiWkQpzXpELHNpHRERERJQnMZDKQ/LnB+6/KxF34hfA4QAqVrzaXSIiIiIiIje4jlQeUrkysOCNzcAvTwBlywGhoVe7S0RERERE5AYzUnnNgQOy5fwoIiIiIqI8i4FUHqIUoA4clP8wkCIiIiIiyrMYSOUhCxYAga+/ivb4k4UmiIiIiIjyMAZSeUhSEqAQAAcUM1JERERERHkYA6k8JKP8ORKZkSIiIiIiysMYSOUhSZfTAKQHUsxIERERERHlWXkykJo0aRIqVaqEsLAwNG/eHOvWrctx//nz56NGjRoICwtD3bp18euvv/qpp9ZKjIkDAIQGpAKlS1/dzhARERERkUd5LpCaN28eoqKiMHLkSERHR6N+/fro3LkzTp8+7Xb/1atX45FHHkG/fv2wceNGdOvWDd26dcO2bdv83HPfJZ2KAwCEFQwCAvLcW0NEREREROny3NH6+PHjMWDAAPTt2xe1atXClClTEB4ejpkzZ7rd/6OPPkKXLl3w0ksvoWbNmhg9ejQaNWqETz/91M89913iqXgAQFgkF+IlIiIiIsrLgq52B1wlJydjw4YNGDZsWMZ1AQEB6NChA9asWeP2PmvWrEFUVFSm6zp37oxFixa53T8pKQlJSUkZ/4+Pl+AlISHBx977rnTKNrTDIdxUNi5P9IeIiIiI6EaiHYMrpXLdN08FUmfPnkVaWhpKliyZ6fqSJUti165dbu8TExPjdv+YmBi3+48ZMwajRo3Kdn358uVN9tp6f60BXorsd7W7QURERER0Q7pw4QIiIyNz3CdPBVL+MGzYsEwZLKfTidjYWBQtWhQOh+Mq9kwkJCSgfPnyOHr0KCIiIq52d8gCfE+vP3xPr098X68/fE+vT3xfrz956T1VSuHChQsoU6ZMrvvmqUCqWLFiCAwMxKlTpzJdf+rUKZQqVcrtfUqVKmVo/9DQUISGZp6DVKhQIfOdtklERMRV/yCRtfieXn/4nl6f+L5ef/ieXp/4vl5/8sp7mlsmSpOnik2EhISgcePGWLp0acZ1TqcTS5cuRYsWLdzep0WLFpn2B4AlS5Z43J+IiIiIiMhXeSojBQBRUVHo3bs3mjRpgmbNmmHixIm4dOkS+vbtCwDo1asXypYtizFjxgAABg0ahDZt2uDDDz/EXXfdhblz52L9+vWYNm3a1XwaRERERER0HctzgVSPHj1w5swZjBgxAjExMWjQoAEWL16cUVDiyJEjCHBZY6lly5aYM2cOXn/9dbz22muoVq0aFi1ahDp16lytp+CT0NBQjBw5MtvwQ7p28T29/vA9vT7xfb3+8D29PvF9vf5cq++pQ3lT24+IiIiIiIgy5Kk5UkRERERERNcCBlJEREREREQGMZAiIiIiIiIyiIEUERERERGRQQyk8pBJkyahUqVKCAsLQ/PmzbFu3bqr3SXy0pgxY9C0aVMULFgQJUqUQLdu3bB79+5M+yQmJuK5555D0aJFUaBAATzwwAPZFpOmvOu9996Dw+HA4MGDM67je3ptOn78OB5//HEULVoU+fLlQ926dbF+/fqM25VSGDFiBEqXLo18+fKhQ4cO2Lt371XsMeUkLS0Nb7zxBm666Sbky5cPVapUwejRo+FaS4vvad73zz//oGvXrihTpgwcDgcWLVqU6XZv3sPY2Fg89thjiIiIQKFChdCvXz9cvHjRj8+CXOX0nqakpOCVV15B3bp1kT9/fpQpUwa9evXCiRMnMj1GXn9PGUjlEfPmzUNUVBRGjhyJ6Oho1K9fH507d8bp06evdtfIC8uXL8dzzz2HtWvXYsmSJUhJSUGnTp1w6dKljH2GDBmCn376CfPnz8fy5ctx4sQJ3H///Vex1+St//77D1OnTkW9evUyXc/39Npz/v/t3XtQlNX/B/A3t10QlKuwIoJ4GW+YAxJKYNhAopmiOTYiKYmGkQyggppGWd8hFAenwIKRLspoMVqaBnkhFBIvgIAX1JC84TCQidzkIsie3x+Nz68N0F1yWND3a2Zn2HPOc57Ps5+ZZT9znj1bUwMPDw8YGBjg0KFDuHz5MuLj42Fubi6NiYuLQ0JCApKTk5GXlwdjY2P4+vqipaVFi5FTVzZv3oykpCRs27YNV65cwebNmxEXF4fExERpDHPa+zU2NmLChAn44osvOu1XJ4cBAQG4dOkSMjMzkZ6ejt9++w3BwcE9dQn0L4/LaVNTE4qKihAdHY2ioiLs27cPpaWlmD17tsq4Xp9TQb2Cm5ubWLFihfS8vb1d2NraitjYWC1GRd11584dAUDk5OQIIYSora0VBgYGYu/evdKYK1euCADi9OnT2gqT1NDQ0CBGjhwpMjMzhZeXlwgPDxdCMKd91dq1a4Wnp2eX/UqlUigUCrFlyxaprba2VsjlcvH999/3RIikoZkzZ4qgoCCVtjfeeEMEBAQIIZjTvgiA2L9/v/RcnRxevnxZABAFBQXSmEOHDgkdHR1RUVHRY7FT5/6d087k5+cLAOLWrVtCiL6RU65I9QKtra0oLCyEj4+P1KarqwsfHx+cPn1ai5FRd9XV1QEALCwsAACFhYVoa2tTyfHo0aNhb2/PHPdyK1aswMyZM1VyBzCnfdXBgwfh6uqK+fPnw9raGs7OzkhJSZH6b9y4gaqqKpW8mpqaYtKkScxrL/XSSy8hKysLV69eBQCcP38eubm5mDFjBgDm9FmgTg5Pnz4NMzMzuLq6SmN8fHygq6uLvLy8Ho+ZNFdXVwcdHR2YmZkB6Bs51dd2AATcvXsX7e3tsLGxUWm3sbHB77//rqWoqLuUSiUiIiLg4eEBJycnAEBVVRVkMpn05vCIjY0NqqqqtBAlqSMtLQ1FRUUoKCjo0Mec9k3Xr19HUlISVq1ahfXr16OgoABhYWGQyWQIDAyUctfZ+zHz2jutW7cO9fX1GD16NPT09NDe3o6YmBgEBAQAAHP6DFAnh1VVVbC2tlbp19fXh4WFBfPcB7S0tGDt2rXw9/fHgAEDAPSNnLKQInrKVqxYgZKSEuTm5mo7FPoPbt++jfDwcGRmZsLQ0FDb4dBTolQq4erqik8//RQA4OzsjJKSEiQnJyMwMFDL0VF37NmzB7t378Z3332HcePG4dy5c4iIiICtrS1zStQHtLW14c0334QQAklJSdoORyO8ta8XsLKygp6eXofdvv78808oFAotRUXdERoaivT0dBw/fhx2dnZSu0KhQGtrK2pra1XGM8e9V2FhIe7cuQMXFxfo6+tDX18fOTk5SEhIgL6+PmxsbJjTPmjQoEEYO3asStuYMWNQXl4OAFLu+H7cd0RFRWHdunVYsGABxo8fj0WLFmHlypWIjY0FwJw+C9TJoUKh6LBB18OHD3Hv3j3muRd7VETdunULmZmZ0moU0DdyykKqF5DJZJg4cSKysrKkNqVSiaysLLi7u2sxMlKXEAKhoaHYv38/jh07BkdHR5X+iRMnwsDAQCXHpaWlKC8vZ457KW9vb1y8eBHnzp2THq6urggICJD+Zk77Hg8Pjw4/TXD16lU4ODgAABwdHaFQKFTyWl9fj7y8POa1l2pqaoKururHGT09PSiVSgDM6bNAnRy6u7ujtrYWhYWF0phjx45BqVRi0qRJPR4zPdmjIqqsrAy//vorLC0tVfr7RE61vdsF/S0tLU3I5XKxY8cOcfnyZREcHCzMzMxEVVWVtkMjNYSEhAhTU1ORnZ0tKisrpUdTU5M05t133xX29vbi2LFj4uzZs8Ld3V24u7trMWrS1D937ROCOe2L8vPzhb6+voiJiRFlZWVi9+7dol+/fmLXrl3SmE2bNgkzMzNx4MABceHCBeHn5yccHR1Fc3OzFiOnrgQGBorBgweL9PR0cePGDbFv3z5hZWUl1qxZI41hTnu/hoYGUVxcLIqLiwUAsXXrVlFcXCzt4KZODqdPny6cnZ1FXl6eyM3NFSNHjhT+/v7auqTn3uNy2traKmbPni3s7OzEuXPnVD47PXjwQJqjt+eUhVQvkpiYKOzt7YVMJhNubm7izJkz2g6J1ASg08e3334rjWlubhbvvfeeMDc3F/369RNz584VlZWV2guaNPbvQoo57Zt+/vln4eTkJORyuRg9erTYvn27Sr9SqRTR0dHCxsZGyOVy4e3tLUpLS7UULT1JfX29CA8PF/b29sLQ0FAMGzZMbNiwQeXDGHPa+x0/frzT/6OBgYFCCPVyWF1dLfz9/YWJiYkYMGCAWLJkiWhoaNDC1ZAQj8/pjRs3uvzsdPz4cWmO3p5THSH+8dPfRERERERE9ET8jhQREREREZGGWEgRERERERFpiIUUERERERGRhlhIERERERERaYiFFBERERERkYZYSBEREREREWmIhRQREREREZGGWEgRERERERFpiIUUERERERGRhlhIERERERERaYiFFBER9YipU6ciIiKiV56rJ2P7r6qrq2FtbY2bN28+lfkWLFiA+Pj4pzIXEdHzhIUUERGpePvtt6GjowMdHR3IZDKMGDECn3zyCR4+fKjt0AhATEwM/Pz8MHToUADAkSNHpHx19Th69GiX833wwQeIiYlBXV1dD10BEdGzgYUUERF1MH36dFRWVqKsrAyrV6/Gxo0bsWXLlk7Htra29nB0z6+mpiZ8/fXXWLp0qdT28ssvo7KyUnpYWloiOjpapc3b27vLOZ2cnDB8+HDs2rWrJy6BiOiZwUKKiIg6kMvlUCgUcHBwQEhICHx8fHDw4EEAf98GFxoaioiICFhZWcHX1xcA8ODBA4SFhcHa2hqGhobw9PREQUGByrwPHz5EaGgoTE1NYWVlhejoaAghpH6lUonY2Fg4OjrCyMgIEyZMwA8//PDYWBsbG7F48WKYmJhg0KBBnd6mpum8hw8fhqenJ8zMzGBpaYnXX38d165dk/pTU1NhaWmJBw8eqBw3Z84cLFq06LHx/pOfn1+Xq0iPXu9/+uWXXyCXyzF58mSpzcjICAqFAgqFAu3t7aiursaUKVOkNoVCAT09vcfGMWvWLKSlpakdNxERsZAiIiI1GBkZqaw87dy5EzKZDCdPnkRycjIAYM2aNfjxxx+xc+dOFBUVYcSIEfD19cW9e/dUjtPX10d+fj4+//xzbN26FV999ZXUHxsbi9TUVCQnJ+PSpUtYuXIl3nrrLeTk5HQZW1RUFHJycnDgwAEcPXoU2dnZKCoqUhmj6byNjY1YtWoVzp49i6ysLOjq6mLu3LlQKpUAgPnz56O9vV2l2Llz5w4yMjIQFBSk9uv6zTffSCt/wN+F0qNVpNdee63D+BMnTmDixIldzldcXAwAcHFxUTsGAHBzc0N+fn6HwpCIiB5DEBER/UNgYKDw8/MTQgihVCpFZmamkMvlIjIyUgghhJeXl3B2dlY55v79+8LAwEDs3r1bamttbRW2trYiLi5OOm7MmDFCqVRKY9auXSvGjBkjhBCipaVF9OvXT5w6dUpl7qVLlwp/f/9OY21oaBAymUzs2bNHaquurhZGRkYiPDxc7Xm9vLyk8Z3566+/BABx8eJFqS0kJETMmDFDeh4fHy+GDRumcn3qOnXqlNDR0RENDQ2PHefn5yeCgoK67P/444/FkCFDOrTPmTNHmJmZiXnz5nV63Pnz5wUAcfPmTc0CJyJ6julru5AjIqLeJz09HSYmJmhra4NSqcTChQuxceNGqf/fqyLXrl1DW1sbPDw8pDYDAwO4ubnhypUrUtvkyZOho6MjPXd3d0d8fDza29vxxx9/oKmpCa+++qrK3K2trXB2du40zmvXrqG1tRWTJk2S2iwsLDBq1CjpeXfmLSsrw4cffoi8vDzcvXtXWokqLy+Hk5MTAOCdd97Biy++iIqKCgwePBg7duyQNurQ1IULFzB06FCYmJg8dlxzczMMDQ277C8qKup0NSo8PBxBQUHYuXNnp8cZGRkB+Ps7WEREpB4WUkRE1MErr7yCpKQkyGQy2NraQl9f9d+FsbHxUz/n/fv3AQAZGRkYPHiwSp9cLu/ReWfNmgUHBwekpKTA1tYWSqUSTk5OKrc3Ojs7Y8KECUhNTcW0adNw6dIlZGRkdCvGCxcu4IUXXnjiOCsrK9TU1HTZX1RUhGXLlnVonzp1KrKzs7s87tHtlwMHDnxysEREBICFFBERdcLY2BgjRoxQe/zw4cOl70w5ODgAANra2lBQUKDy+0x5eXkqx505cwYjR46Enp4exo4dC7lcjvLycnh5eal9XgMDA+Tl5cHe3h4AUFNTg6tXr0pzaDpvdXU1SktLkZKSgilTpgAAcnNzOx27bNkyfPbZZ6ioqICPjw+GDBmiVtz/dvPmTWml63GcnZ273F3v7t27uH37tsbfjwKAkpIS2NnZwcrKSuNjiYieVyykiIjoPzM2NkZISAiioqJgYWEBe3t7xMXFoampSWWr7vLycqxatQrLly9HUVEREhMTpV32+vfvj8jISKxcuRJKpRKenp6oq6vDyZMnMWDAAAQGBnY4r4mJCZYuXYqoqChYWlrC2toaGzZsgK7u/++lpOm85ubmsLS0xPbt2zFo0CCUl5dj3bp1nV73woULERkZiZSUFKSmpnb79VMqlbh16xYqKipga2vb5e2Bvr6+eP/991FTUwNzc3OVvkcbbHSnkDpx4gSmTZumeeBERM8xFlJERPRUbNq0CUqlEosWLUJDQwNcXV1x5MgRlQ/8ixcvRnNzM9zc3KCnp4fw8HAEBwdL/f/73/8wcOBAxMbG4vr16zAzM4OLiwvWr1/f5Xm3bNmC+/fvY9asWejfvz9Wr17d4cdlNZlXV1cXaWlpCAsLg5OTE0aNGoWEhARMnTq1w1hTU1PMmzcPGRkZmDNnjkrfjh07sGTJEpXt3bsSFhaG4OBgjBo1CvX19V0WUuPHj4eLiwv27NmD5cuXq/QVFxfDxsYGtra2TzzfP7W0tOCnn37C4cOHNTqOiOh5pyPUeYcnIiKiTnl7e2PcuHFISEhQaf/oo4+Qk5Pz2O8mdUdGRgaioqJQUlKisvL2JNnZ2di2bVuH389KSkrC/v37cfTo0acaJxHRs44rUkRERN1QU1OD7OxsZGdn48svv+zQf+jQIWzbtu2pn3fmzJkoKytDRUWF2t/J8vHxwfnz59HY2Ag7Ozvs3bsX7u7uAP7eXTExMfGpx0lE9KzjihQREVE3DB06FDU1NYiOjkZkZKS2wyEioh7GQoqIiIiIiEhD6t9cTURERERERABYSBEREREREWmMhRQREREREZGGWEgRERERERFpiIUUERERERGRhlhIERERERERaYiFFBERERERkYZYSBEREREREWmIhRQREREREZGGWEgRERERERFp6P8A5k5Awa9Ws1QAAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(10, 4))\n", "plt.plot(delays, coinc_set_RL, label=\"$RL$\", color='red')\n", "plt.plot(delays, coinc_set_RR, label=\"$RR$\", color='blue', linestyle='dashed')\n", "plt.xlabel(\"Probe delay, $\\\\tau$ ($T_1$)\")\n", "plt.ylabel(\"Coincidence count probability, $C(\\\\tau)$\")\n", "plt.ylim([0, 0.5])\n", "plt.legend()\n", "plt.show()" ], "metadata": { "collapsed": false, "ExecuteTime": { "end_time": "2024-02-09T09:21:36.763329Z", "start_time": "2024-02-09T09:21:36.690423Z" } } }, { "cell_type": "markdown", "source": [ "As anticipated, we can clearly see the impact of the spin precession on the time-polarisation correlation probabilities. Notably, the RL and RR probabilities oscillate in opposition and have an amplitude that decays exponentially due to spin dephasing. However, when the probe delay is small there is an interesting deviation from this pattern. It makes sense that RL goes to zero because, if R was detected after the first pulse, the second pulse should cause another R to be emitted (the spin had no time to precess in between two fast pulses). However, looking at RL we see that it also goes to zero! This is because we are looking at probabilities as a proportion of all possible outcomes of our detectors. When the delay is small, the most probable outcome is '00' because after the first pulse excites the quantum dot, the second pulse immediately returns it to the ground state, effectively performing a $2\\pi$ pulse." ], "metadata": { "collapsed": false } }, { "cell_type": "markdown", "source": [], "metadata": { "collapsed": false } } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }